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Fourier Transform

For f € LY(R") the Fourier transform and inverse Fourier transform are
respectively defined by

7O = [ feredy
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Fourier Transform

For f € LY(R") the Fourier transform and inverse Fourier transform are
respectively defined by

7O = [ feredy

FA(E) = / F(y)e2™ <dy.

n
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Fractional Differentiation

For ¢ € S(R) we have

F2mi()p) = ¢'.
——
2miEP(€)
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Fractional Differentiation

For ¢ € S(R) we have
FH@2mi()p) = ¢'.
~———
2miep(E)

Thus multiplication by £ in frequency is essentially the same as taking
the derivative in space.
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Fractional Differentiation

For ¢ € S(R) we have
FH@2mi()p) = ¢'.
~———
2miep(E)

Thus multiplication by £ in frequency is essentially the same as taking
the derivative in space.
More generally,

FH(2ni)7"8) = ——¢.
———
(2mig) ()

What about when m is not an integer?
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Fractional Differentiation

For ¢ € S(R") and s > 0 we define the homogeneous differential operator
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Fractional Differentiation

For ¢ € S(R") and s > 0 we define the homogeneous differential operator

D :=F (|- I'®).
~——
1€1°&(€)

Similarly, the inhomogenous differential operator, where
(Y= (1+]- )z, is given by
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Fractional Differentiation

Notice if s is an even integer, s = 2k, then

|EP%P(8) = (& + - + £2) B(¢)

= 2 (tl, : )HS%A

ty+e o ta=k

which will give the derivative in the classical sense. For this reason some
authors use (—A)2 is used in place of D, and (/ — A)z in place of J°
(modulo a 27i).
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Leibniz Rule

Standard Leibniz rule is given by
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Leibniz Rule

Standard Leibniz rule is given by

0 (fe)= 3 ( g ),c(ﬁ)g(a—ﬁ),

We are interested in controlling the derivative of a product by only the
higher order derivative terms. This may not be possible pointwise, but it
is in norm. For example,

d2
|=5f)|| , = F"g +&"f +2f ¢/l

< 1fgller + lg"fllee + [12F"g" |l o
SN N llgler + g e 1l
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Fractional Leibniz Rule

For the fractional derivative we study analogous estimates called-

Kato-Ponce Inequality
[2(f) e S NS5 F e llglea + ([l en [| S | o

1 1
where = = =
P P1 +

1
p2 "
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Fractional Leibniz Rule

For the fractional derivative we study analogous estimates called-

Kato-Ponce Inequality
[2(f) e S NS5 F e llglea + ([l en [| S | o

where % —
the form,

Weighted Multifactor Kato-Ponce Inequality

S
lJ°fi]
o | ex ) |2l ez wa) = =+ 1192 ol Lom (i)

p—ll + p%' More generally we are interested in inequalities of

[J°(F - -+ fim)|

LP(w)

o (wo) 1 P2l e (wa) =« | om (wim) + -+
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Background: Classical KP

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with
s>01<p<oo, 1<p; <oo, pp =00 in the study of Euler and Naiver
Stokes equations.

v S 1

w2 + £

Jg]

gl I

[ 1°(78)
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Background: Classical KP

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with
s>01<p<oo, 1<p; <oo, pp =00 in the study of Euler and Naiver
Stokes equations.

v S ] gl

w2 + £

gl I

Lr1

[ 1°(78)

Christ, Weinstein (1991) proved the homogeneous KP inequality for
0<s<landl<p< oo, 1< pi,p2 < oo in the analysis of Korteweg-de
Vries equations.
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Background: Classical KP

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with
s>01<p<oo, 1<p; <oo, pp =00 in the study of Euler and Naiver
Stokes equations.

Jg]

v S 15

w2 + £

LP1 g| LP1

[ 1°(78)

Christ, Weinstein (1991) proved the homogeneous KP inequality for
0<s<landl<p< oo, 1< pi,p2 < oo in the analysis of Korteweg-de
Vries equations.

Gulisashvili, Kon (1996) obtained the homogeneous and inhomogeneous
KP inequality for 0 < s and 1 < p < 00, 1 < p1, p2 < 00 and used it in the
analysis of Schrédinger semigroups.
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Background: Classical KP
LP2 ]

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for
%<p<oo,1<p1,p2§ooands>n.

v S IPf

vz + [ flle (8]

Lr1 |8 |

[ 1°(f8)]
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Background: Classical KP

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for
%<p<oo,l<p1,p2§ooands>n.

v SIS f

LP2 + || f

Jg

LP1 g| LP1

[ 1°(f8)]

Grafakos, Oh (2014) obtained the KP inequality for
% <p<l,l1<p,pp<o0ands> max(n(% —1),0) or s € 2N.
Furthermore, they gave counterexamples for s out of that range.
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Background: Classical KP

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for
%<p<oo,l<p1,p2§ooands>n.

LP2 + || f

Jg

[ 1) S 15 F (e [l Lo

Grafakos, Oh (2014) obtained the KP inequality for
% <p<l,l1<p,pp<o0ands> max(n(%) —1),0) or s € 2N.
Furthermore, they gave counterexamples for s out of that range.

Grafakos, Maldonado, Naibo (2014) obtained the KP inequality when the
target space is BMO; and posed the question when the target space is L*°.
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Background: Classical KP
5

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for
%<p<oo,1<p1,p2§ooands>n.

1=+ [|flle | S

[ 1) S 15 F (e [l

Grafakos, Oh (2014) obtained the KP inequality for
% <p<ll<py,pr<ooands> max(n(% —1),0) or s € 2N.
Furthermore, they gave counterexamples for s out of that range.

