Kato-Ponce Inequality With $A_{\vec{p}}$ Weights

Sean Douglas University of Missouri

Analysis Seminar

Ohio State University
7 December, 2023

Fourier Transform

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ the Fourier transform and inverse Fourier transform are respectively defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(y) e^{-2 \pi i y \cdot \xi} d y
$$

Fourier Transform

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ the Fourier transform and inverse Fourier transform are respectively defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(y) e^{-2 \pi i y \cdot \xi} d y
$$

$$
\mathcal{F}^{-1}(f)(\xi)=\int_{\mathbb{R}^{n}} f(y) e^{2 \pi i y \cdot \xi} d y
$$

Fractional Differentiation

For $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$
\mathcal{F}^{-1}(\underbrace{2 \pi i(\cdot) \widehat{\varphi}}_{2 \pi i \xi \widehat{\varphi}(\xi)})=\varphi^{\prime}
$$

Fractional Differentiation

For $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$
\mathcal{F}^{-1}(\underbrace{2 \pi i(\cdot) \widehat{\varphi}}_{2 \pi i \xi \widehat{\varphi}(\xi)})=\varphi^{\prime} .
$$

Thus multiplication by ξ in frequency is essentially the same as taking the derivative in space.

Fractional Differentiation

For $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$
\mathcal{F}^{-1}(\underbrace{2 \pi i(\cdot) \widehat{\varphi}}_{2 \pi i \xi \widehat{\varphi}(\xi)})=\varphi^{\prime} .
$$

Thus multiplication by ξ in frequency is essentially the same as taking the derivative in space.
More generally,

$$
\mathcal{F}^{-1}(\underbrace{(2 \pi i \cdot)^{m} \widehat{\varphi}}_{(2 \pi i \xi)^{m} \widehat{\varphi}(\xi)})=\frac{d^{m}}{d x^{m}} \varphi .
$$

What about when m is not an integer?

For $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $s>0$ we define the homogeneous differential operator

$$
D^{s} \varphi:=\mathcal{F}^{-1}(\underbrace{|\cdot|^{s} \widehat{\varphi}}_{|\xi|^{s} \widehat{\varphi}(\xi)}) \text {. }
$$

For $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $s>0$ we define the homogeneous differential operator

$$
D^{s} \varphi:=\mathcal{F}^{-1}(\underbrace{|\cdot|^{s} \widehat{\varphi}}_{\left.|\xi|\right|^{*} \stackrel{\rightharpoonup}{\varphi}(\xi)}) .
$$

Similarly, the inhomogenous differential operator, where $\langle\cdot\rangle:=\left(1+|\cdot|^{2}\right)^{\frac{1}{2}}$, is given by

$$
J^{5} \varphi:=\mathcal{F}^{-1}\left(\langle\cdot\rangle^{s} \widehat{\varphi}\right) .
$$

Notice if s is an even integer, $s=2 k$, then

$$
\begin{aligned}
|\xi|^{2 k} \widehat{\varphi}(\xi) & =\left(\xi_{1}^{2}+\cdots+\xi_{n}^{2}\right)^{k} \widehat{\varphi}(\xi) \\
& =\sum_{t_{1}+\cdots+t_{n}=k}\binom{k}{t_{1}, \cdots, t_{n}} \prod_{j=1}^{n} \xi_{j}^{2 t_{j}} \widehat{\varphi}(\xi),
\end{aligned}
$$

which will give the derivative in the classical sense. For this reason some authors use $(-\Delta)^{\frac{5}{2}}$ is used in place of D^{s}, and $(I-\Delta)^{\frac{5}{2}}$ in place of J^{s} (modulo a $2 \pi i$).

Leibniz Rule

Standard Leibniz rule is given by

$$
\partial^{\alpha}(f g)=\sum_{\beta: \beta \leq \alpha}\binom{\alpha}{\beta} f^{(\beta)} g^{(\alpha-\beta)} .
$$

Leibniz Rule

Standard Leibniz rule is given by

$$
\partial^{\alpha}(f g)=\sum_{\beta: \beta \leq \alpha}\binom{\alpha}{\beta} f^{(\beta)} g^{(\alpha-\beta)} .
$$

We are interested in controlling the derivative of a product by only the higher order derivative terms. This may not be possible pointwise, but it is in norm. For example,

$$
\begin{aligned}
\left\|\frac{d^{2}}{d x^{2}}(f g)\right\|_{L^{r}} & =\left\|f^{\prime \prime} g+g^{\prime \prime} f+2 f^{\prime} g^{\prime}\right\|_{L^{p}} \\
& \leq\left\|f^{\prime \prime} g\right\|_{L^{p}}+\left\|g^{\prime \prime} f\right\|_{L^{p}}+\left\|2 f^{\prime} g^{\prime}\right\|_{L^{p}} \\
& \lesssim\left\|f^{\prime \prime}\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\left\|g^{\prime \prime}\right\|_{L^{p_{1}}}\|f\|_{L^{p_{2}}} .
\end{aligned}
$$

Fractional Leibniz Rule

For the fractional derivative we study analogous estimates called-

$$
\begin{aligned}
& \text { Kato-Ponce Inequality } \\
& \left\|J^{s}(f g)\right\|_{L^{p}} \lesssim\left\|J^{s} f\right\|_{L p_{1}}\|g\|_{L^{p_{2}}}+\|f\|_{L p_{1}}\left\|J^{s} g\right\|_{L^{p_{2}}}
\end{aligned}
$$

where $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$.

Fractional Leibniz Rule

For the fractional derivative we study analogous estimates called-

$$
\begin{aligned}
& \text { Kato-Ponce Inequality } \\
& \left\|J^{s}(f g)\right\|_{L^{p}} \lesssim\left\|J^{s} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{s} g\right\|_{L^{\rho_{2}}}
\end{aligned}
$$

where $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. More generally we are interested in inequalities of the form,

Weighted Multifactor Kato-Ponce Inequality

$$
\begin{aligned}
\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{\rho}(w)} & \underset{ }{\lesssim} \\
& \cdots J^{5} f_{1}\left\|_{L^{p_{1}}\left(w_{1}\right)}\right\| f_{2}\left\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\right\| f_{m} \|_{L^{\rho_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{5} f_{m}\right\|_{L^{\rho_{m}}\left(w_{m}\right)}
\end{aligned}
$$

where $\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \lesssim\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{5} g\right\|_{L^{p_{2}}}
$$

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with $s>0,1<p<\infty, 1<p_{1}<\infty, p_{2}=\infty$ in the study of Euler and Naiver Stokes equations.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \lesssim\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{5} g\right\|_{L^{p_{2}}}
$$

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with $s>0,1<p<\infty, 1<p_{1}<\infty, p_{2}=\infty$ in the study of Euler and Naiver Stokes equations.

Christ, Weinstein (1991) proved the homogeneous KP inequality for $0<s<1$ and $1<p<\infty, 1<p_{1}, p_{2} \leq \infty$ in the analysis of Korteweg-de Vries equations.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \lesssim\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{5} g\right\|_{L^{p_{2}}}
$$

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with $s>0,1<p<\infty, 1<p_{1}<\infty, p_{2}=\infty$ in the study of Euler and Naiver Stokes equations.

Christ, Weinstein (1991) proved the homogeneous KP inequality for $0<s<1$ and $1<p<\infty, 1<p_{1}, p_{2} \leq \infty$ in the analysis of Korteweg-de Vries equations.

Gulisashvili, Kon (1996) obtained the homogeneous and inhomogeneous KP inequality for $0<s$ and $1<p<\infty, 1<p_{1}, p_{2} \leq \infty$ and used it in the analysis of Schrödinger semigroups.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \lesssim\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{s} g\right\|_{L^{p_{2}}}
$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$ and $s>n$.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{\circ}} \lesssim\left\|J^{5} f\right\|_{L_{1}}\|g\|_{L^{2} 2}+\|f\|_{L_{1}{ }^{2}}\left\|J^{5} g\right\|_{L^{\prime 2}}
$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$ and $s>n$.

Grafakos, Oh (2014) obtained the KP inequality for $\frac{1}{2}<p<1,1<p_{1}, p_{2} \leq \infty$ and $s>\max \left(n\left(\frac{1}{p}-1\right), 0\right)$ or $s \in 2 \mathbb{N}$. Furthermore, they gave counterexamples for s out of that range.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \lesssim\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{s} g\right\|_{L^{p_{2}}}
$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$ and $s>n$.

Grafakos, Oh (2014) obtained the KP inequality for $\frac{1}{2}<p<1,1<p_{1}, p_{2} \leq \infty$ and $s>\max \left(n\left(\frac{1}{p}-1\right), 0\right)$ or $s \in 2 \mathbb{N}$. Furthermore, they gave counterexamples for s out of that range.

Grafakos, Maldonado, Naibo (2014) obtained the KP inequality when the target space is BMO; and posed the question when the target space is L^{∞}.

Background: Classical KP

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \lesssim\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{5} g\right\|_{L^{p_{2}}}
$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$ and $s>n$.

Grafakos, Oh (2014) obtained the KP inequality for $\frac{1}{2}<p<1,1<p_{1}, p_{2} \leq \infty$ and $s>\max \left(n\left(\frac{1}{p}-1\right), 0\right)$ or $s \in 2 \mathbb{N}$. Furthermore, they gave counterexamples for s out of that range.

Grafakos, Maldonado, Naibo (2014) obtained the KP inequality when the target space is BMO; and posed the question when the target space is L^{∞}.

