Kato-Ponce Inequality With $A_{\vec{P}}$ Weights

Sean Douglas University of Missouri

Analysis Seminar

Ohio State University

7 December, 2023

Fourier Transform

For $f \in L^1(\mathbb{R}^n)$ the Fourier transform and inverse Fourier transform are respectively defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot \xi} dy$$

Fourier Transform

For $f \in L^1(\mathbb{R}^n)$ the Fourier transform and inverse Fourier transform are respectively defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot \xi} dy$$

$$\mathcal{F}^{-1}(f)(\xi) = \int_{\mathbb{R}^n} f(y) e^{2\pi i y \cdot \xi} dy.$$

For $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$\mathcal{F}^{-1}(\underbrace{2\pi i(\cdot)\widehat{\varphi}}_{2\pi i\xi\widehat{\varphi}(\xi)}) = \varphi'.$$

For $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$\mathcal{F}^{-1}(\underbrace{2\pi i(\cdot)\widehat{\varphi}}_{2\pi i\xi\widehat{\varphi}(\xi)}) = \varphi'.$$

Thus multiplication by ξ in frequency is essentially the same as taking the derivative in space.

For $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$\mathcal{F}^{-1}(\underbrace{2\pi i(\cdot)\widehat{\varphi}}_{2\pi i\xi\widehat{\varphi}(\xi)})=\varphi'.$$

Thus multiplication by ξ in frequency is essentially the same as taking the derivative in space.

More generally,

$$\mathcal{F}^{-1}(\underbrace{(2\pi i\cdot)^{\mathbf{m}}\widehat{\varphi}}_{(2\pi i\xi)^{\mathbf{m}}\widehat{\varphi}(\xi)}) = \frac{d^{\mathbf{m}}}{dx^{\mathbf{m}}}\varphi.$$

What about when m is not an integer?

For $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and s>0 we define the homogeneous differential operator

$$D^{s}\varphi := \mathcal{F}^{-1}(\underbrace{|\cdot|^{s}\widehat{\varphi}}_{|\xi|^{s}\widehat{\varphi}(\xi)}).$$

For $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and s>0 we define the homogeneous differential operator

$$D^{\mathfrak s}\varphi\coloneqq \mathcal F^{-1}\big(\underbrace{|\cdot|^{\mathfrak s}\widehat\varphi}_{|\xi|^{\mathfrak s}\widehat\varphi(\xi)}\big).$$

Similarly, the inhomogenous differential operator, where $\langle \cdot \rangle \coloneqq (1+|\cdot|^2)^{\frac{1}{2}}$, is given by

$$J^{\mathbf{s}} \varphi \coloneqq \mathcal{F}^{-1} (\langle \cdot
angle^{\mathbf{s}} \widehat{\varphi}).$$

Notice if s is an even integer, s = 2k, then

$$|\xi|^{2k}\widehat{\varphi}(\xi) = (\xi_1^2 + \dots + \xi_n^2)^k \widehat{\varphi}(\xi)$$

$$= \sum_{t_1 + \dots + t_n = k} \binom{k}{t_1, \dots, t_n} \prod_{j=1}^n \xi_j^{2t_j} \widehat{\varphi}(\xi),$$

which will give the derivative in the classical sense. For this reason some authors use $(-\Delta)^{\frac{s}{2}}$ is used in place of D^s , and $(I-\Delta)^{\frac{s}{2}}$ in place of J^s (modulo a $2\pi i$).

Leibniz Rule

Standard Leibniz rule is given by

$$\partial^{lpha}(\mathit{fg}) = \sum_{eta:eta \leq lpha} \left(egin{array}{c} lpha \ eta \end{array}
ight) f^{(eta)} g^{(lpha-eta)}.$$

Leibniz Rule

Standard Leibniz rule is given by

$$\partial^{\alpha}(fg) = \sum_{\beta:\beta \leq \alpha} {\alpha \choose \beta} f^{(\beta)} g^{(\alpha-\beta)}.$$

We are interested in controlling the derivative of a product by *only* the higher order derivative terms. This may not be possible pointwise, but it is in norm. For example,

$$\begin{split} \left\| \frac{d^2}{dx^2} (fg) \right\|_{L^r} &= \| f''g + g''f + 2f'g' \|_{L^p} \\ &\leq \| f''g \|_{L^p} + \| g''f \|_{L^p} + \| 2f'g' \|_{L^p} \\ &\lesssim \| f'' \|_{L^{p_1}} \| g \|_{L^{p_2}} + \| g'' \|_{L^{p_1}} \| f \|_{L^{p_2}}. \end{split}$$

Fractional Leibniz Rule

For the fractional derivative we study analogous estimates called-

Kato-Ponce Inequality

$$||J^{s}(fg)||_{L^{p}} \lesssim ||J^{s}f||_{L^{p_{1}}}||g||_{L^{p_{2}}} + ||f||_{L^{p_{1}}}||J^{s}g||_{L^{p_{2}}}$$

where
$$\frac{1}{\rho} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$$
.

Fractional Leibniz Rule

For the fractional derivative we study analogous estimates called-

Kato-Ponce Inequality

$$||J^{s}(fg)||_{L^{p}} \lesssim ||J^{s}f||_{L^{p_{1}}} ||g||_{L^{p_{2}}} + ||f||_{L^{p_{1}}} ||J^{s}g||_{L^{p_{2}}}$$

where $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$. More generally we are interested in inequalities of the form,

Weighted Multifactor Kato-Ponce Inequality

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}$$

where
$$\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$$
.

$$||J^{s}(fg)||_{L^{p}} \lesssim ||J^{s}f||_{L^{p_{1}}}||g||_{L^{p_{2}}} + ||f||_{L^{p_{1}}}||J^{s}g||_{L^{p_{2}}}$$

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with $s>0,1< p<\infty,\ 1< p_1<\infty,\ p_2=\infty$ in the study of Euler and Naiver Stokes equations.

$$||J^{s}(fg)||_{L^{p}} \lesssim ||J^{s}f||_{L^{p_{1}}}||g||_{L^{p_{2}}} + ||f||_{L^{p_{1}}}||J^{s}g||_{L^{p_{2}}}$$

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with $s>0,1< p<\infty,\ 1< p_1<\infty,\ p_2=\infty$ in the study of Euler and Naiver Stokes equations.