Grafakos, Maldonado, Naibo (2014) obtained the KP inequality when the
target space is BMO; and posed the question when the target space is L*°.

Cruz-Uribe, Naibo (2022) obtained the KP inequality for variable Lebesgue
spaces.
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Background: KP Endpoints

S. Douglas

@ The classical KP inequality uses Calderén-Zygmund theory.

o Calderén-Zygmund theory fails at the endpoints i.e. p = oo or when
either of p1, po are equal to 1.

o CZ techniques give weaker results at the endpoints namely
LY x [Pz — [P and L™ x L>® — BMO.

@ But the endpoint Kato-Ponce cases are true in the strong sense.
This distinguishes KP inequalities from other bilinear estimates.
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Background: KP endpoint cases

Bourgain, Li (2004) used a new technique for the L> endpoint (i.e.
p = 00) case where s is in a optimal range.
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Background: KP endpoint cases

Bourgain, Li (2004) used a new technique for the L> endpoint (i.e.
p = 00) case where s is in a optimal range.

Oh, Wu (2020) expanded on this averaging technique to get the L!
endpoint case (i.e. py =1 or pp = 1 or both are 1), where s is in a optimal
range.
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Background: KP endpoint cases

Bourgain, Li (2004) used a new technique for the L> endpoint (i.e.
p = 00) case where s is in a optimal range.

Oh, Wu (2020) expanded on this averaging technique to get the L!
endpoint case (i.e. py =1 or pp = 1 or both are 1), where s is in a optimal

range.

We now have the KP inequality in the full range of indices i.e.

LetngS(R”) L < p<oo, 1< pi,po < oo be related by
=_— 4= Lets>ma><( (3 —1),0) or s € 2N, then

T \

L2 + ||fH[_p1 ||Jsg||LP2>.

14°(%2)]

e < oo (117 Fl g
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Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces
with Muckenhoupt weights for % < p< oo, 1< p,p < oo, where s is in
a optimal range depending on p and the weights.
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Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces
with Muckenhoupt weights for % < p< oo, 1< p,p < oo, where s is in
a optimal range depending on p and the weights.

Oh, Wu (2021) obtained the KP inequality for polynomial weights [ i.e.
weights of the form (1 + |- [?)2 for a> 0] for 3 < p < oo,
1 < p1, p2 < 00, where s is in a optimal range.
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Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces
with Muckenhoupt weights for % < p< oo, 1< p,p < oo, where s is in
a optimal range depending on p and the weights.

Oh, Wu (2021) obtained the KP inequality for polynomial weights [ i.e.
weights of the form (1 + |- [?)2 for a> 0] for 3 < p < oo,
1 < p1, p2 < 00, where s is in a optimal range.

@ For Muckenhoupt weights s is dependent on the weights.
@ For polynomial weights s is independent of the weights.

@ Oh and Wu's result just requires that the power on the polynomial is
positive; hence the polynomial weights need not be Muckenhoupt
weights.
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© Preliminaries

© The 2-factor == 3-factor in full range of indices
© Kato-Ponce For Multiple Weights (Main result)
Q Lemmas

© Strategy of proof

© Density
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© Preliminaries

S. Douglas



A weight, w, is a nonnegative, measurable
function such that 0 < w < oo a.e.
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A weight, w, is a nonnegative, measurable
function such that 0 < w < oo a.e.

For 0 < p < oo we define,

Il = ([ 1Fw(x)0x)”

S. Douglas
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A weight, w, is a nonnegative, measurable
function such that 0 < w < oo a.e.

For 0 < p < oo we define,

Il = ([ 1Fw(x)0x)”

For p = oo and w a weight we define,

Hf”Loo(W) =inf{C >0:|f(x)| < C for a.e. x} =||f|i=

S. Douglas
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A weight, w, is a nonnegative, measurable
function such that 0 < w < oo a.e.

For 0 < p < oo we define,

Il = ([ 1Fw(x)0x)”

For p = oo and w a weight we define,

Hf”Loo(W) =inf{C >0:|f(x)| < C for a.e. x} =||f|i=

Let M be the Hardy-Littlewood maximal operator:

MfF(x) =sup ——— / )| d —sup][ f dy.
() = sup s IOy =sup ()] dy
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Definition (Muckenhoupt Weight)

Let w be a locally integrable weight, and 1 < p < co. Then w is a
Muckenhoupt weight if it satisfies

sy (f) ()

Moreover, if [w]a, < 00, we say w € A,

S. Douglas | Kato-Ponce Inequ | University of Missouri



Definition (Muckenhoupt Weight)

Let w be a locally integrable weight, and 1 < p < co. Then w is a
Muckenhoupt weight if it satisfies

sy (f) ()

Moreover, if [w]a, < 00, we say w € A,

Tw =inf{p>1:we A}
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Muckenhoupt's theorem

Theorem (Muckenhoupt 1972)

Forp>1
IMFllewy < Cllflloqw)
<~
\
- - w E Ap. - ]
@ The theorem is also true with the Hilbert or Riesz transform in place
of M.

o Ay C A, for g <p.
o A, weights are doubling (i.e. w(AQ) < A"[w]a,w(Q)).
o A, weights satisfy the reverse Hélder property.
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o A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R.
Trujillo-Gonzalez (2009)
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o A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R.
Trujillo-Gonzalez (2009)

Definition (Multiple Weights)

Let P (pl,...,pm) with 1 < py,..., pm < 0o satisfy

p = + o Given W = (wy, ..., Wp), where w; are weights, set
m
_ p/pj
=1Iw".
Jj=1

We say that w satisfies the Az condition (or w € Ap ) if

Sup / 1/p / . p 1/p} e
1@ \QI ’

where the supremum is taken over all cubes @ with sides parallel to the
axes.
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Multi(sub)linear Maximal Function

Given f = (f1,-..,fm) where each entry is measurable, we define the
maximal operator .# by

M(F supH|Q|/\ny | dy;,

where the supremum is taken over all cubes @ containing x.
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Multi(sub)linear Maximal Function

Given f = (f1,-..,fm) where each entry is measurable, we define the
maximal operator .# by

M(F supH|Q|/\ny | dy;,

where the supremum is taken over all cubes @ containing x.

