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Abstract—We propose an all-optical neural network where 

signal processing requires no optical-to-electrical conversion. 

Weight multiplication, addition, and nonlinear activation of 

artificial neurons are performed in the photonic domain. 

Successful implementation will advance photonic neuromorphic 

computing, enabling practical solutions in artificial intelligence-

driven tasks. 

Keywords—neuromorphic computing, optical neural networks 

(ONN), photonic neuron 

I. INTRODUCTION

 Artificial neural networks (ANNs) have demonstrated an 

immense capacity to learn patterns while providing state-of-the-

art performance in a variety of artificial intelligence tasks, 

particularly in voice and image recognition. However, scaling 

contemporary von Neumann computing architectures to meet 

the unsatiated computational demands of ANNs has hindered 

the development of a reliable and energy-efficient computing 

platform. As a result, there has been immense research in 

exploring alternative hardware platforms, such as neuromorphic 

computers [1,2] in an effort to both meet time- and energy-

efficiency demands during ANN inferencing. While electronic 

neuromorphic computers such as Google’s TPU and Intel’s 

Loihi have shown drastic improvements in the reduction of 

ANN training times, such systems, however, are inherently 

prohibited by the hardware interconnectivity and the stringent 

cooling energy requirements [3]. This, in turn, has sparked 

interest in optical neural networks (ONNs), which are a leading 

form of analog-based neural networks that can be accelerated in 

the photonics domain.  

 Extensive research in the past decade on ONNs and photonics 

has demonstrated their potential as a promising alternative to 

digital neuromorphic processing. While photonic neuron-level 

implementations have shown moderate success, optical-

electrical conversions at each neuron using optical-electronic-

optical (O/E/O) links present challenges for large-scale photonic 

neural networks [4,5]. To overcome this challenge, we propose 

and design a programmable nanophotonic neuron (PNN) that 

eliminates the requirement of O/E/O conversion, leading to 

enhanced power efficiency and scalability benefits. 

II. PHOTONIC NEURON

To implement a full-ONN purely within the optical domain 
(without signal conversion), our approach requires several key 
components as follows: (1) weight multiplication is achieved 
through a Mach-Zehnder interferometer (MZI) with  an unused 
waveguide arm; (2) optical weighted addition is achieved 
through another MZI loaded with an external and internal phase 
shifter, performing 2 × 2 unitary operation, which is then 
controlled actively with feedback from an external 
photodetector [6]; (3) nonlinear activation function is achieved 
passively through optical bistability in a silicon microring 
resonator (MRR) [7]. 

Fig. 1 (a) An artificial neuron with a fan in of N inputs with assigned weights. 
Each neuron sums the inputs which are then fed to a nonlinear activation function 
to determine the strength of the output signal, (b) the corresponding photonic 
version showing different associated operations. 

Figures 1(a) and 1(b) illustrates the generalized artificial 
neuron for the hidden layer with N inputs and the corresponding 
photonic implementation of a neuron. In the photonic 
implementation, N attenuators are employed for weighted 
multiplication, represented by the blue-shaded region in 
Figure 1(b), and the green-shaded region highlighted the optical 
weighted addition implemented through a binary-tree of tunable 
MZIs [6]. After summation of the optical inputs, our neuron then 
performs a nonlinear activation function through optical 
bistability in a silicon MRR as shown highlighted in red in 
Figure 1(b). This comprehensive approach enables the 
realization of fast, all-optical neural network, eliminating the 
need for signal conversion. 

III. PHOTONIC NEURAL NETWORK

We assessed the feasibility of our proposed photonic neuron 
implementation by training an ANN to predict the behavior a 
nonlinear curve derived from the equation y(x) = 2x2 + 1. This 
choice was made twofold: (1) the simplicity of the defined 
problem; (2) there  are easily discernable outcomes.  
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Fig. 2 (a) An optimized artificial neural network for predicting nonlinear curves, 
(b) 1×4 multi-mode interferometer simulated in FDTD achieving ~25% power 
splitting, (c) waveguide crossing broadband response while achieving loss of 
0.14dB (d) displays the two-input photonic neuron topology, (e) shows the 
nonlinear activation function performed by the silicon MRR. 

 Through optimization, we fine-tuned the neural network to 
incorporate two input layer neurons, four hidden layer neurons, 
and one output layer neuron, enabling the accurate 
representation of the given nonlinear function within the range 
of -1 < x < 1, as shown in Figure 2(a). The input layer neuron 
plays a simple yet crucial role of splitting the input into four 
equal parts, a task seamlessly accomplished through a 1×4 
multimode interferometer (MMI).  

 The transmission vs. wavelength curve is presented in Figure 
2(b) and was obtained using an eigenmode expansion (EME) 
solver. To implement any desired ONN topology, we designed 
low-loss waveguide crossings to facilitate the connection 
between the input and hidden layers. To address this, we 
employed a particle swarm algorithm (PSO) in conjunction with 
the finite-difference time-domain (FDTD) method to design a 
low-loss waveguide crossing. Figure 2(c)  displays the 
transmission vs. wavelength curve for the crossing. 

 The hidden layer consists of standard neurons with two 
inputs, incorporating functionalities such as weighted addition 
and nonlinear activation. Our proposed photonic neuron realizes 
this capability by utilizing an adaptive beam coupler with 
feedback control and photodetectors [6], as depicted in 
Figure 2(d). Figure 2(e) shows the input-output intensity  

 

 

Fig. 3 (a) Mean-square error (MSE) during training for 15,000 epochs 
considering a uniform distribution of nonidealities attributed to the physical 
implementation of the ONN, (b) resulting estimated and actual curve for a given 
nonlinear function of y(x) = 2x2 + 1. 

relationship of our silicon MRR bistability nonlinear activation 
function. Finally, the output layer consists of a single neuron, 
which simply sums the four inputs using the adaptive beam. 
coupler. This configuration enables efficient and accurate 
computation, representing an addition of four inputs. 

 To assess the viability of implementing a photonic neural 
network, we trained a neural network to model the nonlinear 
curve y(x) = 2x2 + 1. We introduced uniformly sampled random 
variations ranging from 0 to 20% in attenuation, addition, and 
nonlinear activation. These variations were incorporated to 
account for nonidealities that may arise from physical 
implementations. As depicted in Figure 3(a), utilizing 15,000 
training samples, we successfully minimized the mean square 
error (MSE) to ~0.03. Notably, during testing, we considered the 
presence of nonidealities, and Figure 3(b) demonstrates that the 
trained neural network is capable of capturing the overall trend 
of the actual curve. This outcome shows the potential of our 
proposed method to effectively implement an optical neural 
network, provided that meticulous design and fabrication are 
achieved.  

 By cascading individual neurons according to the required 
number of inputs and layers, a complete neural network can be 
constructed in a seamless manner, eliminating the need for 
O/E/O conversion. This approach promises to enhance the 
overall efficiency, practicality, and complexity of implementing 
large-scale, photonic neural networks. 
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