Cruz-Uribe, Naibo (2022) obtained the KP inequality for variable Lebesgue spaces.

Background: KP Endpoints

- The classical KP inequality uses Calderón-Zygmund theory.
- Calderón-Zygmund theory fails at the endpoints i.e. $p=\infty$ or when either of p_{1}, p_{2} are equal to 1 .
- CZ techniques give weaker results at the endpoints namely $L^{1} \times L^{p_{2}} \rightarrow L^{p, \infty}$ and $L^{\infty} \times L^{\infty} \rightarrow B M O$.
- But the endpoint Kato-Ponce cases are true in the strong sense. This distinguishes KP inequalities from other bilinear estimates.

Background: KP endpoint cases

Bourgain, $\operatorname{Li}(2004)$ used a new technique for the L^{∞} endpoint (i.e. $p=\infty$) case where s is in a optimal range.

Background: KP endpoint cases

Bourgain, $\operatorname{Li}(2004)$ used a new technique for the L^{∞} endpoint (i.e. $p=\infty)$ case where s is in a optimal range.

Oh, $W u$ (2020) expanded on this averaging technique to get the L^{1} endpoint case (i.e. $p_{1}=1$ or $p_{2}=1$ or both are 1), where s is in a optimal range.

Background: KP endpoint cases

Bourgain, $\operatorname{Li}(2004)$ used a new technique for the L^{∞} endpoint (i.e. $p=\infty)$ case where s is in a optimal range.

Oh, $W u$ (2020) expanded on this averaging technique to get the L^{1} endpoint case (i.e. $p_{1}=1$ or $p_{2}=1$ or both are 1), where s is in a optimal range.

We now have the KP inequality in the full range of indices i.e.

Theorem

Let $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right) \frac{1}{2} \leq p \leq \infty, 1 \leq p_{1}, p_{2} \leq \infty$ be related by $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. Let $s>\max \left(n\left(\frac{1}{p}-1\right), 0\right)$ or $s \in 2 \mathbb{N}$, then

$$
\left\|J^{5}(f g)\right\|_{L^{p}} \leq C_{n, s, p_{1}, p_{2}}\left(\left\|J^{5} f\right\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}+\|f\|_{L^{p_{1}}}\left\|J^{s} g\right\|_{L^{p_{2}}}\right)
$$

Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces with Muckenhoupt weights for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$, where s is in a optimal range depending on p and the weights.

Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces with Muckenhoupt weights for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$, where s is in a optimal range depending on p and the weights.

Oh, $W u$ (2021) obtained the KP inequality for polynomial weights [i.e. weights of the form $\left(1+|\cdot|^{2}\right)^{\frac{a}{2}}$ for $\left.a \geq 0\right]$ for $\frac{1}{2} \leq p \leq \infty$, $1 \leq p_{1}, p_{2} \leq \infty$, where s is in a optimal range.

Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces with Muckenhoupt weights for $\frac{1}{2}<p<\infty, 1<p_{1}, p_{2} \leq \infty$, where s is in a optimal range depending on p and the weights.

Oh, $W u$ (2021) obtained the KP inequality for polynomial weights [i.e. weights of the form $\left(1+|\cdot|^{2}\right)^{\frac{a}{2}}$ for $\left.a \geq 0\right]$ for $\frac{1}{2} \leq p \leq \infty$, $1 \leq p_{1}, p_{2} \leq \infty$, where s is in a optimal range.

- For Muckenhoupt weights s is dependent on the weights.
- For polynomial weights s is independent of the weights.
- Oh and Wu's result just requires that the power on the polynomial is positive; hence the polynomial weights need not be Muckenhoupt weights.

Outline

(1) Preliminaries
(2) The 2-factor $\nRightarrow 3$-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)
(4) Lemmas
(5) Strategy of proof
(6) Density

Outline

(1) Preliminaries
(2) The 2-factor \Rightarrow 3-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)
(4) Lemmas
(5) Strategy of proof
(-) Density

Notation

A weight, w, is a nonnegative, measurable function such that $0<w<\infty$ a.e.

Notation

A weight, w, is a nonnegative, measurable function such that $0<w<\infty$ a.e.

For $0<p<\infty$ we define,

$$
\|f\|_{L^{p}(w)}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}
$$

Notation

A weight, w, is a nonnegative, measurable function such that $0<w<\infty$ a.e.

For $0<p<\infty$ we define,

$$
\|f\|_{L^{\rho}(w)}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{\rho} w(x) d x\right)^{\frac{1}{p}}
$$

For $p=\infty$ and w a weight we define,

$$
\|f\|_{L^{\infty}(w)}:=\inf \{C \geq 0:|f(x)| \leq C \text { for a.e. } x\}=\|f\|_{L^{\infty}}
$$

A weight, w, is a nonnegative, measurable function such that $0<w<\infty$ a.e.

For $0<p<\infty$ we define,

$$
\|f\|_{L^{p}(w)}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}
$$

For $p=\infty$ and w a weight we define,

$$
\|f\|_{L^{\infty}(w)}:=\inf \{C \geq 0:|f(x)| \leq C \text { for a.e. } x\}=\|f\|_{L^{\infty}}
$$

Let \mathcal{M} be the Hardy-Littlewood maximal operator:

$$
\mathcal{M} f(x):=\sup _{r>0} \frac{1}{|Q(x, r)|} \int_{Q(x, r)}|f(y)| d y=: \sup _{r>0} f_{Q(x, r)}|f(y)| d y .
$$

A_{p} Weights

Definition (Muckenhoupt Weight)

Let w be a locally integrable weight, and $1<p<\infty$. Then w is a Muckenhoupt weight if it satisfies

$$
[w]_{A_{p}}:=\sup _{Q}\left(f_{Q} w\right)\left(f_{Q} w^{-\frac{1}{\rho-1}}\right)^{p-1}<\infty .
$$

Moreover, if $[w]_{A_{p}}<\infty$, we say $w \in A_{p}$.

A_{p} Weights

Definition (Muckenhoupt Weight)

Let w be a locally integrable weight, and $1<p<\infty$. Then w is a Muckenhoupt weight if it satisfies

$$
[w]_{A_{p}}:=\sup _{Q}\left(f_{Q} w\right)\left(f_{Q} w^{-\frac{1}{p-1}}\right)^{p-1}<\infty .
$$

Moreover, if $[w]_{A_{p}}<\infty$, we say $w \in A_{p}$.

$$
\tau_{w}:=\inf \left\{p \geq 1: w \in A_{p}\right\}
$$

Theorem (Muckenhoupt 1972)

For $p>1$

$$
\begin{aligned}
\|\mathcal{M} f\|_{L^{p}(w)} & \leq C\|f\|_{L^{p}(w)} \\
& \Longleftrightarrow \\
w & \in A_{p}
\end{aligned}
$$

- The theorem is also true with the Hilbert or Riesz transform in place of \mathcal{M}.
- $A_{q} \subset A_{p}$ for $q \leq p$.
- A_{p} weights are doubling (i.e. $w(\lambda Q) \lesssim \lambda^{n p}[w]_{A_{p}} w(Q)$).
- A_{p} weights satisfy the reverse Hölder property.

$A_{\vec{p}}$ Weights

- A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González (2009)

$A_{\vec{P}}$ Weights

- A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González (2009)

Definition (Multiple Weights)

Let $\vec{P}=\left(p_{1}, \ldots, p_{m}\right)$ with $1<p_{1}, \ldots, p_{m}<\infty$ satisfy
$\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$. Given $\vec{w}=\left(w_{1}, \ldots, w_{m}\right)$, where w_{j} are weights, set

$$
w=\prod_{j=1}^{m} w_{j}^{p / p_{j}}
$$

We say that \vec{w} satisfies the $A_{\vec{p}}$ condition (or $\vec{w} \in A_{\vec{p}}$) if

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)^{1 / p} \prod_{j=1}^{m}\left(\frac{1}{|Q|} \int_{Q} w_{i}^{1-p_{i}^{\prime}}\right)^{1 / p_{i}^{\prime}}<\infty
$$

where the supremum is taken over all cubes Q with sides parallel to the axes.

Multi(sub)linear Maximal Function

Definition

Given $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ where each entry is measurable, we define the maximal operator \mathscr{M} by

$$
\mathscr{M}(\vec{f})(x)=\sup _{Q \ni x} \prod_{j=1}^{m} \frac{1}{|Q|} \int_{Q}\left|f_{j}\left(y_{j}\right)\right| d y_{j},
$$

where the supremum is taken over all cubes Q containing x.

Multi(sub)linear Maximal Function

Definition

Given $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ where each entry is measurable, we define the maximal operator \mathscr{M} by

$$
\mathscr{M}(\vec{f})(x)=\sup _{Q \ni x} \prod_{j=1}^{m} \frac{1}{|Q|} \int_{Q}\left|f_{j}\left(y_{j}\right)\right| d y_{j},
$$

where the supremum is taken over all cubes Q containing x.

Theorem (L-O-P-T-G 2009)

Let $1<p_{j}<\infty, j=1, \ldots, m$, and $\frac{1}{p}=\frac{1}{p_{1}}+\ldots+\frac{1}{p_{m}}$. Then the inequality

$$
\|\mathscr{M}(\vec{f})\|_{L^{p}(w)} \leq C \prod_{j=1}^{m}\left\|f_{j}\right\|_{L^{\rho_{j}}\left(w_{j}\right)}
$$

holds for every measurable \vec{f} if and only if $\vec{w} \in A_{\vec{p}}$.