Theorem (L-O-P-T-G 2009)

pil+...+pim. Then the |

Letl<pj<oo,j=1,...,m, and%:
inequality

14 (F) | o <CHHf||qu,
j=1

holds for every measurable f if and only if w € Ag.
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Az VS. A,

There are some key similarities and differences between these two weight
classes, and the corresponding maximal operators.

o Trivially ///(f)(X) < Hjm:;l M(f)(x).
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Az VS. A,

There are some key similarities and differences between these two weight
classes, and the corresponding maximal operators.

o Trivially ///(f)(X) < Hjm:;l M(f)(x).

o If W= (wi,...,w,) € Ap then W:Hjm:lwf/pfeAmp.
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Az VS. A,

There are some key similarities and differences between these two weight
classes, and the corresponding maximal operators.

o Trivially .2 (f)(x) < [T M(6)(x).
o If w=(wi,...,wn) € Az then w =T[7 Wf/pj € Amp.

j=1

@ However, w; may not even be locally integrable!
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Az VS. A,

There are some key similarities and differences between these two weight
classes, and the corresponding maximal operators.

o Trivially ///(f)(X) < Hjm:;l M(f)(x).

o If W= (wi,...,wy) € Ag then W:Hjm:lwf/pjeAmp.

@ However, w; may not even be locally integrable!

@ Ap X=X Ap, C Apis a proper subset.
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Az VS. A,

There are some key similarities and differences between these two weight
classes, and the corresponding maximal operators.

o Trivially ///(f)(X) < Hjm:;l M(f)(x).

o If W= (wi,...,w,) € Ap then W:Hjm:lwf/pfeAmp.

@ However, w; may not even be locally integrable!
@ Ap X=X Ap, C Apis a proper subset.

sgp((g'/Qw)”*’_

J

m

1 _ N\ 1/P!
(i o)™ <o
QI /g

1
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Notation: Littlewood-Paley operators

Sif = F((27) F)

_j+1 2 2 2j+1
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Notation: Littlewood-Paley operators

Sif = F 10277 )

_oj+1 2 2j 2j+1

B(€) = B(€) — $(2€) Af = F w27 F)
Wjﬂ ﬂ
_oj+1 ,Igj 2Ij 2j+1
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Littlewood-Paley and averaging operators

Notice that ¢ gives rise to a partition of unity

ST =10r > A =1.

Jez jez

As well as the useful identity

Y h(2E) = p(2E) or YA =S,

J<jo J<jo
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© The 2-factor == 3-factor in full range of indices
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The 2-factor == 3-factor in full range of indices

Let
1 1 1 1

P p1 P2 3

If p <1, we will show that the 2-factor KP inequality does not
inductively imply the 3-factor KP inequality.
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The 2-factor == 3-factor in full range of indices

Let
1 1 1 1

P p1 P2 3

If p <1, we will show that the 2-factor KP inequality does not
inductively imply the 3-factor KP inequality. For example let

[ pL=p2=32,and p3 =2. ]

Let g1 and g» be such that

2+2+ 1 1 2 1
3 3 2 ¢ 2 3 q
So we have
—§and —9
C71—4 C72—7-

It follows we can not directly apply the 2-factor KP inequality.

S. Douglas | Kato-Ponce Inequalities | University of Missouri



© Kato-Ponce For Multiple Weights (Main result)

S. Douglas | Kato-Ponce Inequalities | University of Missouri



Kato-Ponce For Multiple Weights (Main result)

Theorem (Douglas 2023)

Letm€Z+,%<p<oo,1<p1,...,pm<oosatisfy%:i+---+pi.
£ P
Let w € As, and let w = wy P --~wm»,m. Ifs>n(m—l), then

there exists a constant C = C(n, m,w, s, p1,...,Pm) < 0o such that for
all f, € S(R™) with t € {1,..., m} we have

[ (f - fn)

tew) S Al er (o) | 22l ez () * = - |

Lom () 7

ter (wa) 12l ez () < = 1 Fm Lo (i -

Furthermore, the same estimate holds with D* in place of J5.
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Kato-Ponce For Multiple Weights (Main result)

IS5 )l w) S
1l o () | 2 [l 22 () = = = (| Bl 2om (i) =+ =+
o [ ll e w2

L/’2(Wz) ... ||J5fm‘ L”’”(Wm)'

Keypoints

o Extends the KP inequality from a product of 2 functions to a
product of m functions.
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Kato-Ponce For Multiple Weights (Main result)

IS5 )l w) S
1l o () | 2 [l 22 () = = = (| Bl 2om (i) =+ =+
o [ ll e w2

L/’2(Wz) ... ||J5fm‘ L”’”(Wm)'

Keypoints

o Extends the KP inequality from a product of 2 functions to a
product of m functions.