Christ, Weinstein (1991) proved the homogeneous KP inequality for 0 < s < 1 and 1 in the analysis of Korteweg-de Vries equations.

$$\|J^{\mathsf{s}}(\mathit{fg})\|_{L^{p}} \lesssim \|J^{\mathsf{s}}f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}} + \|f\|_{L^{p_{1}}}\|J^{\mathsf{s}}g\|_{L^{p_{2}}}$$

Kato, Ponce (1988) used a normed fractional Leibniz type rule, with $s>0,1< p<\infty,\ 1< p_1<\infty,\ p_2=\infty$ in the study of Euler and Naiver Stokes equations.

Christ, Weinstein (1991) proved the homogeneous KP inequality for 0 < s < 1 and 1 in the analysis of Korteweg-de Vries equations.

Gulisashvili, Kon (1996) obtained the homogeneous and inhomogeneous KP inequality for 0 < s and $1 , <math>1 < p_1, p_2 \le \infty$ and used it in the analysis of Schrödinger semigroups.

$$||J^{s}(fg)||_{L^{p}} \lesssim ||J^{s}f||_{L^{p_{1}}}||g||_{L^{p_{2}}} + ||f||_{L^{p_{1}}}||J^{s}g||_{L^{p_{2}}}$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > n$.

$$||J^{s}(fg)||_{L^{p}} \lesssim ||J^{s}f||_{L^{p_{1}}}||g||_{L^{p_{2}}} + ||f||_{L^{p_{1}}}||J^{s}g||_{L^{p_{2}}}$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > n$.

Grafakos, *Oh* (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > \max(n(\frac{1}{p} - 1), 0)$ or $s \in 2\mathbb{N}$. Furthermore, they gave counterexamples for s out of that range.

$$\|J^{\boldsymbol{s}}(fg)\|_{L^p} \lesssim \|J^{\boldsymbol{s}}f\|_{L^{p_1}} \|g\|_{L^{p_2}} + \|f\|_{L^{p_1}} \|J^{\boldsymbol{s}}g\|_{L^{p_2}}$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > n$.

Grafakos, *Oh* (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > \max(n(\frac{1}{p} - 1), 0)$ or $s \in 2\mathbb{N}$. Furthermore, they gave counterexamples for s out of that range.

Grafakos, Maldonado, Naibo (2014) obtained the KP inequality when the target space is BMO; and posed the question when the target space is L^{∞} .

$$\|J^{\boldsymbol{s}}(fg)\|_{L^p} \lesssim \|J^{\boldsymbol{s}}f\|_{L^{p_1}} \|g\|_{L^{p_2}} + \|f\|_{L^{p_1}} \|J^{\boldsymbol{s}}g\|_{L^{p_2}}$$

Bernicot, Maldonado, Moen, Naibo (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > n$.

Grafakos, *Oh* (2014) obtained the KP inequality for $\frac{1}{2} and <math>s > \max(n(\frac{1}{p} - 1), 0)$ or $s \in 2\mathbb{N}$. Furthermore, they gave counterexamples for s out of that range.

Grafakos, Maldonado, Naibo (2014) obtained the KP inequality when the target space is BMO; and posed the question when the target space is L^{∞} .

Cruz-Uribe, *Naibo* (2022) obtained the KP inequality for variable Lebesgue spaces.

Background: KP Endpoints

- The classical KP inequality uses Calderón-Zygmund theory.
- Calderón-Zygmund theory fails at the endpoints i.e. $p = \infty$ or when either of p_1, p_2 are equal to 1.
- CZ techniques give weaker results at the endpoints namely $L^1 \times L^{p_2} \to L^{p,\infty}$ and $L^\infty \times L^\infty \to BMO$.
- But the endpoint Kato-Ponce cases are true in the strong sense. This distinguishes KP inequalities from other bilinear estimates.

Background: KP endpoint cases

Bourgain, Li (2004) used a new technique for the L^{∞} endpoint (i.e. $p = \infty$) case where s is in a optimal range.

Background: KP endpoint cases

Bourgain, Li (2004) used a new technique for the L^{∞} endpoint (i.e. $p = \infty$) case where s is in a optimal range.

Oh, Wu (2020) expanded on this averaging technique to get the L^1 endpoint case (i.e. $p_1 = 1$ or $p_2 = 1$ or both are 1), where s is in a optimal range.

Background: KP endpoint cases

Bourgain, Li (2004) used a new technique for the L^{∞} endpoint (i.e. $p = \infty$) case where s is in a optimal range.

Oh, Wu (2020) expanded on this averaging technique to get the L^1 endpoint case (i.e. $p_1 = 1$ or $p_2 = 1$ or both are 1), where s is in a optimal range.

We now have the KP inequality in the full range of indices i.e.

Theorem

Let
$$f,g\in\mathcal{S}(\mathbb{R}^n)$$
 $\frac{1}{2}\leq p\leq\infty$, $1\leq p_1,p_2\leq\infty$ be related by $\frac{1}{p}=\frac{1}{p_1}+\frac{1}{p_2}$. Let $s>\max(n(\frac{1}{p}-1),0)$ or $s\in2\mathbb{N}$, then

$$\|J^{s}(fg)\|_{L^{p}} \leq C_{n,s,p_{1},p_{2}}\Big(\|J^{s}f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}} + \|f\|_{L^{p_{1}}}\|J^{s}g\|_{L^{p_{2}}}\Big).$$

Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces with Muckenhoupt weights for $\frac{1}{2} , <math>1 < p_1, p_2 \le \infty$, where s is in a optimal range depending on p and the weights.

Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces with Muckenhoupt weights for $\frac{1}{2} , <math>1 < p_1, p_2 \le \infty$, where s is in a optimal range depending on p and the weights.

Oh, Wu (2021) obtained the KP inequality for polynomial weights [i.e. weights of the form $(1+|\cdot|^2)^{\frac{3}{2}}$ for $a\geq 0$] for $\frac{1}{2}\leq p\leq \infty$, $1\leq p_1,p_2\leq \infty$, where s is in a optimal range.

Background: Weighted KP Inequalities

Naibo, Thomson (2019) obtained the KP inequality in function spaces with Muckenhoupt weights for $\frac{1}{2} , <math>1 < p_1, p_2 \le \infty$, where s is in a optimal range depending on p and the weights.

Oh, Wu (2021) obtained the KP inequality for polynomial weights [i.e. weights of the form $(1+|\cdot|^2)^{\frac{a}{2}}$ for $a\geq 0$] for $\frac{1}{2}\leq p\leq \infty$, $1\leq p_1,p_2\leq \infty$, where s is in a optimal range.