$A_{\vec{p}}$ VS. A_{p}

There are some key similarities and differences between these two weight classes, and the corresponding maximal operators.

- Trivially $\mathscr{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}\left(f_{j}\right)(x)$.

$A_{\vec{p}}$ VS. A_{p}

There are some key similarities and differences between these two weight classes, and the corresponding maximal operators.

- Trivially $\mathscr{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}\left(f_{j}\right)(x)$.
- If $\vec{w}=\left(w_{1}, \ldots, w_{m}\right) \in A_{\vec{p}}$ then $w=\prod_{j=1}^{m} w_{j}^{p / p_{j}} \in A_{m p}$.

There are some key similarities and differences between these two weight classes, and the corresponding maximal operators.

- Trivially $\mathscr{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}\left(f_{j}\right)(x)$.
- If $\vec{w}=\left(w_{1}, \ldots, w_{m}\right) \in A_{\vec{P}}$ then $w=\prod_{j=1}^{m} w_{j}^{p / p_{j}} \in A_{m p}$.
- However, w_{j} may not even be locally integrable!

There are some key similarities and differences between these two weight classes, and the corresponding maximal operators.

- Trivially $\mathscr{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}\left(f_{j}\right)(x)$.
- If $\vec{w}=\left(w_{1}, \ldots, w_{m}\right) \in A_{\vec{P}}$ then $w=\prod_{j=1}^{m} w_{j}^{p / p_{j}} \in A_{m p}$.
- However, w_{j} may not even be locally integrable!
- $A_{p_{1}} \times \cdots \times A_{p_{m}} \subset A_{\vec{p}}$ is a proper subset.

There are some key similarities and differences between these two weight classes, and the corresponding maximal operators.

- Trivially $\mathscr{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}\left(f_{j}\right)(x)$.
- If $\vec{w}=\left(w_{1}, \ldots, w_{m}\right) \in A_{\vec{P}}$ then $w=\prod_{j=1}^{m} w_{j}^{p / p_{j}} \in A_{m p}$.
- However, w_{j} may not even be locally integrable!
- $A_{p_{1}} \times \cdots \times A_{p_{m}} \subset A_{\vec{p}}$ is a proper subset.

$$
\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w\right)^{1 / p} \prod_{j=1}^{m}\left(\frac{1}{|Q|} \int_{Q} w_{i}^{1-p_{i}^{\prime}}\right)^{1 / p_{i}^{\prime}}<\infty
$$

Notation: Littlewood-Paley operators

Notation: Littlewood-Paley operators

$$
S_{j} f:=\mathcal{F}^{-1}\left(\widehat{\phi}\left(2^{-j} .\right) \widehat{f}\right)
$$

$$
\widehat{\psi}(\xi):=\widehat{\phi}(\xi)-\widehat{\phi}(2 \xi) \quad \Delta_{j} f:=\mathcal{F}^{-1}\left(\widehat{\psi}\left(2^{-j} .\right) \widehat{f}\right)
$$

Littlewood-Paley and averaging operators

Notice that $\widehat{\psi}$ gives rise to a partition of unity

$$
\sum_{j \in \mathbb{Z}} \widehat{\psi}\left(2^{-j} \xi\right)=1 \text { or } \sum_{j \in \mathbb{Z}} \Delta_{j}=I
$$

As well as the useful identity

$$
\sum_{j \leq j_{0}} \widehat{\psi}\left(2^{-j} \xi\right)=\widehat{\phi}\left(2^{-j_{0}} \xi\right) \text { or } \sum_{j \leq j_{0}} \Delta_{j}=S_{j_{0}} .
$$

Outline

(1) Preliminaries
(2) The 2-factor \nRightarrow 3-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)

4 Lemmas
(5) Strategy of proof
(6) Density

The 2-factor \nRightarrow 3-factor in full range of indices
Let

$$
\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}
$$

If $p<1$, we will show that the 2 -factor KP inequality does not inductively imply the 3 -factor KP inequality.

The 2-factor \nRightarrow 3-factor in full range of indices
Let

$$
\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}} .
$$

If $p<1$, we will show that the 2 -factor KP inequality does not inductively imply the 3 -factor KP inequality. For example let

$$
\mathrm{p}_{1}=p_{2}=\frac{3}{2}, \text { and } p_{3}=2 .
$$

Let q_{1} and q_{2} be such that

$$
\frac{2}{3}+\frac{2}{3}+\frac{1}{2}=\frac{1}{q_{1}}+\frac{1}{2}=\frac{2}{3}+\frac{1}{q_{2}}
$$

So we have

$$
q_{1}=\frac{3}{4} \text { and } q_{2}=\frac{6}{7}
$$

It follows we can not directly apply the 2-factor KP inequality.

Outline

(1) Preliminaries
(2) The 2-factor \Rightarrow 3-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)
(4) Lemmas
(5) Strategy of proof
(-) Density

Kato-Ponce For Multiple Weights (Main result)

Theorem (Douglas 2023)

Let $m \in \mathbb{Z}^{+}, \frac{1}{m}<p<\infty, 1<p_{1}, \ldots, p_{m}<\infty$ satisfy $\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$. Let $\vec{w} \in A_{\vec{p}}$, and let $w=w_{1}{ }^{\frac{p}{p_{1}}} \cdots w_{m}{ }^{\frac{p}{\rho_{m}}}$. If $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, then there exists a constant $C=C\left(n, m, w, s, p_{1}, \ldots, p_{m}\right)<\infty$ such that for all $f_{t} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $t \in\{1, \ldots, m\}$ we have

$$
\begin{aligned}
&\left\|J^{5}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)}\left.\lesssim\left\|J^{5} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\right)\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{\rho_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{\rho_{2}}\left(w_{2}\right)} \cdots\left\|J^{s} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Furthermore, the same estimate holds with D^{s} in place of J^{s}.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
&\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} \lesssim \\
&\left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{S} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Keypoints

- Extends the KP inequality from a product of 2 functions to a product of m functions.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
& \left.\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)}\right) \\
& \| \\
& \\
& \quad \cdots J^{S} f_{1}\left\|_{L^{p_{1}}\left(w_{1}\right)}\right\| f_{2}\left\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\right\| f_{m} \|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \\
& \cdots f_{1}\left\|_{L^{p_{1}}\left(w_{1}\right)}\right\| f_{2}\left\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\right\| J^{s} f_{m} \|_{L^{p_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Keypoints

- Extends the KP inequality from a product of 2 functions to a product of m functions.
- This implies the KP inequality for Muckenhoupt weights.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} & \lesssim \\
& \left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{s} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Keypoints

- Extends the KP inequality from a product of 2 functions to a product of m functions.
- This implies the KP inequality for Muckenhoupt weights.
- The weights w_{t} may not even be locally integrable.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} & \lesssim \\
& \left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{s} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Keypoints

- Extends the KP inequality from a product of 2 functions to a product of m functions.
- This implies the KP inequality for Muckenhoupt weights.
- The weights w_{t} may not even be locally integrable.
- The inhomogeneous version implies the homogeneous version via a dilation argument.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
&\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} \lesssim \\
&\left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{\rho_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}\left(w_{m}\right)}}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{5} f_{m}\right\|_{L^{\rho_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Keypoints

- The range of the smoothness index is given by $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, which implies s depends on the choice of weights.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} & \lesssim \\
& \left\|J^{S} f_{1}\right\|_{L^{\rho_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{\rho_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{\rho_{2}}\left(w_{2}\right)} \cdots\left\|J^{S} f_{m}\right\|_{L^{\rho_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

Keypoints

- The range of the smoothness index is given by $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, which implies s depends on the choice of weights.
- The range of s is sharp; that is the inequality can fail for s outside of that range.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
& \left\|S^{s}\left(f_{1} \cdots f_{m}\right)\right\| L_{(\omega)} \lesssim \\
& \left\|\int^{s} f_{1}\right\|_{L_{1}\left(w_{2}\right)}\left\|f_{2}\right\|_{\nu L_{2}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L m_{(}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\| L_{2}\left(w_{1}\right)\left\|f_{1}\right\|_{L_{2}\left(w_{2}\right)} \cdots\| \|^{5} f_{m} \| L_{m o m}\left(w_{m}\right) .
\end{aligned}
$$

Keypoints

- The range of the smoothness index is given by $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, which implies s depends on the choice of weights.
- The range of s is sharp; that is the inequality can fail for s outside of that range.
- The integrability index does NOT include the endpoints i.e. $1<p_{1}, \ldots, p_{m}<\infty$.

Kato-Ponce For Multiple Weights (Main result)

$$
\begin{aligned}
& \left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L(m)} \lesssim \\
& \left\|\int^{s} f_{1}\right\|_{L_{2}\left(w_{2}\right)}\left\|f_{2}\right\|_{L_{2}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L_{m}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\| L_{2}\left(w_{1}\right)\left\|f_{1}\right\|_{L_{2}\left(w_{2}\right)} \cdots\| \|^{5} f_{m} \| L_{m o m}\left(w_{m}\right) .
\end{aligned}
$$

Keypoints

- The range of the smoothness index is given by $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, which implies s depends on the choice of weights.
- The range of s is sharp; that is the inequality can fail for s outside of that range.
- The integrability index does NOT include the endpoints i.e. $1<p_{1}, \ldots, p_{m}<\infty$.
- What can be said about the weighted endpoint case?