@ This implies the KP inequality for Muckenhoupt weights.
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Kato-Ponce For Multiple Weights (Main result)

IS5 )l w) S
1l o () | 2 [l 22 () = = = (| Bl 2om (i) =+ =+
o [ ll e w2

L/’2(Wz) ... ||J5fm‘ L”’”(Wm)'

Keypoints
o Extends the KP inequality from a product of 2 functions to a
product of m functions.

@ This implies the KP inequality for Muckenhoupt weights.

@ The weights w; may not even be locally integrable.
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Kato-Ponce For Multiple Weights (Main result)

IS5 )l w) S
1l o () | 2 [l 22 () = = = (| Bl 2om (i) =+ =+
A 1A s () 12

L/’2(Wz) ... ||J5fm‘ L”’”(Wm)'

Keypoints

o Extends the KP inequality from a product of 2 functions to a
product of m functions.

@ This implies the KP inequality for Muckenhoupt weights.
@ The weights w; may not even be locally integrable.

@ The inhomogeneous version implies the homogeneous version via a
dilation argument.
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Kato-Ponce For Multiple Weights (Main result)

[ (h - - Fm)

LP(w) S,
[SRA

ot Al e ) 12l p2 (wa) < = < 192 Fm | Lom (i) -

Lr>1(W1)||f2||L~z(W2) T ||meLPm(wm) +

Keypoints
@ The range of the smoothness index is given by s > n(m -1),
which implies s depends on the choice of weights.

S. Douglas | Kato-Ponce Inequalities | University of Missouri



Kato-Ponce For Multiple Weights (Main result)

[ (h - - Fm)

LP(w) S,
[SRA

ot Al e ) 12l p2 (wa) < = < 192 Fm | Lom (i) -

Lr>1(W1)||f2||L~z(W2) T ||meLPm(wm) +

Keypoints
@ The range of the smoothness index is given by s > n(m -1),
which implies s depends on the choice of weights.

@ The range of s is sharp; that is the inequality can fail for s outside of
that range.
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Kato-Ponce For Multiple Weights (Main result)

15 (F - - fn)|

LP(w) S,
|21
o Al e qua) 12| ez wa) = = < 1192 Foml | 2om (i)

Lr>1(W1)||f2||L~z(W2) T ||meLPm(wm) +

Keypoints

@ The range of the smoothness index is given by s > n(m -1),
which implies s depends on the choice of weights.

@ The range of s is sharp; that is the inequality can fail for s outside of
that range.

@ The integrability index does NOT include the endpoints i.e.
1<piyeeoypm < 00.
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Kato-Ponce For Multiple Weights (Main result)

15 (F - - fn)|

LP(w) S,
[SRA

ot Al e ) 12l p2 (wa) < = < 192 Fm | Lom (i) -

Lr>1(W1)||f2||L~z(W2) T ||meLPm(wm) +

Keypoints
@ The range of the smoothness index is given by s > n(m -1),
which implies s depends on the choice of weights.

@ The range of s is sharp; that is the inequality can fail for s outside of
that range.

@ The integrability index does NOT include the endpoints i.e.
1<piyeeoypm < 00.
@ What can be said about the weighted endpoint case?
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L endpoint with A, weights (Different result)

Theorem (Douglas 2022)

Let me Z™, %gpgoo,lgpl,...,pmgoosatisfy

%:ﬁ+~~+i. Let wy € Ap, for t € {1,...,m}, and let

W=wir - wyin. Ifs> n(m — 1), then there exists a
constant C = C(n,m,w, s, p1,...,Pm) < oo such that for all f, € S(R") |
with t € {1,...,m} we have |

I°(h - f)llerwy S 92 Fll er wa) 12l o2 wa) = =+ 1ol om (i) + <<
“ M aller ) 12l o2 (wa) <+ < 195 Fm

|me(Wm)' |

Furthermore, the same estimate holds with D® in place of J°.
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o Lemmas
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Bernstein Type Expressions

We need a Bernstein's type inequality i.e.

1ALl oy ~ 25| AL |1,

but without the norm.

Proposition

|

Let s € R, and let ¢ be a C*>°(R") function supported in the annulus
1 <|¢] £ 2. Define Awf to be convolution with 2im(2)-), and Aw to

be convolution with 21”1/1( -+u) for f € S(R") and let j € Z. Then one
has

PAYF(x)=2° ) LA ) and 2°AYF(x) = Y A7, S F(x)
HEZL" WEZN

where |¢j .| < (1+ |u|)=N for any N € N, when j > 0, the implicit
constant is independent of j.
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Proof of Proposition

Let

03(€) = (277 + [6P)30(€) = Xi-41(€) Tpuezr Gue®™ % ]

where the coefficients decay rapidly independently of j.

Observe for j > 0,

PP = [+ R TA] Fe)emiexde

202(274 + |27 ¢) (2T AT AP

_ ois / S G AT F() i de

WEZL"

— s Z Gl F(x).