- For Muckenhoupt weights s is dependent on the weights.
- For polynomial weights s is independent of the weights.
- Oh and Wu's result just requires that the power on the polynomial is positive; hence the polynomial weights need not be Muckenhoupt weights.

Outline

- Preliminaries
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- Strategy of proof
- 6 Density

Outline

- Preliminaries
- 2 The 2-factor \Rightarrow 3-factor in full range of indices
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- 5 Strategy of proof
- 6 Density

Notation

A weight, w, is a nonnegative, measurable function such that $0 < w < \infty$ a.e.

Notation

A weight, w, is a nonnegative, measurable function such that $0 < w < \infty$ a.e.

For 0 we define,

$$||f||_{L^p(w)} := \Big(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\Big)^{\frac{1}{p}}$$

Notation

A weight, w, is a nonnegative, measurable function such that $0 < w < \infty$ a.e.

For 0 we define,

$$\|f\|_{L^p(w)} := \Big(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\Big)^{\frac{1}{p}}$$

For $p = \infty$ and w a weight we define,

$$||f||_{L^{\infty}(w)} := \inf\{C \ge 0 : |f(x)| \le C \text{ for a.e. } x\} = ||f||_{L^{\infty}}$$

A weight, w, is a nonnegative, measurable function such that $0 < w < \infty$ a.e.

For 0 we define,

$$\|f\|_{L^p(w)} := \Big(\int_{\mathbb{D}_p} |f(x)|^p w(x) dx\Big)^{\frac{1}{p}}$$

For $p = \infty$ and w a weight we define,

$$||f||_{L^{\infty}(w)} := \inf\{C \ge 0 : |f(x)| \le C \text{ for a.e. } x\} = ||f||_{L^{\infty}}$$

Let ${\mathcal M}$ be the Hardy-Littlewood maximal operator:

$$\mathcal{M}f(x) := \sup_{r>0} \frac{1}{|Q(x,r)|} \int_{Q(x,r)} |f(y)| dy =: \sup_{r>0} \int_{Q(x,r)} |f(y)| dy.$$

A_p Weights

Definition (Muckenhoupt Weight)

Let w be a locally integrable weight, and 1 . Then <math>w is a Muckenhoupt weight if it satisfies

$$[w]_{A_p} := \sup_{Q} \left(\oint_{Q} w \right) \left(\oint_{Q} w^{-\frac{1}{p-1}} \right)^{p-1} < \infty.$$

Moreover, if $[w]_{A_p} < \infty$, we say $w \in A_p$.

A_p Weights

Definition (Muckenhoupt Weight)

Let w be a locally integrable weight, and 1 . Then <math>w is a Muckenhoupt weight if it satisfies

$$[w]_{A_p} := \sup_{Q} \left(\oint_{Q} w \right) \left(\oint_{Q} w^{-\frac{1}{p-1}} \right)^{p-1} < \infty.$$

Moreover, if $[w]_{A_p} < \infty$, we say $w \in A_p$.

$$\tau_w := \inf\{p \ge 1 : w \in A_p\}$$

Muckenhoupt's theorem

Theorem (Muckenhoupt 1972)

For p > 1

$$\|\mathcal{M}f\|_{L^{p}(w)} \leq C\|f\|_{L^{p}(w)}$$

$$\iff$$

$$w \in A_{p}.$$

- ullet The theorem is also true with the Hilbert or Riesz transform in place of ${\cal M}.$
- $A_q \subset A_p$ for $q \leq p$.
- A_p weights are doubling (i.e. $w(\lambda Q) \lesssim \lambda^{np}[w]_{A_p} w(Q)$).
- A_p weights satisfy the reverse Hölder property.

$A_{ec{P}}$ Weights

 A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González (2009)

*A*_₽ Weights

 A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González (2009)

Definition (Multiple Weights)

Let $\vec{P} = (p_1, \dots, p_m)$ with $1 < p_1, \dots, p_m < \infty$ satisfy $\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_m}$. Given $\vec{w} = (w_1, \dots, w_m)$, where w_j are weights, set

$$w=\prod_{j=1}^m w_j^{p/p_j}.$$

We say that \vec{w} satisfies the $A_{\vec{P}}$ condition (or $\vec{w} \in A_{\vec{P}}$) if

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w\right)^{1/p} \prod_{i=1}^{m} \left(\frac{1}{|Q|} \int_{Q} w_{i}^{1-p_{i}'}\right)^{1/p_{i}'} < \infty,$$

where the supremum is taken over all cubes ${\it Q}$ with sides parallel to the axes.

Multi(sub)linear Maximal Function

Definition

Given $\vec{f}=(f_1,\ldots,f_m)$ where each entry is measurable, we define the maximal operator $\mathscr M$ by

$$\mathscr{M}(\vec{f})(x) = \sup_{Q\ni x} \prod_{j=1}^m \frac{1}{|Q|} \int_Q |f_j(y_j)| \, dy_j,$$

where the supremum is taken over all cubes Q containing x.

Multi(sub)linear Maximal Function

Definition

Given $\vec{f}=(f_1,\ldots,f_m)$ where each entry is measurable, we define the maximal operator $\mathcal M$ by

$$\mathscr{M}(\vec{f})(x) = \sup_{Q\ni x} \prod_{j=1}^m \frac{1}{|Q|} \int_Q |f_j(y_j)| \, dy_j,$$

where the supremum is taken over all cubes Q containing x.

Theorem (L-O-P-T-G 2009)

Let $1 < p_j < \infty$, $j = 1, \ldots, m$, and $\frac{1}{p} = \frac{1}{p_1} + \ldots + \frac{1}{p_m}$. Then the inequality

$$\|\mathscr{M}(\vec{f})\|_{L^p(w)} \le C \prod_{j=1}^m \|f_j\|_{L^{p_j}(w_j)}$$

holds for every measurable \vec{f} if and only if $\vec{w} \in A_{\vec{p}}$.

$A_{ec{ ho}}$ VS. $A_{ ho}$

There are some key similarities and differences between these two weight classes, and the corresponding maximal operators.

• Trivially $\mathcal{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}(f_j)(x)$.

$A_{ec{ ho}}$ VS. $A_{ec{ ho}}$

- Trivially $\mathcal{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}(f_j)(x)$.
- If $\vec{w}=(w_1,\ldots,w_m)\in A_{\vec{P}}$ then $w=\prod_{j=1}^m w_j^{p/p_j}\in A_{mp}$.