Theorem (Douglas 2022)

Let $m \in \mathbb{Z}^{+}, \frac{1}{m} \leq p \leq \infty, 1 \leq p_{1}, \ldots, p_{m} \leq \infty$ satisfy $\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$. Let $w_{t} \in A_{p_{t}}$ for $t \in\{1, \ldots, m\}$, and let $w=w_{1}{ }^{\frac{p}{p_{1}}} \cdots w_{m}{ }^{\frac{p}{\rho_{m}}}$. If $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, then there exists a constant $C=C\left(n, m, w, s, p_{1}, \ldots, p_{m}\right)<\infty$ such that for all $f_{t} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $t \in\{1, \ldots, m\}$ we have

$$
\begin{aligned}
\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} & \lesssim\left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{S} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}
\end{aligned}
$$

Furthermore, the same estimate holds with D^{s} in place of J^{s}.

Outline

(1) Preliminaries
(2) The 2-factor \Rightarrow 3-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)

4 Lemmas
(5) Strategy of proof
(6) Density

Bernstein Type Expressions

We need a Bernstein's type inequality i.e.

$$
\left\|J^{s} \Delta_{j}^{\psi} f\right\|_{L^{p}(w)} \sim 2^{j s}\left\|\Delta_{j}^{\psi} f\right\|_{L^{p}(w)}
$$

but without the norm.

Proposition

Let $s \in \mathbb{R}$, and let $\widehat{\psi}$ be a $\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ function supported in the annulus $\frac{1}{2} \leq|\xi| \leq 2$. Define $\Delta_{j}^{\psi} f$ to be convolution with $2^{j n} \psi\left(2^{j}.\right)$, and $\Delta_{j, \mu}^{\psi}$ to be convolution with $2^{j n} \psi\left(2^{j} \cdot+\mu\right)$ for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and let $j \in \mathbb{Z}$. Then one has

$$
J^{s} \Delta_{j}^{\psi} f(x)=2^{j s} \sum_{\mu \in \mathbb{Z}^{n}} c_{j, \mu} \Delta_{j, \mu}^{\psi} f(x) \text { and } 2^{j s} \Delta_{j}^{\psi} f(x)=\sum_{\mu \in \mathbb{Z}^{n}} c_{j, \mu} \Delta_{j, \mu}^{\psi} J^{s} f(x)
$$

where $\left|c_{j, \mu}\right| \lesssim(1+|\mu|)^{-N}$ for any $N \in \mathbb{N}$, when $j \geq 0$, the implicit constant is independent of j.

Proof of Proposition

Let

$$
\sigma_{j}(\xi) \equiv\left(2^{-2 j}+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{\psi_{\star}}(\xi)=\chi_{[-4,4]^{n}}(\xi) \sum_{\mu \in \mathbb{Z}^{n}} c_{j, \mu} e^{2 \pi i \xi \cdot \frac{\mu}{8}}
$$

where the coefficients decay rapidly independently of j.
Observe for $j \geq 0$,

$$
\begin{aligned}
J^{s} \Delta_{j}^{\psi} f(x) & =\int\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{\psi_{\star}}\left(2^{-j} \xi\right) \widehat{\Delta_{j}^{\psi}} f(\xi) e^{2 \pi i \xi \cdot x} d \xi \\
& =\int 2^{j s}\left(2^{-2 j}+\left|2^{-j} \xi\right|^{2}\right)^{\frac{s}{2}} \widehat{\psi_{\star}}\left(2^{-j} \xi\right) \widehat{\Delta_{j}^{\psi}} f(\xi) e^{2 \pi i \xi \cdot x} d \xi \\
& =2^{j s} \int \sum_{\mu \in \mathbb{Z}^{n}} c_{j, \mu} e^{2 \pi i \xi \cdot 2^{-j-3} \mu} \widehat{\Delta_{j}^{\psi}} f(\xi) e^{2 \pi i \xi \cdot x} d \xi \\
& =2^{j s} \sum_{\mu \in \mathbb{Z}^{n}} c_{j, \mu} \Delta_{j, \mu}^{\psi} f(x) .
\end{aligned}
$$

Averaging lemma

Lemma (Oh, Wu 2020)

If $a_{k} \lesssim \min \left(2^{k a} A, 2^{-k b} B\right)$ for some $a, b, A, B>0$ and every $k \in \mathbb{Z}$, then for any $u>0$, we have $\left\{a_{k}\right\}_{k \in \mathbb{Z}} \in \ell^{u}(\mathbb{Z})$ and

$$
\left\|\left\{a_{k}\right\}_{k \in \mathbb{Z}}\right\|_{\ell u} \lesssim A^{\frac{b}{a+b}} B^{\frac{a}{a+b}} .
$$

In particular, if $\left\|f_{k}\right\|_{L^{\prime}(w)} \lesssim \min \left(2^{k a} A, 2^{-k b} B\right)$ for $0<r \leq \infty$, every $k \in \mathbb{Z}$, and a weight w then

$$
\left\|\sum_{k \in \mathbb{Z}} f_{k}\right\|_{L^{r}(w)} \lesssim A^{\frac{b}{a+b}} B^{\frac{a}{a+b}} .
$$

Bourgain and Li were the first to use this technique to obtain the L^{∞} endpoint. Oh and Wu later refined it and found a creative way to apply it to the L^{1} endpoint.

Controlled By The Multilinear Maximal Function

Analogous to how the Hardy-Littlewood maximal function pointwise controls the convolution of a function with the L^{1} dilate of a Schwartz function we have

Proposition

Let $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ where $f_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and $\varphi^{j} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ for $j \in\{1, \ldots, m\}$. For $t \in \mathbb{R}_{>0}$ define the operator Υ_{t}^{j} to be convolution with $t^{-n} \varphi^{j}\left(t^{-1}\right)$, then there is a finite constant independent of t such that

$$
\left|\left(\Upsilon_{t}^{1} f_{1}\right) \cdots\left(\Upsilon_{t}^{m} f_{m}\right)\right| \leq C_{n, m, \varphi^{1}, \ldots, \varphi^{m}} \mathscr{M}(\vec{f}) .
$$

Controlled By The Multilinear Maximal Function

Analogous to how the Hardy-Littlewood maximal function pointwise controls the convolution of a function with the L^{1} dilate of a Schwartz function we have

Proposition

Let $\vec{f}=\left(f_{1}, \ldots, f_{m}\right)$ where $f_{j} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ and $\varphi^{j} \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ for $j \in\{1, \ldots, m\}$. For $t \in \mathbb{R}_{>0}$ define the operator Υ_{t}^{j} to be convolution with $t^{-n} \varphi^{j}\left(t^{-1}\right)$, then there is a finite constant independent of t such that

$$
\left|\left(\Upsilon_{t}^{1} f_{1}\right) \cdots\left(\Upsilon_{t}^{m} f_{m}\right)\right| \leq C_{n, m, \varphi^{1}, \ldots, \varphi^{m}} \mathscr{M}(\vec{f}) .
$$

Suppose the Υ_{t}^{j} were replaced by the shifted operators $\Upsilon_{t, \mu}^{j}$ defined by convolution with $t^{-n} \varphi^{j}\left(t^{-1} \cdot+\mu\right)$ for $\mu \in \mathbb{R}^{n}$. Then the final constant grows polynomially in $|\mu|$, i.e.

$$
\left|\left(\Upsilon_{t, \mu}^{1} f_{1}\right) \cdots\left(\Upsilon_{t, \mu}^{m} f_{m}\right)\right| \leq(1+|\mu|)^{n+\gamma} C_{n, m, \varphi^{1}, \ldots, \varphi^{m}} \mathscr{M}(\vec{f}) .
$$

Outline

(1) Preliminaries
(2) The 2-factor \Rightarrow 3-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)

- Lemmas
(5) Strategy of proof
(6) Density

We start by rewriting the fractional derivative of the product,

$$
\begin{aligned}
& J^{s}\left(f_{1} f_{2} \cdots f_{m}\right)(x)= \\
& \int_{\mathbb{R}^{m n}}\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{f}_{1}\left(\xi_{1}\right) \cdots \widehat{f}_{m}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \vec{\xi} \\
& =\sum_{\vec{j} \in \mathbb{Z}^{m}} \int_{\mathbb{R}^{m n}}\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{\psi}\left(2^{-j_{1}} \xi_{1}\right) \cdots \widehat{\psi}\left(2^{-j_{m}} \xi_{m}\right) \widehat{f}_{1}\left(\xi_{1}\right) \cdots \widehat{f}_{m}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \vec{\xi} \\
& =\sum_{\vec{\eta} \in\{0,1\}^{m}} \int_{\mathbb{R}^{m n}} \sum_{\vec{j} \in \mathscr{B}_{\vec{\eta}}} \Lambda_{\vec{j}}(\vec{\xi})\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{f}_{1}\left(\xi_{1}\right) \cdots \widehat{f}_{m}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \vec{\xi}
\end{aligned}
$$

where

$$
\mathbb{Z}^{m}=\bigsqcup_{\vec{\eta} \in\{0,1\}^{m}} \mathscr{B}_{\vec{\eta}} \text {. }
$$

Strategy of proof: Decomposition

For example the decomposition of \mathbb{Z}^{2} is

$$
(j, k) \in \mathbb{Z}^{2}
$$

- $(1,1) \sim j=k>0$
- $(1,0) \sim 0<k<j$
- $(0,1) \sim 0<j<k$
- $(0,0) \sim j \leq 0$ and $k \leq 0$

$$
\mathbb{Z}^{m}=\bigsqcup_{\vec{\eta} \in\{0,1\}^{m}} \mathscr{B}_{\vec{\eta}} .
$$

We define

$$
\begin{aligned}
\mathscr{B}_{\vec{\eta}}:= & \left\{\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{Z}^{m}: \text { if } \eta_{t}=1 \text { for some } 1 \leq t \leq m\right. \\
& \text { then, } \max \left(j_{1}, \ldots, j_{m}\right)=j_{t} \text { and } j_{t}>0 . \\
& \text { If } \left.\eta_{t}=0 \text { then } \max \left(j_{1}, \ldots, j_{m}\right)>j_{t}\right\} .
\end{aligned}
$$

$\mathscr{B}_{\vec{\eta}}$ is the elements of \mathbb{Z}^{m} where the coordinates containing a 1 are the same, positive and strictly bigger then the remaining entries.