HEL"

—
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Averaging lemma

Lemma (Oh, Wu 2020)

If a, < min(2XA,2=%PB) for some a, b, A, B > 0 and every k € 7, then
for any u > 0, we have {ax}kez € (“(Z) and

I {ak}kezllen S A5 B3,

In particular, if for 0 < r < oo, every
k € Z, and a weight w then

Bourgain and Li were the first to use this technique to obtain the L™
endpoint. Oh and Wu later refined it and found a creative way to apply it
to the L endpoint.
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Controlled By The Multilinear Maximal Function

Analogous to how the Hardy-Littlewood maximal function pointwise
controls the convolution of a function with the L! dilate of a Schwartz
function we have

Proposition

Let f = (fi,...,fn) where f € LL (R") and @/ € .#(R") for
Jj€{L,...,m}. Fort € Ry define the operator T, to be convolution |
with t="p/(t=1.), then there is a finite constant independent of t such |

that ~
[(T:) - (TP )| < Comygr,...om A (F)-
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Controlled By The Multilinear Maximal Function

Analogous to how the Hardy-Littlewood maximal function pointwise

controls the convolution of a function with the L! dilate of a Schwartz
function we have

Let f = (f,...,fn) where f € LL, (R") and & € .#(R") for

loc
Jj€{l,...,m}. Fort € Ryq define the operator T to be convolution
with t="¢J(t=1.), then there is a finite constant independent of t such |
that

I(TEA) - (T7 )| < Compr,. om (F). |

Suppose the 'Y‘J; were replaced by the shifted operators T4 defined by

. t,u
convolution with t="¢/(t~1 - +u) for 4 € R". Then the final constant
grows polynomially in ||, i.e.

|(T%,pf1) U (T??Mfm” < (1 + |/L|)"+7 Cn,m,wl,...,wm%(F)'

S. Douglas
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© Strategy of proof
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Strategy of proof: Decomposition

We start by rewriting the fractional derivative of the product,

Js(fle T fm)(X) =

(L4 [€+ -+ En)2 (1) - - FonlEm) ™™ H T HEM 2 g
Rmn

- Z/ (L4 1€+ +&nl)EPRT16) - DRI EmNR(E) - - - Fnl€m)e™ 1T HEM XgE
fezm WK™

N / (L4 162+ + Enl) 2R(G) - - Fn(Em)e™™ 3T HEm "ag
iefo.ym T

where

S. Douglas | Kato-Ponce Inequ

| University of Missouri



Strategy of proof: Decomposition

For example the decomposition of Z2 is

(, k) € Z?

: o (L1)~j=k>0

o (10)~0< k<

o (01)~0<j<k

- @ (0,0)~j<0and k<0
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Strategy of proof: Decomposition

zn= || %
(0.1}

We define

Bz ={(1,-.-,Jm) €Z™ :if ny =1 for some 1 <t < m
then, max(ji,...,Jjm) =j: and jy > 0.
If n, = 0 then max(j1,---,Jm) > Jji}-

Pz is the elements of Z™ where the coordinates containing a 1 are the
same, positive and strictly bigger then the remaining entries.
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Strategy of proof: Decomposition

To get a sense of how this decomposition looks in higher dimensions and
to see that it produces a paraproduct decomposition lets consider (1,0,0).

(1,0,0) = B0,0) = {(1,2,J3) € Z> : j1 > j> and j1 > js and jy > 0} ]

Then

S da)pRRe)p(2 )

JE%’(LO,O)

- Z Z Z P2 RE)P(27RE) Y275 Es)
j1>0j2<j1j3<j1

= Z V(2 151 f*”@)q@( U-1g,)
j>0

~ > (BH)(S-16)(S-15)
j>0

S. Douglas | Kato-Ponce Inequalities | University of Missouri



Strategy of proof: Decomposition

[ P ) ]

The fractional derivative

is broken into paraproducts of two types:
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Strategy of proof: Decomposition

The fractional derivative

[ P ) ]

is broken into paraproducts of two types:

The Diagonal Paraproduct (b > 1)

> ((QANRIR) - (Bif)(S-1oa) -+ (Sj-1fm))

Jj>0

and
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Strategy of proof: Decomposition

The fractional derivative

[ P ) ]

is broken into paraproducts of two types:

The Diagonal Paraproduct (b > 1)

> ((QANRIR) - (Bif)(S-1oa) -+ (Sj-1fm))

Jj>0

and

The Off-Diagonal Paraproduct (b = 1)

S ( (Ajf)(Sj-1f) - (Sj—lfm))

j>0
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S. Douglas

Strategy of proof: Diagonal Paraproduct-Decay

Expanding high frequency term we have

ZJ ( (Af)( A'fg)"'(Ajfb)(sj—lfb+l)'"(Sj—lfm))(x)

Jj>0

—2/215 T 27U 4+ 2T P)E G2 T 4+ Em)

j>0

x DA(&1) - DFo(€6)Si—1for1(€bs1) - - - Sj—1 Fom(Em) e Eat Hem) x g’

@ In the unweighted case expanding the part in blue in Fourier series is
not an issue i.e.

277 +|ER)20(27™E) = X[_am(277E) Y 2T
UEL"

@ The decay from the coefficients is just enough to overcome the
effects of modulation.

| Kato-Ponce Inequalities
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Strategy of proof: Diagonal Paraproduct-Decay

In the unweighted case the decay of the Fourier coefficients is bounded
by (1 + |p|)~"~° and the effects of modulation are logarithmic.

Lemma (Grafakos, Oh 2014)

Let i € Z" let A; ,, be convolution with 2")(277 - +p). Then for all |
1<g<o

|, /22 187,12, < Comax(a, (g = 1)) In2 + [}l
JEZ
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Strategy of proof: Diagonal Paraproduct-Decay

In the unweighted case the decay of the Fourier coefficients is bounded
by (1 + |p|)~"~° and the effects of modulation are logarithmic.
Lemma (Grafakos, Oh 2014)

Let i € Z" let A; ,, be convolution with 2")(277 - +p). Then for all |
1<g<o

JEL
—

| [ 1851, < Comax(a, (g = 1)) n2 + Dl

@ In the weighted case the smoothness estimate required for CZ theory
is too rough.