$A_{ec{ ho}}$ VS. A_{μ}

- Trivially $\mathcal{M}(\vec{f})(x) \leq \prod_{j=1}^{m} \mathcal{M}(f_j)(x)$.
- If $\vec{w}=(w_1,\ldots,w_m)\in A_{\vec{p}}$ then $w=\prod_{j=1}^m w_j^{p/p_j}\in A_{mp}$.
- \bullet However, w_j may not even be locally integrable!

$A_{ec{ ho}}$ VS. $A_{ec{ ho}}$

- Trivially $\mathcal{M}(\vec{f})(x) \leq \prod_{j=1}^m \mathcal{M}(f_j)(x)$.
- If $\vec{w}=(w_1,\ldots,w_m)\in A_{\vec{P}}$ then $w=\prod_{j=1}^m w_j^{p/p_j}\in A_{mp}$.
- However, w_j may not even be locally integrable!
- $A_{p_1} \times \cdots \times A_{p_m} \subset A_{\vec{p}}$ is a proper subset.

$$A_{\vec{P}}$$
 VS. A_p

- Trivially $\mathcal{M}(\vec{f})(x) \leq \prod_{j=1}^m \mathcal{M}(f_j)(x)$.
- If $\vec{w}=(w_1,\ldots,w_m)\in A_{\vec{p}}$ then $w=\prod_{j=1}^m w_j^{p/p_j}\in A_{mp}$.
- However, w_j may not even be locally integrable!
- $A_{p_1} \times \cdots \times A_{p_m} \subset A_{\vec{p}}$ is a proper subset.

$$\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w\right)^{1/p} \prod_{j=1}^{m} \left(\frac{1}{|Q|} \int_{Q} w_{i}^{1-p_{i}'}\right)^{1/p_{i}'} < \infty,$$

Notation: Littlewood-Paley operators

Notation: Littlewood-Paley operators

Littlewood-Paley and averaging operators

Notice that $\widehat{\psi}$ gives rise to a partition of unity

$$\sum_{j\in\mathbb{Z}}\widehat{\psi}(2^{-j}\xi)=1 ext{ or } \sum_{j\in\mathbb{Z}}\Delta_j=I.$$

As well as the useful identity

$$\sum_{j \leq j_{\mathbf{0}}} \widehat{\psi}(2^{-j}\xi) = \widehat{\phi}(2^{-j_{\mathbf{0}}}\xi) \text{ or } \sum_{j \leq j_{\mathbf{0}}} \Delta_{j} = S_{j_{\mathbf{0}}}.$$

Outline

- Preliminaries
- 2 The 2-factor \Rightarrow 3-factor in full range of indices
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- 5 Strategy of proof
- 6 Density

The 2-factor \Rightarrow 3-factor in full range of indices

Let

$$\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}.$$

If p < 1, we will show that the 2-factor KP inequality does not inductively imply the 3-factor KP inequality.

The 2-factor \Rightarrow 3-factor in full range of indices

Let

$$\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3}.$$

If p < 1, we will show that the 2-factor KP inequality does not inductively imply the 3-factor KP inequality. For example let

$$p_1 = p_2 = \frac{3}{2}$$
, and $p_3 = 2$.

Let q_1 and q_2 be such that

$$\frac{2}{3} + \frac{2}{3} + \frac{1}{2} = \frac{1}{q_1} + \frac{1}{2} = \frac{2}{3} + \frac{1}{q_2}.$$

So we have

$$q_1 = \frac{3}{4}$$
 and $q_2 = \frac{6}{7}$.

It follows we can not directly apply the 2-factor KP inequality.

Outline

- Preliminaries
- 2 The 2-factor \Rightarrow 3-factor in full range of indices
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- 5 Strategy of proof
- 6 Density

Theorem (Douglas 2023)

Let $m \in \mathbb{Z}^+$, $\frac{1}{m} , <math>1 < p_1, \ldots, p_m < \infty$ satisfy $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$. Let $\vec{w} \in A_{\vec{p}}$, and let $w = w_1^{\frac{p}{p_1}} \cdots w_m^{\frac{p}{p_m}}$. If $s > n(\frac{1}{\min(p/\tau_w, 1)} - 1)$, then there exists a constant $C = C(n, m, w, s, p_1, \ldots, p_m) < \infty$ such that for all $f_t \in \mathcal{S}(\mathbb{R}^n)$ with $t \in \{1, \ldots, m\}$ we have

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

Furthermore, the same estimate holds with D^s in place of J^s.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

Keypoints

• Extends the KP inequality from a product of 2 functions to a product of m functions.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

- Extends the KP inequality from a product of 2 functions to a product of m functions.
- This implies the KP inequality for Muckenhoupt weights.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

- Extends the KP inequality from a product of 2 functions to a product of m functions.
- This implies the KP inequality for Muckenhoupt weights.
- The weights w_t may not even be locally integrable.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

- Extends the KP inequality from a product of 2 functions to a product of m functions.
- This implies the KP inequality for Muckenhoupt weights.
- The weights w_t may not even be locally integrable.
- The inhomogeneous version implies the homogeneous version via a dilation argument.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

Keypoints

• The range of the smoothness index is given by $s > n(\frac{1}{\min(\rho/\tau_w, 1)} - 1)$, which implies s depends on the choice of weights.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

- The range of the smoothness index is given by $s > n(\frac{1}{\min(\rho/\tau_w, 1)} 1)$, which implies s depends on the choice of weights.
- The range of s is sharp; that is the inequality can fail for s outside of that range.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

- The range of the smoothness index is given by $s > n(\frac{1}{\min(\rho/\tau_w, 1)} 1)$, which implies s depends on the choice of weights.
- The range of s is sharp; that is the inequality can fail for s outside of that range.
- The integrability index does NOT include the endpoints i.e. $1 < p_1, \ldots, p_m < \infty$.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

- The range of the smoothness index is given by $s > n(\frac{1}{\min(\rho/\tau_w, 1)} 1)$, which implies s depends on the choice of weights.
- The range of s is sharp; that is the inequality can fail for s outside of that range.
- The integrability index does NOT include the endpoints i.e. $1 < p_1, \ldots, p_m < \infty$.
- What can be said about the weighted endpoint case?