Strategy of proof: Decomposition

To get a sense of how this decomposition looks in higher dimensions and to see that it produces a paraproduct decomposition lets consider ($1,0,0$).

$$
(1,0,0) \approx \mathscr{B}_{(1,0,0)}=\left\{\left(j_{1}, j_{2}, j_{3}\right) \in \mathbb{Z}^{3}: j_{1}>j_{2} \text { and } j_{1}>j_{3} \text { and } j_{1}>0\right\}
$$

Then

$$
\begin{aligned}
& \sum_{\vec{j} \in \mathscr{B}_{(1,0,0)}} \widehat{\psi}\left(2^{-j_{1}} \xi_{1}\right) \widehat{\psi}\left(2^{-j_{2}} \xi_{2}\right) \widehat{\psi}\left(2^{-j_{3}} \xi_{3}\right) \\
= & \sum_{j_{1}>0} \sum_{j_{2}<j_{1}} \sum_{j_{3}<j_{1}} \widehat{\psi}\left(2^{-j_{1}} \xi_{1}\right) \widehat{\psi}\left(2^{-j_{2}} \xi_{2}\right) \widehat{\psi}\left(2^{-j_{3}} \xi_{3}\right) \\
= & \sum_{j>0} \widehat{\psi}\left(2^{-j} \xi_{1}\right) \widehat{\phi}\left(2^{-(j-1)} \xi_{2}\right) \widehat{\phi}\left(2^{-(j-1)} \xi_{3}\right) \\
\approx & \sum_{j>0}\left(\Delta_{j} f_{1}\right)\left(S_{j-1} f_{2}\right)\left(S_{j-1} f_{3}\right)
\end{aligned}
$$

Strategy of proof: Decomposition

The fractional derivative

$$
J^{5}\left(f_{1} \cdots f_{m}\right)
$$

is broken into paraproducts of two types:

Strategy of proof: Decomposition

The fractional derivative

$$
J^{5}\left(f_{1} \cdots f_{m}\right)
$$

is broken into paraproducts of two types:
The Diagonal Paraproduct $(b>1)$

$$
\sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right)
$$

and

Strategy of proof: Decomposition

The fractional derivative

$$
J^{5}\left(f_{1} \cdots f_{m}\right)
$$

is broken into paraproducts of two types:
The Diagonal Paraproduct ($b>1$)

$$
\sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right)
$$

and
The Off-Diagonal Paraproduct ($b=1$)

$$
\sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(S_{j-1} f_{2}\right) \cdots\left(S_{j-1} f_{m}\right)\right)
$$

Strategy of proof: Diagonal Paraproduct-Decay

Expanding high frequency term we have

$$
\begin{aligned}
& \sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right)(x) \\
& =\sum_{j>0} \int 2^{j s}\left(2^{-2 j}+\left|2^{-j} \xi_{1}+\cdots+2^{-j} \xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{\phi}\left(2^{-j-m}\left(\xi_{1}+\cdots+\xi_{m}\right)\right) \\
& \times \widehat{\Delta_{j} f_{1}}\left(\xi_{1}\right) \cdots \widehat{\Delta_{j} f_{b}}\left(\xi_{b}\right) \widehat{S_{j-1} f_{b+1}}\left(\xi_{b+1}\right) \cdots \widehat{S_{j-1} f_{m}}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \vec{\xi}
\end{aligned}
$$

- In the unweighted case expanding the part in blue in Fourier series is not an issue i.e.

$$
\left(2^{-2 j}+|\xi|^{2}\right)^{\frac{s}{2}} \widehat{\phi}\left(2^{-m} \xi\right)=\chi_{[-4,4]}\left(2^{-m} \xi\right) \sum_{\mu \in \mathbb{Z}^{n}} c_{j, \mu} e^{2 \pi i \xi \cdot 2^{-m-3} \mu} .
$$

- The decay from the coefficients is just enough to overcome the effects of modulation.

Strategy of proof: Diagonal Paraproduct-Decay

In the unweighted case the decay of the Fourier coefficients is bounded by $(1+|\mu|)^{-n-s}$ and the effects of modulation are logarithmic.

Lemma (Grafakos, Oh 2014)

Let $\mu \in \mathbb{Z}^{n}$ let $\Delta_{j, \mu}$ be convolution with $2^{j n} \psi\left(2^{-j} \cdot+\mu\right)$. Then for all $1<q<\infty$

$$
\left\|\sqrt{\sum_{j \in \mathbb{Z}}\left|\Delta_{j, \mu} f\right|^{2}}\right\|_{L^{q}} \leq C_{n} \max \left(q,(q-1)^{-1}\right) \ln (2+|\mu|)\|f\|_{L q} .
$$

Strategy of proof: Diagonal Paraproduct-Decay

In the unweighted case the decay of the Fourier coefficients is bounded by $(1+|\mu|)^{-n-s}$ and the effects of modulation are logarithmic.

Lemma (Grafakos, Oh 2014)

Let $\mu \in \mathbb{Z}^{n}$ let $\Delta_{j, \mu}$ be convolution with $2^{j n} \psi\left(2^{-j} \cdot+\mu\right)$. Then for all $1<q<\infty$

$$
\left\|\sqrt{\sum_{j \in \mathbb{Z}}\left|\Delta_{j, \mu} f\right|^{2}}\right\|_{L^{q}} \leq C_{n} \max \left(q,(q-1)^{-1}\right) \ln (2+|\mu|)\|f\|_{L q} .
$$

- In the weighted case the smoothness estimate required for CZ theory is too rough.
- Naibo and Thomson's technique using the machinery of function spaces sidesteps this issue of decay.

Strategy of proof: Diagonal Paraproduct-Decay

Theorem (Naibo, Thomson 2019)

Let $w \in A_{\infty}$, and let $f_{1}, \ldots, f_{m} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $j \in \mathbb{N}$. Let $0<p<\infty$, and $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, then

$$
\begin{aligned}
& \left\|J^{s}\left(\sum_{j \in \mathbb{N}}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right)\right\|_{L^{p}(w)} \\
& \lesssim\left\|\sum_{j \in \mathbb{N}} 2^{j s}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right\|_{L^{p}(w)}
\end{aligned}
$$

where the implicit constant depends on m, n, s, r, w.

Strategy of proof: Diagonal Paraproduct-Decay

Theorem (Naibo, Thomson 2019)

Let $w \in A_{\infty}$, and let $f_{1}, \ldots, f_{m} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $j \in \mathbb{N}$. Let $0<p<\infty$, and $s>n\left(\frac{1}{\min \left(p / \tau_{w}, 1\right)}-1\right)$, then

$$
\begin{aligned}
& \left\|J^{s}\left(\sum_{j \in \mathbb{N}}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right)\right\|_{L^{p}(w)} \\
& \lesssim\left\|\sum_{j \in \mathbb{N}} 2^{j s}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right\|_{L^{p}(w)}
\end{aligned}
$$

where the implicit constant depends on m, n, s, r, w.
A key ingredient is bounding the convolution pointwise by maximal-type operators. Specifically, when \widehat{u} is compactly supported we use estimates given heuristically by

$$
|\varphi * u(x)| \lesssim\left(\mathcal{M}\left(|u|^{t}\right)(x)\right)^{\frac{1}{t}} .
$$

Strategy of proof: Diagonal Paraproduct-Summability

Using the previous theorem and Bernstein's inequality we can estimate a summmand of

$$
\left\|\sum_{j \in \mathbb{N}} 2^{j s}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right\|_{L^{p}(w)}
$$

above by

$$
\left\|2^{j s}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right\|_{L^{p}(w)}
$$

which is bounded by a constant multiple of

$$
2^{j s}\|\mathscr{M}(\vec{f})\|_{L^{p}(w)}
$$

Strategy of proof: Diagonal Paraproduct-Summability

Using the averaging lemma and Bernstein's inequality we can estimate a summmand of

$$
\left\|\sum_{j \in \mathbb{N}} 2^{j s}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right\|_{L^{p}(w)}
$$

above by

$$
\begin{gathered}
\| 2^{j s} 2^{-j s} 2^{-j s} \sum_{\mu_{1} \in \mathbb{Z}} \sum_{\mu_{2} \in \mathbb{Z}} c_{j, \mu_{1}} c_{j, \mu_{2}}\left(\Delta_{j, \mu_{1}} J^{s} f_{1}\right)\left(\Delta_{j, \mu_{2}} J^{s} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right) \\
\times\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right) \|_{L^{\rho}(w)} .
\end{gathered}
$$

which is bounded by a constant multiple of

$$
2^{-j s}\left\|\mathscr{M}\left(J^{s} f_{1}, J^{s} f_{2}, f_{3}, \cdots, f_{m}\right)\right\|_{L^{p}(w)}
$$