@ Naibo and Thomson's technique using the machinery of function
spaces sidesteps this issue of decay.
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Strategy of proof: Diagonal Paraproduct-Decay

Theorem (Naibo, Thomson 2019)

Let w € A, and let f1,...,f, € S(R") and j € N. Let 0 < p < oo, and

s> n(m — 1), then

JEN

S H 3 25 (AR (AjF) - (Ajo)(Sjmafora) - (Sj_lfm)HL

JEN

where the implicit constant depends on m,n,s, r, w.

S. Douglas | Kato-Ponce Inequalities
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Strategy of proof: Diagonal Paraproduct-Decay

Theorem (Naibo, Thomson 2019)
Let w € A, and let f1,...,f, € S(R") and j € N. Let 0 < p < oo, and

s> n(m — 1), then
(X @ARNAE) -+ (B (S fora) - (Saf)) |,
JEN i
<[ X2 @mamn - @im)S ) (St
JEN

where the implicit constant depends on m,n,s, r, w.

A key ingredient is bounding the convolution pointwise by maximal-type
operators. Specifically, when U is compactly supported we use estimates

given heuristically by

| University of Missouri

| Kato-Ponce Inequalities

S. Douglas



Strategy of proof: Diagonal Paraproduct-Summability

Using the previous theorem and Bernstein's inequality we can estimate a
summmand of

| 2 @ia)@s8) - (Ah)(Safoea) - (Safe)]

LP
JEN (w)

above by

szs(Ajfl)(Ajﬁ) o (Bjfp)(Sj-1fora) - (Sf’lf"’)HLv(w)

which is bounded by a constant multiple of

2| (F)

Lp(w)
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Strategy of proof: Diagonal Paraproduct-Summability

Using the averaging lemma and Bernstein's inequality we can estimate a
summmand of

|2 2R (As5) - (Bife)(Si-tfor) - (Si-1fm)
JEN

LP(w)

above by

27275275 37 3 G Ga (B S ) (Ba S ) - (BF)
P1EZ pu2€Z

X (Sj-1fp41) - -+ (Sj—1fm)

Lr(w)

which is bounded by a constant multiple of

2N M (S o, Sy By i)

Le(w)
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Strategy of proof: Diagonal Paraproduct-Summability

Now applying the averaging lemma with estimates a = b = s as well as
the AMGM inequality we have

< (e

(AR - BN 2for) - (528),

1
2
LP(W))

Lp(w)H///(Jsﬂ,Jsz, for o F)

S (1l ol el = il

1

X || 2 1| pa (wa) 197 2l o2 (i) 11 B3 23 () - - - IIfmIIme(Wm))
<[l e (wa) |2l L2 (wa) = | Fim | Lom (wim)

H L o1 (wa) 1 P2l o2 (wa) 13 | o (i) * = = 1 Fom | o (i) -

Finishing the proof of the diagonal paraproduct.

S. Douglas
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Strategy of proof: Off-Diagonal Paraproduct

I (ool BARNSR) (Sr-1f)

Fix a € N to be determined later. We expand the above expression as

SR (Sah+ D Buh) o (Seafmt D Auf).

JEN Jj—a<k<j Jj—a<k<j

Multiplying out the terms we write

> (D) (Sj—afo)(Sjmafs) -+ (Sj—afm)

jEN

plus finitely many other paraproducts with at least one Ay operator
where k ~ j. These finitely many other paraproducts will behave in the
same way as the case for b > 1.
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Strategy of proof: Off-Diagonal Paraproduct

Expanding the fractional derivative we have

> L ((BjA)(Sj-at2) -+ (Sj-afm)) (x)

j>0
=3 [a+la+ -+ al)ERE)
Jj>0

X 5 aBa(€2) - S afon(Em) €2 Gt HEM X g L de

@ Here a € N is chosen big enough so that & + -+ + &,| ~ |&1]-
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Strategy of proof: Off-Diagonal Paraproduct
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Strategy of proof: Off-Diagonal Paraproduct

Now for the high-low frequency term, expanding the fractional derivative
we have

ST F((BA)S—ah)  (Siafm)) (%)

j>0
=X [a+la+ o+ el ERE)
Jj>0

X Si—ab(&2) -+ S afon(Em) X Ext e X g, L g,

@ Here a € N is chosen big enough so that &1 + -+ + &m| ~ |&1]-

S. Douglas
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Strategy of proof: Off-Diagonal Paraproduct

Now for the high-low frequency term, expanding the fractional derivative
we have

ST F((BA)S—ah)  (Siafm)) (%)

j>0
=X [a+la+ o+ el ERE)
Jj>0

X Si—ab(&2) -+ S afon(Em) X Ext e X g, L g,

@ Here a € N is chosen big enough so that &1 + -+ + &m| ~ |&1]-

@ For boundedness we will use a m-linear multiplier theorem in the
setting of multiple weights.
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Multiplier Theorem

@ The first use of a bilinear multiplier theorem that employed a
Hormander-type smoothness condition was introduced by Tomita.

@ Grafakos and Si extended this multiplier theorem to the m-linear
case.

@ Li and Sun proved the Az-weighted m-linear multiplier theorem with
a Hérmander-type smoothness condition.
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Multiplier Theorem

@ The first use of a bilinear multiplier theorem that employed a
Hormander-type smoothness condition was introduced by Tomita.

@ Grafakos and Si extended this multiplier theorem to the m-linear
case.

@ Li and Sun proved the As-weighted m-linear multiplier theorem with
a Hérmander-type smoothness condition.