L^1 endpoint with A_p weights (Different result)

Theorem (Douglas 2022)

Let
$$m \in \mathbb{Z}^+$$
, $\frac{1}{m} \leq p \leq \infty$, $1 \leq p_1, \ldots, p_m \leq \infty$ satisfy $\frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_m}$. Let $w_t \in A_{p_t}$ for $t \in \{1, \ldots, m\}$, and let $w = w_1^{\frac{p}{p_1}} \cdots w_m^{\frac{p}{p_m}}$. If $s > n(\frac{1}{\min(p/\tau_w, 1)} - 1)$, then there exists a constant $C = C(n, m, w, s, p_1, \ldots, p_m) < \infty$ such that for all $f_t \in \mathcal{S}(\mathbb{R}^n)$ with $t \in \{1, \ldots, m\}$ we have

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

Furthermore, the same estimate holds with D^s in place of J^s .

Outline

- Preliminaries
- 2 The 2-factor \Rightarrow 3-factor in full range of indices
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- 5 Strategy of proof
- Density

Bernstein Type Expressions

We need a Bernstein's type inequality i.e.

$$||J^{\mathfrak{s}}\Delta_{j}^{\psi}f||_{L^{p}(w)}\sim 2^{j\mathfrak{s}}||\Delta_{j}^{\psi}f||_{L^{p}(w)},$$

but without the norm.

Proposition

Let $\mathbf{s} \in \mathbb{R}$, and let $\widehat{\psi}$ be a $\mathcal{C}^{\infty}(\mathbb{R}^n)$ function supported in the annulus $\frac{1}{2} \leq |\xi| \leq 2$. Define $\Delta_j^{\psi} f$ to be convolution with $2^{jn} \psi(2^j \cdot)$, and $\Delta_{j,\mu}^{\psi}$ to be convolution with $2^{jn} \psi(2^j \cdot +\mu)$ for $f \in \mathcal{S}(\mathbb{R}^n)$ and let $j \in \mathbb{Z}$. Then one has

$$J^{\boldsymbol{s}}\Delta_{j}^{\psi}f(x)=2^{j\boldsymbol{s}}\sum_{\mu\in\mathbb{Z}^{n}}c_{j,\mu}\Delta_{j,\mu}^{\psi}f(x) \text{ and } 2^{j\boldsymbol{s}}\Delta_{j}^{\psi}f(x)=\sum_{\mu\in\mathbb{Z}^{n}}c_{j,\mu}\Delta_{j,\mu}^{\psi}J^{\boldsymbol{s}}f(x)$$

where $|c_{j,\mu}| \lesssim (1+|\mu|)^{-N}$ for any $N \in \mathbb{N}$, when $j \geq 0$, the implicit constant is independent of j.

Proof of Proposition

Let

$$\sigma_j(\xi) \equiv (2^{-2j} + |\xi|^2)^{\frac{5}{2}} \widehat{\psi_{\star}}(\xi) = \chi_{[-4,4]^n}(\xi) \sum_{\mu \in \mathbb{Z}^n} c_{j,\mu} e^{2\pi i \xi \cdot \frac{\mu}{8}}$$

where the coefficients decay rapidly independently of j.

Observe for $j \ge 0$,

$$\begin{split} J^{\mathsf{s}} \Delta_{j}^{\psi} f(x) &= \int (1 + |\xi|^{2})^{\frac{\mathsf{s}}{2}} \widehat{\psi_{\star}} (2^{-j} \xi) \widehat{\Delta_{j}^{\psi}} f(\xi) e^{2\pi i \xi \cdot x} d\xi \\ &= \int 2^{j \mathsf{s}} (2^{-2j} + |2^{-j} \xi|^{2})^{\frac{\mathsf{s}}{2}} \widehat{\psi_{\star}} (2^{-j} \xi) \widehat{\Delta_{j}^{\psi}} f(\xi) e^{2\pi i \xi \cdot x} d\xi \\ &= 2^{j \mathsf{s}} \int \sum_{\mu \in \mathbb{Z}^{n}} c_{j,\mu} e^{2\pi i \xi \cdot 2^{-j - 3} \mu} \widehat{\Delta_{j}^{\psi}} f(\xi) e^{2\pi i \xi \cdot x} d\xi \\ &= 2^{j \mathsf{s}} \sum_{\mu \in \mathbb{Z}^{n}} c_{j,\mu} \Delta_{j,\mu}^{\psi} f(x). \end{split}$$

Averaging lemma

Lemma (Oh, Wu 2020)

If $a_k \lesssim \min(2^{ka}A, 2^{-kb}B)$ for some a, b, A, B > 0 and every $k \in \mathbb{Z}$, then for any u > 0, we have $\{a_k\}_{k \in \mathbb{Z}} \in \ell^u(\mathbb{Z})$ and

$$\|\{a_k\}_{k\in\mathbb{Z}}\|_{\ell^u}\lesssim A^{\frac{b}{a+b}}B^{\frac{a}{a+b}}.$$

In particular, if $||f_k||_{L^r(w)} \lesssim \min(2^{ka}A, 2^{-kb}B)$ for $0 < r \leq \infty$, every $k \in \mathbb{Z}$, and a weight w then

$$\left\| \sum_{k \in \mathbb{Z}} f_k \right\|_{L^r(w)} \lesssim A^{\frac{b}{a+b}} B^{\frac{a}{a+b}}.$$

Bourgain and Li were the first to use this technique to obtain the L^{∞} endpoint. Oh and Wu later refined it and found a creative way to apply it to the L^1 endpoint.

Controlled By The Multilinear Maximal Function

Analogous to how the Hardy-Littlewood maximal function pointwise controls the convolution of a function with the L^1 dilate of a Schwartz function we have

Proposition

Let $\vec{f} = (f_1, \ldots, f_m)$ where $f_j \in L^1_{loc}(\mathbb{R}^n)$ and $\varphi^j \in \mathscr{S}(\mathbb{R}^n)$ for $j \in \{1, \ldots, m\}$. For $t \in \mathbb{R}_{>0}$ define the operator Υ^j_t to be convolution with $t^{-n}\varphi^j(t^{-1}\cdot)$, then there is a finite constant independent of t such that

$$|(\Upsilon_t^1 f_1) \cdots (\Upsilon_t^m f_m)| \leq C_{n,m,\varphi^1,\dots,\varphi^m} \mathcal{M}(\vec{f}).$$

Controlled By The Multilinear Maximal Function

Analogous to how the Hardy-Littlewood maximal function pointwise controls the convolution of a function with the L^1 dilate of a Schwartz function we have