Strategy of proof: Diagonal Paraproduct-Summability
Now applying the averaging lemma with estimates $a=b=s$ as well as the AMGM inequality we have

$$
\begin{aligned}
& \left\|J^{s}\left(\sum_{j>0}\left(\Delta_{j} f_{1}\right)\left(\Delta_{j} f_{2}\right) \cdots\left(\Delta_{j} f_{b}\right)\left(S_{j-1} f_{b+1}\right) \cdots\left(S_{j-1} f_{m}\right)\right)\right\|_{L^{p}(w)} \\
& \lesssim\left(\|\mathscr{M}(\vec{f})\|_{L^{p}(w)}\left\|\mathscr{M}\left(J^{s} f_{1}, J^{s} f_{2}, f_{3}, \cdots, f_{m}\right)\right\|_{L^{p}(w)}\right)^{\frac{1}{2}} \\
& \begin{array}{l}
\lesssim\left(\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}\right. \\
\left.\times\left\|J^{s} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|J^{s} f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)}\left\|f_{3}\right\|_{L^{p_{3}}\left(w_{\mathbf{3}}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}\right)^{\frac{1}{2}} \\
\leq\left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)} \\
\quad+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|J^{s} f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)}\left\|f_{3}\right\|_{L^{p_{3}}\left(w_{3}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}
\end{array}
\end{aligned}
$$

Finishing the proof of the diagonal paraproduct.

Strategy of proof: Off-Diagonal Paraproduct

$$
J^{s}\left(\sum_{j>0}\left(\Delta_{j} f_{1}\right)\left(S_{j-1} f_{2}\right) \cdots\left(S_{j-1} f_{m}\right)\right)
$$

Fix $a \in \mathbb{N}$ to be determined later. We expand the above expression as

$$
\sum_{j \in \mathbb{N}}\left(\Delta_{j} f_{1}\right)\left(S_{j-a} f_{2}+\sum_{j-a<k<j} \Delta_{k} f_{2}\right) \cdots\left(S_{j-a} f_{m}+\sum_{j-a<k<j} \Delta_{k} f_{m}\right)
$$

Multiplying out the terms we write

$$
\sum_{j \in \mathbb{N}}\left(\Delta_{j} f_{1}\right)\left(S_{j-a} f_{2}\right)\left(S_{j-a} f_{3}\right) \cdots\left(S_{j-a} f_{m}\right)
$$

plus finitely many other paraproducts with at least one Δ_{k} operator where $k \sim j$. These finitely many other paraproducts will behave in the same way as the case for $b>1$.

Expanding the fractional derivative we have

$$
\begin{aligned}
& \sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(S_{j-a} f_{2}\right) \cdots\left(S_{j-a} f_{m}\right)\right)(x) \\
& =\sum_{j>0} \int\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{\Delta_{j} f_{1}}\left(\xi_{1}\right) \\
& \times \widehat{S_{j-a} f_{2}}\left(\xi_{2}\right) \cdots \widehat{S_{j-a} f_{m}}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \xi_{1} \cdots d \xi_{m}
\end{aligned}
$$

- Here $a \in \mathbb{N}$ is chosen big enough so that $\left|\xi_{1}+\cdots+\xi_{m}\right| \sim\left|\xi_{1}\right|$.

Strategy of proof: Off-Diagonal Paraproduct

Now for the high-low frequency term, expanding the fractional derivative we have

$$
\begin{aligned}
& \sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(S_{j-a} f_{2}\right) \cdots\left(S_{j-a} f_{m}\right)\right)(x) \\
& =\sum_{j>0} \int\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{\Delta_{j} f_{1}}\left(\xi_{1}\right) \\
& \times \widehat{S_{j-a} f_{2}}\left(\xi_{2}\right) \cdots \widehat{S_{j-a} f_{m}}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \xi_{1} \cdots d \xi_{m}
\end{aligned}
$$

- Here $a \in \mathbb{N}$ is chosen big enough so that $\left|\xi_{1}+\cdots+\xi_{m}\right| \sim\left|\xi_{1}\right|$.

Now for the high-low frequency term, expanding the fractional derivative we have

$$
\begin{aligned}
& \sum_{j>0} J^{s}\left(\left(\Delta_{j} f_{1}\right)\left(S_{j-a} f_{2}\right) \cdots\left(S_{j-a} f_{m}\right)\right)(x) \\
& =\sum_{j>0} \int\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{\Delta_{j} f_{1}}\left(\xi_{1}\right) \\
& \times \widehat{S_{j-a} f_{2}}\left(\xi_{2}\right) \cdots \widehat{S_{j-a} f_{m}}\left(\xi_{m}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \xi_{1} \cdots d \xi_{m}
\end{aligned}
$$

- Here $a \in \mathbb{N}$ is chosen big enough so that $\left|\xi_{1}+\cdots+\xi_{m}\right| \sim\left|\xi_{1}\right|$.
- For boundedness we will use a m-linear multiplier theorem in the setting of multiple weights.

Multiplier Theorem

- The first use of a bilinear multiplier theorem that employed a Hörmander-type smoothness condition was introduced by Tomita.
- Grafakos and Si extended this multiplier theorem to the m-linear case.
- Li and Sun proved the $A_{\vec{P}}$-weighted m-linear multiplier theorem with a Hörmander-type smoothness condition.

Multiplier Theorem

- The first use of a bilinear multiplier theorem that employed a Hörmander-type smoothness condition was introduced by Tomita.
- Grafakos and Si extended this multiplier theorem to the m-linear case.
- Li and Sun proved the $A_{\vec{P}}$-weighted m-linear multiplier theorem with a Hörmander-type smoothness condition.

Let $\sigma \in L^{\infty}\left(\mathbb{R}^{m n}\right)$. The m-linear Fourier multiplier is defined as

$$
T_{\sigma}\left(f_{1}, \ldots, f_{m}\right)(x)=\int_{\mathbb{R}^{m n}} e^{2 \pi i x \cdot\left(\xi_{1}+\cdots+\xi_{m}\right)} \sigma\left(\xi_{1}, \ldots, \xi_{m}\right) \widehat{f}_{1}\left(\xi_{1}\right) \cdots \widehat{f_{m}}\left(\xi_{m}\right) d \vec{\xi}
$$

Let Λ be a Schwartz function on $\mathbb{R}^{m n}$ satisfying

$$
\begin{aligned}
& \operatorname{supp} \wedge \subseteq\left\{\left(\xi_{1}, \ldots, \xi_{m}\right): \frac{1}{2} \leq\left|\xi_{1}\right|+\cdots+\left|\xi_{m}\right| \leq 2\right\} \\
& \sum_{k \in \mathbb{Z}} \Lambda\left(2^{-k} \xi_{1}, \ldots, 2^{-k} \xi_{m}\right)=1, \forall\left(\xi_{1}, \ldots, \xi_{m}\right) \neq \overrightarrow{0}
\end{aligned}
$$

Theorem (Li, Sun 2012)

Let $\vec{P}=\left(p_{1}, \ldots, p_{m}\right)$ with $1<p_{1}, \ldots, p_{m}<\infty$ and $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{p}$. Suppose that $m n / 2<t \leq m n$, and $\sigma \in L^{\infty}\left(\mathbb{R}^{m n}\right)$ with

$$
\sup _{k \in \mathbb{Z}}\left\|J^{t} \sigma_{k}\right\|_{L^{2}\left(\mathbb{R}^{m n}\right)}<\infty
$$

where

$$
\sigma_{k}\left(\xi_{1}, \ldots, \xi_{m}\right)=\Lambda\left(\xi_{1}, \ldots, \xi_{m}\right) \sigma\left(2^{-k} \xi_{1}, \ldots, 2^{-k} \xi_{m}\right)
$$

Let $r_{0}:=m n / t<p_{1}, \ldots, p_{m}<\infty$ and $\vec{w} \in A_{\vec{p} / r_{0}}$. Then

$$
\left\|T_{\sigma}(\vec{f})\right\|_{L^{p}(w)} \lesssim \prod_{i=1}^{N}\left\|f_{i}\right\|_{L^{p_{i}}\left(w_{i}\right)}
$$

$$
\begin{aligned}
& \sum_{j>0} J^{5}\left(\left(\Delta_{j} f_{1}\right)\left(S_{j-b} f_{2}\right) \cdots\left(S_{j-b} f_{m}\right)\right)(x) \\
& =\sum_{j>0} \int\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} \widehat{\Delta_{j} f_{1}}\left(\xi_{1}\right) \\
& \times \widehat{S_{j-b} f_{2}}\left(\xi_{1}\right) \cdots \widehat{S_{j-b} f_{2}}\left(\xi_{2}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \xi_{1} \cdots d \xi_{m} \\
& =\sum_{j>0} \int\left(1+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}}\left(1+\left|\xi_{1}\right|^{2}\right)^{-\frac{s}{2}} \widehat{\Delta_{j} J^{5} f_{1}}\left(\xi_{1}\right) \\
& \times \widehat{S_{j-b} f_{2}}\left(\xi_{1}\right) \cdots \widehat{S_{j-b} f_{2}}\left(\xi_{2}\right) e^{2 \pi i\left(\xi_{1}+\cdots+\xi_{m}\right) \cdot x} d \xi_{1} \cdots d \xi_{m}
\end{aligned}
$$