Let o € L°(R™"). The m-linear Fourier multiplier is defined as

Tolho o ) = [ (e, g)h(6r) - Faln) o

Let A be a Schwartz function on R™" satisfying

1
supp A {(61-+16m) i 3 < fal 4+ 6ol <2
Z/\(szgl, 27ke ) = 1,V(&, ., Em) #O.
kEZ
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Multiplier Theorem

Theorem (Li, Sun 2012)

Letl-:":(pl,...,pm) with1<p1,...,pm<ooandpl—l—i—---—f—
Suppose that mn/2 < t < mn, and o € L>(R™") with

1 _1
Pm p’

where

Uk(§17 O agm) = /\(51’ cee 7£m)0(2_k617 e 72_k£m)-

Let ro:=mn/t < p1,...,pm < 00 and W € Aﬁ/r,,' Then
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Multiplier Theorem

S. Douglas

3 S (ARG -bB) - (S—bfm)) (%)

J>0

_Z/1+|gl+ A En?)E A R()

Jj>0

X Sj bf2(§1) _j bf2(£2) 2mi(§at-tem) del Em

—Z/1+|51+ A+ EP)R(L+ 16D A TR ()

Jj>0

X Sj— bf2(§1) Si— bfz(fg)ezw"(&*“*ém)-xd&‘..dgm

| Kato-Ponce Inequalities
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Multiplier Theorem

In order to apply the multiplier theorem with t = mn to the off-diagonal
term we need to show the following Hérmander smoothness condition

z“p Z H@"‘okHLz(an) < 09

jal<nm

where

Th(€) = AEay- - Em)(L+ 27K + -+ 27K 2)E (1 + 275, 2) 3
x 3 BRIE)H2E) - BRI En).

Jj>—k
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Multiplier Theorem

In order to apply the multiplier theorem with t = mn to the off-diagonal
term we need to show the following Hérmander smoothness condition

z“p Z H@"‘okHLz(an) < 09

jal<nm

where

Th(€) = AEay- - Em)(L+ 27K + -+ 27K 2)E (1 + 275, 2) 3
x 3 B2TE)H276) - 2T ).

Jj>—k

@ This is advantageous since now we can use normal Leibniz rule.
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Multiplier Theorem

SUP Z |0° OkHLZ (®Rom) <

|a\<nm

where

(€)= A (51,...,5m)(1+|2*k51 e 2R (L4 27 )
x Y D(2E)p27IG) - (27 m)

Jj>—k

= (51,-~'7€m)27k5 52/(5
x 3 PRIE)HRITE) - 2T,
Jj>—k
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© Density
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KP Inequality In Fractional Sobolev Spaces

Theorem (Douglas, Grafakos 2023)

LetmeZ*, L <p<oo, 1<pi,...,pm < oo satisfy
L I
P P + +Pm' Let

[x|P x| > 1

x|? x| <1
Wt(X)_{ [ X <

with a¢, by € (—n, n(p; — 1)), by > 0 and w = WL - WP with
te{l,...,m}.

If s > max n(%= —1), 0), then there exists a constant
C=C(n,mwy,...,Wn,S,pi,-..,Pm) < oo such that for all

fr € LP(w) with t € {1,..., m} we have

[ (fy - fn)]

ho(w) S ||J5f1
-+ A

11 (wa) | P2l ez (we) - ||f | om (wam) +
L/)z W2 HJ f

Lrx(w) |1 2 LPm (wim)-

o Note f; € LP*(w;), rather than Schwartz functions.
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KP Inequality In Fractional Sobolev Spaces

@ The weighted fractional Sobolev space L?(w) for 0 < p < o0, s > 0,
and w € Ay, is defined to be the space of tempered distributions, v,
such that J°u is a function in LP(w).
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KP Inequality In Fractional Sobolev Spaces

@ The weighted fractional Sobolev space L?(w) for 0 < p < o0, s > 0,
and w € Ay, is defined to be the space of tempered distributions, v,
such that J°u is a function in LP(w).

@ The weighted local Hardy space h?(w) for 0 < p < 0o, and w € A
is defined to be the space of tempered distributions, u, such that
lullie(w) = [l suPocecr [E7"0(t71) * ulll o) < o0

S. Douglas | Kato-Ponce Inequ | University of Missouri



KP Inequality In Fractional Sobolev Spaces

@ The weighted fractional Sobolev space L?(w) for 0 < p < o0, s > 0,
and w € Ay, is defined to be the space of tempered distributions, v,
such that J°u is a function in LP(w).

@ The weighted local Hardy space h?(w) for 0 < p < 0o, and w € A
is defined to be the space of tempered distributions, u, such that

lulloqwy = Il suPo<r<t [E7"(t71) ||| o) < 00.

@ The need for h?(w) is because J*(f; - - - f) for £; € LY (w;) is only
(potentially) defined as a tempered distribution.
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KP Inequality In Fractional Sobolev Spaces

@ The weighted fractional Sobolev space L?(w) for 0 < p < o0, s > 0,
and w € Ay, is defined to be the space of tempered distributions, v,
such that J°u is a function in LP(w).

@ The weighted local Hardy space h?(w) for 0 < p < 0o, and w € A
is defined to be the space of tempered distributions, u, such that

lullhe(wy = Il suPo<scr It "G(t1) * ulll 1o (w) < o0

@ The need for h?(w) is because J*(f; - - - f) for £; € LY (w;) is only
(potentially) defined as a tempered distribution.

@ For p > 1 the previous theorem can be obtained via duality. For
p < 1 the key ingredients include a weighted Sobolev embedding
theorem, density of Schwartz functions, completeness of h”(w) and
the fact h”(w) continuously embeds into S'.