Proposition

Let $\vec{f} = (f_1, \ldots, f_m)$ where $f_j \in L^1_{loc}(\mathbb{R}^n)$ and $\varphi^j \in \mathscr{S}(\mathbb{R}^n)$ for $j \in \{1, \ldots, m\}$. For $t \in \mathbb{R}_{>0}$ define the operator Υ^j_t to be convolution with $t^{-n}\varphi^j(t^{-1}\cdot)$, then there is a finite constant independent of t such that

$$|(\Upsilon_t^1 f_1) \cdots (\Upsilon_t^m f_m)| \leq C_{n,m,\varphi^1,\dots,\varphi^m} \mathcal{M}(\vec{f}).$$

Suppose the Υ^{j}_{t} were replaced by the shifted operators $\Upsilon^{j}_{t,\mu}$ defined by convolution with $t^{-n}\varphi^{j}(t^{-1}\cdot +\mu)$ for $\mu\in\mathbb{R}^{n}$. Then the final constant grows polynomially in $|\mu|$, i.e.

$$|(\Upsilon^1_{t,\mu}f_1)\cdots(\Upsilon^m_{t,\mu}f_m)|\leq (1+|\mu|)^{n+\gamma}C_{n,m,\varphi^1,\dots,\varphi^m}\mathscr{M}(\vec{f}).$$

Outline

- Preliminaries
- 2 The 2-factor \Rightarrow 3-factor in full range of indices
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- Strategy of proof
- 6 Density

Strategy of proof: Decomposition

We start by rewriting the fractional derivative of the product,

$$\begin{split} J^{s}(f_{1}f_{2}\cdots f_{m})(x) &= \\ \int_{\mathbb{R}^{mn}}(1+|\xi_{1}+\cdots+\xi_{m}|^{2})^{\frac{s}{2}}\widehat{f_{1}}(\xi_{1})\cdots\widehat{f_{m}}(\xi_{m})e^{2\pi i(\xi_{1}+\cdots+\xi_{m})\cdot x}d\vec{\xi} \\ &= \sum_{\vec{j}\in\mathbb{Z}^{m}}\int_{\mathbb{R}^{mn}}(1+|\xi_{1}+\cdots+\xi_{m}|^{2})^{\frac{s}{2}}\widehat{\psi}(2^{-j_{1}}\xi_{1})\cdots\widehat{\psi}(2^{-j_{m}}\xi_{m})\widehat{f_{1}}(\xi_{1})\cdots\widehat{f_{m}}(\xi_{m})e^{2\pi i(\xi_{1}+\cdots+\xi_{m})\cdot x}d\vec{\xi} \\ &= \sum_{\vec{\eta}\in\{0,1\}^{m}}\int_{\mathbb{R}^{mn}}\sum_{\vec{j}\in\mathscr{B}_{\vec{\eta}}}\Lambda_{\vec{j}}(\vec{\xi})(1+|\xi_{1}+\cdots+\xi_{m}|^{2})^{\frac{s}{2}}\widehat{f_{1}}(\xi_{1})\cdots\widehat{f_{m}}(\xi_{m})e^{2\pi i(\xi_{1}+\cdots+\xi_{m})\cdot x}d\vec{\xi} \end{split}$$

where

$$\mathbb{Z}^m = igsqcup_{ec{\eta} \in \{0,1\}^m} \mathscr{B}_{ec{\eta}}.$$

Strategy of proof: Decomposition

For example the decomposition of $\ensuremath{\mathbb{Z}}^2$ is

$$(j,k) \in \mathbb{Z}^2$$

•
$$(1,1) \sim j = k > 0$$

•
$$(1,0) \sim 0 < k < j$$

•
$$(0,1) \sim 0 < j < k$$

•
$$(0,0) \sim j \le 0 \text{ and } k \le 0$$

Strategy of proof: Decomposition

$$\mathbb{Z}^m = \bigsqcup_{ec{\eta} \in \{0,1\}^m} \mathscr{B}_{ec{\eta}}.$$

We define

$$\mathscr{B}_{\vec{\eta}} := \{(j_1, \dots, j_m) \in \mathbb{Z}^m : \text{if } \eta_t = 1 \text{ for some } 1 \leq t \leq m \}$$

then, $\max(j_1, \dots, j_m) = j_t \text{ and } j_t > 0.$
If $\eta_t = 0$ then $\max(j_1, \dots, j_m) > j_t\}.$

 $\mathcal{B}_{\vec{\eta}}$ is the elements of \mathbb{Z}^m where the coordinates containing a 1 are the same, positive and strictly bigger then the remaining entries.

To get a sense of how this decomposition looks in higher dimensions and to see that it produces a paraproduct decomposition lets consider (1,0,0).

$$(1,0,0)pprox \mathscr{B}_{(1,0,0)}=\{(j_1,j_2,j_3)\in \mathbb{Z}^3: j_1>j_2 \text{ and } j_1>j_3 \text{ and } j_1>0\}$$

Then

$$\sum_{\vec{j} \in \mathcal{B}_{(1,0,0)}} \widehat{\psi}(2^{-j_1}\xi_1) \widehat{\psi}(2^{-j_2}\xi_2) \widehat{\psi}(2^{-j_3}\xi_3)$$

$$= \sum_{j_1 > 0} \sum_{j_2 < j_1} \sum_{j_3 < j_1} \widehat{\psi}(2^{-j_1}\xi_1) \widehat{\psi}(2^{-j_2}\xi_2) \widehat{\psi}(2^{-j_3}\xi_3)$$

$$= \sum_{j > 0} \widehat{\psi}(2^{-j}\xi_1) \widehat{\phi}(2^{-(j-1)}\xi_2) \widehat{\phi}(2^{-(j-1)}\xi_3)$$

$$\approx \sum_{j > 0} (\Delta_j f_1) (S_{j-1} f_2) (S_{j-1} f_3)$$

The fractional derivative

$$J^{\mathbf{s}}(f_1\cdots f_m)$$

is broken into paraproducts of two types:

The fractional derivative

$$\int^{s}(f_{1}\cdots f_{m})$$

is broken into paraproducts of two types:

The Diagonal Paraproduct (b > 1)

$$\sum_{j>0}J^{\boldsymbol{s}}\Big((\Delta_jf_1)(\Delta_jf_2)\cdots(\Delta_jf_b)(S_{j-1}f_{b+1})\cdots(S_{j-1}f_m)\Big)$$

and

The fractional derivative

$$J^{\mathbf{s}}(f_1\cdots f_m)$$

is broken into paraproducts of two types:

The Diagonal Paraproduct (b > 1)

$$\sum_{j>0} J^{\mathfrak{s}}\Big((\Delta_{j} f_{1})(\Delta_{j} f_{2}) \cdots (\Delta_{j} f_{b})(S_{j-1} f_{b+1}) \cdots (S_{j-1} f_{m})\Big)$$

and

The Off-Diagonal Paraproduct (b = 1)

$$\sum_{i>0} J^{\mathbf{s}}\Big((\Delta_j f_1)(S_{j-1}f_2)\cdots(S_{j-1}f_m)\Big)$$

Expanding high frequency term we have

$$\sum_{j>0} J^{s} \Big((\Delta_{j} f_{1}) (\Delta_{j} f_{2}) \cdots (\Delta_{j} f_{b}) (S_{j-1} f_{b+1}) \cdots (S_{j-1} f_{m}) \Big) (x)
= \sum_{j>0} \int 2^{js} (2^{-2j} + |2^{-j} \xi_{1} + \dots + 2^{-j} \xi_{m}|^{2})^{\frac{s}{2}} \widehat{\phi} (2^{-j-m} (\xi_{1} + \dots + \xi_{m}))
\times \widehat{\Delta_{j}} \widehat{f_{1}} (\xi_{1}) \cdots \widehat{\Delta_{j}} \widehat{f_{b}} (\xi_{b}) \widehat{S_{j-1}} \widehat{f_{b+1}} (\xi_{b+1}) \cdots \widehat{S_{j-1}} \widehat{f_{m}} (\xi_{m}) e^{2\pi i (\xi_{1} + \dots + \xi_{m}) \cdot x} d\vec{\xi}$$

 In the unweighted case expanding the part in blue in Fourier series is not an issue i.e.

$$(2^{-2j} + |\xi|^2)^{\frac{s}{2}} \widehat{\phi}(2^{-m}\xi) = \chi_{[-4,4]}(2^{-m}\xi) \sum_{\mu \in \mathbb{Z}^n} c_{j,\mu} e^{2\pi i \xi \cdot 2^{-m-3}\mu}.$$

 The decay from the coefficients is just enough to overcome the effects of modulation.

In the unweighted case the decay of the Fourier coefficients is bounded by $(1+|\mu|)^{-n-s}$ and the effects of modulation are logarithmic.

Lemma (Grafakos, Oh 2014)

Let $\mu \in \mathbb{Z}^n$ let $\Delta_{j,\mu}$ be convolution with $2^{jn}\psi(2^{-j}\cdot +\mu)$. Then for all $1< q<\infty$

$$\Big\| \sqrt{\sum_{j \in \mathbb{Z}} |\Delta_{j,\mu} f|^2} \Big\|_{L^q} \leq C_n \max(q,(q-1)^{-1}) \ln(2+|\mu|) \|f\|_{L^q}.$$

In the unweighted case the decay of the Fourier coefficients is bounded by $(1+|\mu|)^{-n-s}$ and the effects of modulation are logarithmic.

Lemma (Grafakos, Oh 2014)

Let $\mu \in \mathbb{Z}^n$ let $\Delta_{j,\mu}$ be convolution with $2^{jn}\psi(2^{-j}\cdot +\mu)$. Then for all $1 < q < \infty$

$$\Big\| \sqrt{\sum_{j \in \mathbb{Z}} |\Delta_{j,\mu} f|^2} \Big\|_{L^q} \leq C_n \max(q,(q-1)^{-1}) \ln(2+|\mu|) \|f\|_{L^q}.$$

- In the weighted case the smoothness estimate required for CZ theory is too rough.
- Naibo and Thomson's technique using the machinery of function spaces sidesteps this issue of decay.

Theorem (Naibo, Thomson 2019)

Let $w \in A_{\infty}$, and let $f_1, \ldots, f_m \in \mathcal{S}(\mathbb{R}^n)$ and $j \in \mathbb{N}$. Let $0 , and <math>s > n(\frac{1}{\min(p/\tau_w, 1)} - 1)$, then

$$\left\|J^{s}\left(\sum_{j\in\mathbb{N}}(\Delta_{j}f_{1})(\Delta_{j}f_{2})\cdots(\Delta_{j}f_{b})(S_{j-1}f_{b+1})\cdots(S_{j-1}f_{m})\right)\right\|_{L^{p}(w)}$$

$$\lesssim \Big\| \sum_{j \in \mathbb{N}} 2^{js} (\Delta_j f_1) (\Delta_j f_2) \cdots (\Delta_j f_b) (S_{j-1} f_{b+1}) \cdots (S_{j-1} f_m) \Big\|_{L^p(w)}$$

where the implicit constant depends on m, n, s, r, w.

Theorem (Naibo, Thomson 2019)

Let $w \in A_{\infty}$, and let $f_1, \ldots, f_m \in \mathcal{S}(\mathbb{R}^n)$ and $j \in \mathbb{N}$. Let $0 , and <math>s > n(\frac{1}{\min(p/\tau_w, 1)} - 1)$, then

$$igg\|J^{m{s}}igg(\sum_{j\in\mathbb{N}}(\Delta_{j}f_{1})(\Delta_{j}f_{2})\cdots(\Delta_{j}f_{b})(S_{j-1}f_{b+1})\cdots(S_{j-1}f_{m})igg)igg\|_{L^{p}(w)} \ \lesssim igg\|\sum_{j\in\mathbb{N}}2^{m{j}m{s}}(\Delta_{j}f_{1})(\Delta_{j}f_{2})\cdots(\Delta_{j}f_{b})(S_{j-1}f_{b+1})\cdots(S_{j-1}f_{m})igg\|_{L^{p}(w)}$$

where the implicit constant depends on m, n, s, r, w.