Multiplier Theorem

In order to apply the multiplier theorem with $t=m n$ to the off-diagonal term we need to show the following Hörmander smoothness condition

$$
\sup _{k \in \mathbb{Z}} \sum_{|\alpha| \leq n m}\left\|\partial^{\alpha} \sigma_{k}\right\|_{L^{2}\left(\mathbb{R}^{n m}\right)}<\infty
$$

where

$$
\begin{aligned}
& \sigma_{k}(\vec{\xi})=\Lambda\left(\xi_{1}, \ldots, \xi_{m}\right)\left(1+\left|2^{-k} \xi_{1}+\cdots+2^{-k} \xi_{m}\right|^{2}\right)^{\frac{5}{2}}\left(1+\left|2^{-k} \xi_{1}\right|^{2}\right)^{-\frac{s}{2}} \\
& \quad \times \sum_{j>-k} \widehat{\psi}\left(2^{-j} \xi_{1}\right) \widehat{\phi}\left(2^{-j+a} \xi_{2}\right) \cdots \widehat{\phi}\left(2^{-j+a} \xi_{m}\right) .
\end{aligned}
$$

Multiplier Theorem

In order to apply the multiplier theorem with $t=m n$ to the off-diagonal term we need to show the following Hörmander smoothness condition

$$
\sup _{k \in \mathbb{Z}} \sum_{|\alpha| \leq n m}\left\|\partial^{\alpha} \sigma_{k}\right\|_{L^{2}\left(\mathbb{R}^{n m}\right)}<\infty
$$

where

$$
\begin{aligned}
& \sigma_{k}(\vec{\xi})=\Lambda\left(\xi_{1}, \ldots, \xi_{m}\right)\left(1+\left|2^{-k} \xi_{1}+\cdots+2^{-k} \xi_{m}\right|^{2}\right)^{\frac{5}{2}}\left(1+\left|2^{-k} \xi_{1}\right|^{2}\right)^{-\frac{s}{2}} \\
& \quad \times \sum_{j>-k} \widehat{\psi}\left(2^{-j} \xi_{1}\right) \widehat{\phi}\left(2^{-j+a} \xi_{2}\right) \cdots \widehat{\phi}\left(2^{-j+a} \xi_{m}\right) .
\end{aligned}
$$

- This is advantageous since now we can use normal Leibniz rule.

$$
\sup _{k \in \mathbb{Z}} \sum_{|\alpha| \leq n m}\left\|\partial^{\alpha} \sigma_{k}\right\|_{L^{2}\left(\mathbb{R}^{n m}\right)}<\infty
$$

where

$$
\begin{aligned}
& \sigma_{k}(\vec{\xi})=\Lambda\left(\xi_{1}, \ldots, \xi_{m}\right)\left(1+\left|2^{-k} \xi_{1}+\cdots+2^{-k} \xi_{m}\right|^{2}\right)^{\frac{s}{2}}\left(1+\left|2^{-k} \xi_{1}\right|^{2}\right)^{-\frac{s}{2}} \\
& \quad \times \sum_{j>-k} \widehat{\psi}\left(2^{-j} \xi_{1}\right) \widehat{\phi}\left(2^{-j+a} \xi_{2}\right) \cdots \hat{\phi}\left(2^{-j+a} \xi_{m}\right) \\
& =\Lambda\left(\xi_{1}, \ldots, \xi_{m}\right) 2^{-k s}\left(2^{2 k}+\left|\xi_{1}+\cdots+\xi_{m}\right|^{2}\right)^{\frac{s}{2}} 2^{k s}\left(2^{2 k}+\left|\xi_{1}\right|^{2}\right)^{-\frac{s}{2}} \\
& \quad \times \sum_{j>-k} \widehat{\psi}\left(2^{-j} \xi_{1}\right) \widehat{\phi}\left(2^{-j+a} \xi_{2}\right) \cdots \widehat{\phi}\left(2^{-j+a} \xi_{m}\right) .
\end{aligned}
$$

Outline

(1) Preliminaries
(2) The 2-factor \Rightarrow 3-factor in full range of indices
(3) Kato-Ponce For Multiple Weights (Main result)

- Lemmas
(5) Strategy of proof
(6) Density

KP Inequality In Fractional Sobolev Spaces

Theorem (Douglas, Grafakos 2023)

Let $m \in \mathbb{Z}^{+}, \frac{1}{m}<p \leq \infty, 1<p_{1}, \ldots, p_{m} \leq \infty$ satisfy $\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$. Let

$$
w_{t}(x)= \begin{cases}|x|^{a_{t}} & |x| \leq 1 \\ |x|^{b_{t}} & |x|>1\end{cases}
$$

with $a_{t}, b_{t} \in\left(-n, n\left(p_{t}-1\right)\right), b_{t} \geq 0$ and $w=w_{1}{ }^{\frac{p}{p_{1}}} \cdots w_{m}{ }^{\frac{p}{p_{m}}}$ with $t \in\{1, \ldots, m\}$.
If $s>\max \left(n\left(\frac{\tau_{w}}{p}-1\right), 0\right)$, then there exists a constant
$C=C\left(n, m, w_{1}, \ldots, w_{m}, s, p_{1}, \ldots, p_{m}\right)<\infty$ such that for all
$f_{t} \in L_{s}^{p_{t}}\left(w_{t}\right)$ with $t \in\{1, \ldots, m\}$ we have

$$
\begin{aligned}
\left\|J^{S}\left(f_{1} \cdots f_{m}\right)\right\|_{h^{p}(w)} & \lesssim\left\|J^{S} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{S} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)} .
\end{aligned}
$$

- Note $f_{t} \in L_{s}^{p_{t}}\left(w_{t}\right)$, rather than Schwartz functions.

KP Inequality In Fractional Sobolev Spaces

- The weighted fractional Sobolev space $L_{s}^{p}(w)$ for $0<p<\infty, s>0$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $J^{s} u$ is a function in $L^{p}(w)$.

KP Inequality In Fractional Sobolev Spaces

- The weighted fractional Sobolev space $L_{s}^{p}(w)$ for $0<p<\infty, s>0$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $J^{s} u$ is a function in $L^{p}(w)$.
- The weighted local Hardy space $h^{p}(w)$ for $0<p<\infty$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $\|u\|_{h^{p}(w)}:=\left\|\sup _{0<t<1} \mid t^{-n} \phi\left(t^{-1}\right) * u\right\|_{L^{\rho}(w)}<\infty$.

KP Inequality In Fractional Sobolev Spaces

- The weighted fractional Sobolev space $L_{s}^{p}(w)$ for $0<p<\infty, s>0$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $J^{s} u$ is a function in $L^{p}(w)$.
- The weighted local Hardy space $h^{p}(w)$ for $0<p<\infty$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $\|u\|_{h^{\rho}(w)}:=\left\|\sup _{0<t<1} \mid t^{-n} \phi\left(t^{-1}\right) * u\right\|_{L^{\rho}(w)}<\infty$.
- The need for $h^{p}(w)$ is because $J^{s}\left(f_{1} \cdots f_{m}\right)$ for $f_{j} \in L_{s}^{p_{j}}\left(w_{j}\right)$ is only (potentially) defined as a tempered distribution.
- The weighted fractional Sobolev space $L_{s}^{p}(w)$ for $0<p<\infty, s>0$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $J^{s} u$ is a function in $L^{p}(w)$.
- The weighted local Hardy space $h^{p}(w)$ for $0<p<\infty$, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $\|u\|_{h^{\rho}(w)}:=\left\|\sup _{0<t<1} \mid t^{-n} \phi\left(t^{-1}\right) * u\right\|_{L^{\rho}(w)}<\infty$.
- The need for $h^{p}(w)$ is because $J^{s}\left(f_{1} \cdots f_{m}\right)$ for $f_{j} \in L_{s}^{p_{j}}\left(w_{j}\right)$ is only (potentially) defined as a tempered distribution.
- For $p \geq 1$ the previous theorem can be obtained via duality. For $p<1$ the key ingredients include a weighted Sobolev embedding theorem, density of Schwartz functions, completeness of $h^{p}(w)$ and the fact $h^{p}(w)$ continuously embeds into \mathcal{S}^{\prime}.

Thank You!

Density: Well Defined Tempered Distribution

Proposition

Let $g \in L^{q}(w), 1 \leq q<\infty$ where $w \in A_{q}$, then g is a well defined tempered distribution.

Proof: Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, and $\theta=w^{-\frac{q^{\prime}}{q}}$ which is the dual weight of $w \in A_{q}$. Observe,

$$
\begin{aligned}
|\langle g, \varphi\rangle| & \leq \int|g||\varphi| w^{\frac{1}{q}} w^{-\frac{1}{q}}(1+|x|)^{n+1}(1+|x|)^{-(n+1)} \\
& \leq\|g\|_{L^{q}(w)}\left\|(1+|x|)^{-(n+1)}\right\|_{L^{q^{\prime}}(\theta)} \sup _{x \in}(1+|x|)^{n+1}|\varphi(x)| \\
& \lesssim\|g\|_{L^{q}(w)}\left\|(1+|x|)^{-(n+1)}\right\|_{L^{q^{\prime}}(\theta)} \sum_{|\alpha| \leq n+1} \sup _{x \in}|x|^{\alpha}|\varphi(x)|
\end{aligned}
$$

Density: Well Defined Tempered Distribution

Let $Q_{\nu, m} \subset \mathbb{R}^{n}$ denote, for $\nu \in \mathbb{N}_{0}$ and $m \in \mathbb{Z}^{n}$, the n-dimensional cube with sides parallel to the coordinate axes, centered at $2^{-\nu} m$, and with side length $2^{-\nu}$. Furthermore, let $w(Q)=\int_{Q} w(x) d x$ for a weight w and a cube Q.