S. Douglas | Kato-Ponce Inequ | University of Missouri



Thank You!




Density: Well Defined Tempered Distribution

Proposition

Let g € L9(w), 1 < g < co where w € Aq, then g is a well defined
tempered distribution.

Proof: Let ¢ € S(R"), and § = w™ & which is the dual weight of w € Ag.
Observe, ‘

(g, )] < ﬁgllsﬁ\waw_a(l + [x])" (L |x]) O |
< lgliamll @+ Ix) =l Suep(1+|><\)"“|30(><)|

S lgllesmll @+ XD Dl gy D sup|x|?e(x)].

|a|§n+1 x€
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Density: Well Defined Tempered Distribution

Let Q,,m C R” denote, for v € Ng and m € Z", the n-dimensional cube
with sides parallel to the coordinate axes, centered at 27 m, and with
side length 27¥. Furthermore, let w(Q) = [, w(x) dx for a weight w
and a cube Q.

Theorem (Meyries, Veraar)

Lets>0,1<p<qg<oo, wg€ Ay and wy € A;. Then ‘
LP(wp) < L9(w1) if and only if

sup 2_V5W0(Qy’m)_%W1(vam)% < 00.
vENg,meZn"

.
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Density: Well Defined Tempered Distribution

Let Q,,m C R” denote, for v € Ng and m € Z", the n-dimensional cube
with sides parallel to the coordinate axes, centered at 27 m, and with
side length 27¥. Furthermore, let w(Q) = [, w(x) dx for a weight w
and a cube Q.

Theorem (Meyries, Veraar)

Lets>0,1<p<qg<oo, wg€ Ay and wy € A;. Then ‘
LP(wp) < L9(w1) if and only if

sup 2_V5W0(Qy’m)_%W1(vam)% < 00.
vENg,meZn"

.

@ This theorem can be extended to more general function spaces.
@ In general two weight inequalities are challenging.

@ For power weights the above theorem can be simplified.
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Density: Well Defined Tempered Distribution

Let
x| if |x|] <1,

#.o0) S {Ixa if |x| > 1.

Proposition
Let ag, Bo, 1,01 > —n, 1 < p< qg<ooands>0. Then for weights
Wo = Wgg, a0, W1 = Wa, o, We obtain LP(wy) — L9(wyq) if and only if

_n+pBo 2_”-1-51
p g
n n
s—2>-1=
p q
@ . A
p

| University of Missouri
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Density: Well Defined Tempered Distribution

Let w and w; be power weights and suppose %W >1. Lett=71,+e>1
such that s > n(7/p — 1) > 0. Notice this implies 7 > 1. We will use the

previous Proposition to show if f; € LY (w;) then f - - f, € L7(w).
Observe,

I Fliron S (/(m
< (/|f1Zplwl)pllﬁ,,,(ﬁfm;pmwm>pmf’

The terms on the RHS of the above inequality are finite by the Sobolev
embedding theorem i.e.

,%...|fm

1

T \
E a\P
P W]_“l ...Wm;)2>

f:

J

.
Tp
L7 T (w,

oy S 1B,

Hence J°(f1 - - f) is well defined.
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Density Argument

L= TP 1,011
Let g; = p,then q1+ o -
e Pick Schwartz functions 7, for i € {1,..., m} converging to f;

respectively in LPi(w;) as j — oo.
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Density Argument

L= TP 1,011
Let g; = p,then q1+ o -
e Pick Schwartz functions 7, for i € {1,..., m} converging to f;

respectively in LPi(w;) as j — oo.

@ It can be shown that Js(flj7 ..., L) converges to J5(f1,...,fn) in S’
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Density Argument

Let g; == %pj,then q711+"'q%7=%-

@ Pick Schwartz functions f,J for i € {1,..., m} converging to f;
respectively in LPi(w;) as j — oo.
@ It can be shown that Js(flj7 ..., L) converges to J5(f1,...,fn) in S’

o Also, by the KP inequality for Schwartz functions the sequence
J5(f], ..., fL) is Cauchy in h”(w), and thus it converges to G in
h?(w), hence it converges to G in §'.

| University of Missouri
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Density Argument

Let g; == %pj,then q711+"'q%7=%-

@ Pick Schwartz functions f,J for i € {1,..., m} converging to f;
respectively in LPi(w;) as j — oo.

@ It can be shown that Js(flj7 ..., L) converges to J5(f1,...,fn) in S’

o Also, by the KP inequality for Schwartz functions the sequence
J5(f], ..., fL) is Cauchy in h”(w), and thus it converges to G in
h?(w), hence it converges to G in §'.

@ By the uniqueness of the limit in S/, we have that
G=J(f,...,fm)
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Density Argument

Let g := 72, then - +--- = = 1.

@ Pick Schwartz functions f,J for i € {1,..., m} converging to f;
respectively in LPi(w;) as j — oo.

o It can be shown that J5(/, ..., fl) converges to J5(f, ..., fy) in S

o Also, by the KP inequality for Schwartz functions the sequence
J5(f], ..., fL) is Cauchy in h”(w), and thus it converges to G in
h?(w), hence it converges to G in §'.

@ By the uniqueness of the limit in S/, we have that
G=J(f,... fn).

[5(f - )l ey S
HJsfl| L/’l(W1)||f2HL”2(Wz) R ||fm| LPm (W) dkooo
“ ot all s (o) 12l 202 (wa) * =+ 19 Fonll Lom (i)
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Thank You!
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