Theorem (Meyries, Veraar)

Let $s>0,1<p \leq q<\infty, w_{0} \in A_{p}$, and $w_{1} \in A_{q}$. Then $L_{s}^{p}\left(w_{0}\right) \hookrightarrow L^{q}\left(w_{1}\right)$ if and only if

$$
\sup _{\nu \in \mathbb{N}_{0}, m \in \mathbb{Z}^{n}} 2^{-\nu s} w_{0}\left(Q_{\nu, m}\right)^{-\frac{1}{p}} w_{1}\left(Q_{\nu, m}\right)^{\frac{1}{q}}<\infty .
$$

Density: Well Defined Tempered Distribution

Let $Q_{\nu, m} \subset \mathbb{R}^{n}$ denote, for $\nu \in \mathbb{N}_{0}$ and $m \in \mathbb{Z}^{n}$, the n-dimensional cube with sides parallel to the coordinate axes, centered at $2^{-\nu} m$, and with side length $2^{-\nu}$. Furthermore, let $w(Q)=\int_{Q} w(x) d x$ for a weight w and a cube Q.

Theorem (Meyries, Veraar)

Let $s>0,1<p \leq q<\infty, w_{0} \in A_{p}$, and $w_{1} \in A_{q}$. Then $L_{s}^{p}\left(w_{0}\right) \hookrightarrow L^{q}\left(w_{1}\right)$ if and only if

$$
\sup _{\nu \in \mathbb{N}_{\mathbf{o}}, m \in \mathbb{Z}^{n}} 2^{-\nu s} w_{0}\left(Q_{\nu, m}\right)^{-\frac{1}{p}} w_{1}\left(Q_{\nu, m}\right)^{\frac{1}{q}}<\infty
$$

- This theorem can be extended to more general function spaces.
- In general two weight inequalities are challenging.
- For power weights the above theorem can be simplified.

Density: Well Defined Tempered Distribution

Let

$$
w_{\beta, \alpha}(x)= \begin{cases}|x|^{\beta} & \text { if }|x| \leq 1 \\ |x|^{\alpha} & \text { if }|x|>1\end{cases}
$$

Proposition

Let $\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}>-n, 1<p \leq q<\infty$ and $s>0$. Then for weights $w_{0}=w_{\beta_{0}, \alpha_{0}}, w_{1}=w_{\beta_{1}, \alpha_{1}}$ we obtain $L_{s}^{p}\left(w_{0}\right) \hookrightarrow L^{q}\left(w_{1}\right)$ if and only if

$$
\begin{aligned}
s-\frac{n+\beta_{0}}{p} & \geq-\frac{n+\beta_{1}}{q} \\
s-\frac{n}{p} & \geq-\frac{n}{q} \\
\frac{\alpha_{0}}{p} & \geq \frac{\alpha_{1}}{q} .
\end{aligned}
$$

Density: Well Defined Tempered Distribution

Let w and w_{j} be power weights and suppose $\frac{\tau_{w}}{p}>1$. Let $\tau:=\tau_{w}+\epsilon>1$ such that $s>n(\tau / p-1)>0$. Notice this implies $\frac{\tau}{p}>1$. We will use the previous Proposition to show if $f_{j} \in L_{s}^{p_{j}}\left(w_{j}\right)$ then $f_{1} \cdots f_{m} \in L^{\tau}(w)$. Observe,

$$
\begin{aligned}
\left\|f_{1} \cdots f_{m}\right\|_{L^{\tau}(w)} & \lesssim\left(\int\left(\left|f_{1}\right|^{\frac{\tau}{p}} \cdots\left|f_{m}\right|^{\frac{\tau}{p}} w_{1} \frac{1}{p_{1}} \cdots w_{m}^{\frac{1}{\rho_{2}}}\right)^{p}\right)^{\frac{1}{\tau}} \\
& \leq\left(\int\left|f_{1}\right|^{\frac{\tau}{p} p_{1}} w_{1}\right)^{\frac{1}{p_{1}} \frac{p}{\tau}} \cdots\left(\int\left|f_{m}\right|^{\frac{\tau}{p} p_{m}} w_{m}\right)^{\frac{1}{p_{m}} \frac{p}{\tau}}
\end{aligned}
$$

The terms on the RHS of the above inequality are finite by the Sobolev embedding theorem i.e.

$$
\left\|f_{j}\right\|_{L^{\frac{\tau}{p^{p_{j}}}\left(w_{j}\right)}} \lesssim\left\|J^{S} f_{j}\right\|_{L^{p_{j}}\left(w_{j}\right)} .
$$

Hence $J^{5}\left(f_{1} \cdots f_{m}\right)$ is well defined.

Density Argument
Let $q_{j}:=\frac{\tau p_{j}}{p}$, then $\frac{1}{q_{1}}+\cdots \frac{1}{q_{m}}=\frac{1}{\tau}$.

- Pick Schwartz functions f_{i}^{j}, for $i \in\{1, \ldots, m\}$ converging to f_{i} respectively in $L_{s}^{p_{i}}\left(w_{i}\right)$ as $j \rightarrow \infty$.

Let $q_{j}:=\frac{\tau p_{j}}{p}$, then $\frac{1}{q_{1}}+\cdots \frac{1}{q_{m}}=\frac{1}{\tau}$.

- Pick Schwartz functions f_{i}^{j}, for $i \in\{1, \ldots, m\}$ converging to f_{i} respectively in $L_{s}^{p_{i}}\left(w_{i}\right)$ as $j \rightarrow \infty$.
- It can be shown that $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ converges to $J^{s}\left(f_{1}, \ldots, f_{m}\right)$ in \mathcal{S}^{\prime}.

Let $q_{j}:=\frac{\tau p_{j}}{p}$, then $\frac{1}{q_{1}}+\cdots \frac{1}{q_{m}}=\frac{1}{\tau}$.

- Pick Schwartz functions f_{i}^{j}, for $i \in\{1, \ldots, m\}$ converging to f_{i} respectively in $L_{s}^{p_{i}}\left(w_{i}\right)$ as $j \rightarrow \infty$.
- It can be shown that $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ converges to $J^{s}\left(f_{1}, \ldots, f_{m}\right)$ in \mathcal{S}^{\prime}.
- Also, by the KP inequality for Schwartz functions the sequence $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ is Cauchy in $h^{P}(w)$, and thus it converges to G in $h^{P}(w)$, hence it converges to G in \mathcal{S}^{\prime}.

Let $q_{j}:=\frac{\tau p_{j}}{p}$, then $\frac{1}{q_{1}}+\cdots \frac{1}{q_{m}}=\frac{1}{\tau}$.

- Pick Schwartz functions f_{i}^{j}, for $i \in\{1, \ldots, m\}$ converging to f_{i} respectively in $L_{s}^{p_{i}}\left(w_{i}\right)$ as $j \rightarrow \infty$.
- It can be shown that $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ converges to $J^{s}\left(f_{1}, \ldots, f_{m}\right)$ in \mathcal{S}^{\prime}.
- Also, by the KP inequality for Schwartz functions the sequence $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ is Cauchy in $h^{P}(w)$, and thus it converges to G in $h^{P}(w)$, hence it converges to G in \mathcal{S}^{\prime}.
- By the uniqueness of the limit in \mathcal{S}^{\prime}, we have that $G=J^{s}\left(f_{1}, \ldots, f_{m}\right)$.

Density Argument

Let $q_{j}:=\frac{\tau p_{j}}{p}$, then $\frac{1}{q_{1}}+\cdots \frac{1}{q_{m}}=\frac{1}{\tau}$.

- Pick Schwartz functions f_{i}^{j}, for $i \in\{1, \ldots, m\}$ converging to f_{i} respectively in $L_{s}^{p_{i}}\left(w_{i}\right)$ as $j \rightarrow \infty$.
- It can be shown that $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ converges to $J^{s}\left(f_{1}, \ldots, f_{m}\right)$ in \mathcal{S}^{\prime}.
- Also, by the KP inequality for Schwartz functions the sequence $J^{s}\left(f_{1}^{j}, \ldots, f_{m}^{j}\right)$ is Cauchy in $h^{p}(w)$, and thus it converges to G in $h^{P}(w)$, hence it converges to G in \mathcal{S}^{\prime}.
- By the uniqueness of the limit in \mathcal{S}^{\prime}, we have that $G=J^{s}\left(f_{1}, \ldots, f_{m}\right)$.

$$
\begin{aligned}
&\left\|J^{s}\left(f_{1} \cdots f_{m}\right)\right\|_{L^{p}(w)} \lesssim \\
&\left\|J^{s} f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}+\cdots \\
& \cdots+\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{2}\right)} \cdots\left\|J^{s} f_{m}\right\|_{L^{p_{m}}\left(w_{m}\right)}
\end{aligned}
$$

Thank You!