A key ingredient is bounding the convolution pointwise by maximal-type operators. Specifically, when \widehat{u} is compactly supported we use estimates given heuristically by

$$|\varphi * u(x)| \lesssim \left(\mathcal{M}(|u|^t)(x)\right)^{\frac{1}{t}}.$$

Strategy of proof: Diagonal Paraproduct-Summability

Using the previous theorem and Bernstein's inequality we can estimate a summmand of

$$\Big\| \sum_{j \in \mathbb{N}} 2^{j \cdot \mathsf{s}} (\Delta_j f_1) (\Delta_j f_2) \cdots (\Delta_j f_b) (S_{j-1} f_{b+1}) \cdots (S_{j-1} f_m) \Big\|_{L^p(w)}$$

above by

$$\left\|2^{j\mathfrak{s}}(\Delta_{j}f_{1})(\Delta_{j}f_{2})\cdots(\Delta_{j}f_{b})(S_{j-1}f_{b+1})\cdots(S_{j-1}f_{m})\right\|_{L^{p}(w)}$$

which is bounded by a constant multiple of

$$2^{js} \left\| \mathcal{M}(\vec{f}) \right\|_{L^p(w)}$$

Strategy of proof: Diagonal Paraproduct-Summability

Using the averaging lemma and Bernstein's inequality we can estimate a summmand of

$$\Big\| \sum_{j \in \mathbb{N}} 2^{js} (\Delta_j f_1) (\Delta_j f_2) \cdots (\Delta_j f_b) (S_{j-1} f_{b+1}) \cdots (S_{j-1} f_m) \Big\|_{L^p(w)}$$

above by

$$\left\| 2^{js} 2^{-js} 2^{-js} \sum_{\mu_{1} \in \mathbb{Z}} \sum_{\mu_{2} \in \mathbb{Z}} c_{j,\mu_{1}} c_{j,\mu_{2}} (\Delta_{j,\mu_{1}} J^{s} f_{1}) (\Delta_{j,\mu_{2}} J^{s} f_{2}) \cdots (\Delta_{j} f_{b}) \right. \\ \left. \times \left(S_{j-1} f_{b+1} \right) \cdots \left(S_{j-1} f_{m} \right) \right\|_{L^{p}(w)} .$$

which is bounded by a constant multiple of

$$2^{-js} \left\| \mathscr{M} \left(J^s f_1, J^s f_2, f_3, \cdots, f_m \right) \right\|_{L^p(w)}$$

Strategy of proof: Diagonal Paraproduct-Summability

Now applying the averaging lemma with estimates a=b=s as well as the AMGM inequality we have

$$\begin{split} & \left\| J^{s} \Big(\sum_{j>0} (\Delta_{j} f_{1}) (\Delta_{j} f_{2}) \cdots (\Delta_{j} f_{b}) (S_{j-1} f_{b+1}) \cdots (S_{j-1} f_{m}) \Big) \right\|_{L^{p}(w)} \\ & \lesssim \Big(\left\| \mathscr{M}(\vec{f}) \right\|_{L^{p}(w)} \left\| \mathscr{M} \big(J^{s} f_{1}, J^{s} f_{2}, f_{3}, \cdots, f_{m} \big) \right\|_{L^{p}(w)} \Big)^{\frac{1}{2}} \\ & \lesssim \Big(\left\| f_{1} \right\|_{L^{p_{1}}(w_{1})} \left\| f_{2} \right\|_{L^{p_{2}}(w_{2})} \cdots \left\| f_{m} \right\|_{L^{p_{m}}(w_{m})} \\ & \times \left\| J^{s} f_{1} \right\|_{L^{p_{1}}(w_{1})} \left\| J^{s} f_{2} \right\|_{L^{p_{2}}(w_{2})} \left\| f_{3} \right\|_{L^{p_{3}}(w_{3})} \cdots \left\| f_{m} \right\|_{L^{p_{m}}(w_{m})} \Big)^{\frac{1}{2}} \\ & \leq \left\| J^{s} f_{1} \right\|_{L^{p_{1}}(w_{1})} \left\| f_{2} \right\|_{L^{p_{2}}(w_{2})} \cdots \left\| f_{m} \right\|_{L^{p_{m}}(w_{m})} \\ & + \left\| f_{1} \right\|_{L^{p_{1}}(w_{1})} \left\| J^{s} f_{2} \right\|_{L^{p_{2}}(w_{2})} \left\| f_{3} \right\|_{L^{p_{3}}(w_{3})} \cdots \left\| f_{m} \right\|_{L^{p_{m}}(w_{m})}. \end{split}$$

Finishing the proof of the diagonal paraproduct.

$$J^{s}\Big(\sum_{j>0}(\Delta_{j}f_{1})(S_{j-1}f_{2})\cdots(S_{j-1}f_{m})\Big)$$

Fix $a \in \mathbb{N}$ to be determined later. We expand the above expression as

$$\sum_{j \in \mathbb{N}} (\Delta_j f_1) \Big(S_{j-a} f_2 + \sum_{j-a < k < j} \Delta_k f_2 \Big) \cdots \Big(S_{j-a} f_m + \sum_{j-a < k < j} \Delta_k f_m \Big).$$

Multiplying out the terms we write

$$\sum_{j\in\mathbb{N}}(\Delta_jf_1)(S_{j-a}f_2)(S_{j-a}f_3)\cdots(S_{j-a}f_m)$$

plus finitely many other paraproducts with at least one Δ_k operator where $k \sim j$. These finitely many other paraproducts will behave in the same way as the case for b>1.

Expanding the fractional derivative we have

$$\sum_{j>0} J^{\mathbf{5}}((\Delta_{j}f_{1})(S_{j-a}f_{2})\cdots(S_{j-a}f_{m}))(x)$$

$$=\sum_{j>0} \int (1+|\xi_{1}+\cdots+\xi_{m}|^{2})^{\frac{\mathbf{5}}{2}}\widehat{\Delta_{j}f_{1}}(\xi_{1})$$

$$\times \widehat{S_{j-a}f_{2}}(\xi_{2})\cdots\widehat{S_{j-a}f_{m}}(\xi_{m})e^{2\pi i(\xi_{1}+\cdots+\xi_{m})\cdot x}d\xi_{1}\cdots d\xi_{m}$$

• Here $a \in \mathbb{N}$ is chosen big enough so that $|\xi_1 + \cdots + \xi_m| \sim |\xi_1|$.

Now for the high-low frequency term, expanding the fractional derivative we have

$$\sum_{j>0} J^{s}((\Delta_{j}f_{1})(S_{j-a}f_{2})\cdots(S_{j-a}f_{m}))(x)$$

$$=\sum_{j>0} \int (1+|\xi_{1}+\cdots+\xi_{m}|^{2})^{\frac{s}{2}} \widehat{\Delta_{j}}\widehat{f_{1}}(\xi_{1})$$

$$\times \widehat{S_{j-a}f_{2}}(\xi_{2})\cdots\widehat{S_{j-a}f_{m}}(\xi_{m})e^{2\pi i(\xi_{1}+\cdots+\xi_{m})\cdot x}d\xi_{1}\cdots d\xi_{m}$$

• Here $a \in \mathbb{N}$ is chosen big enough so that $|\xi_1 + \cdots + \xi_m| \sim |\xi_1|$.

Now for the high-low frequency term, expanding the fractional derivative we have

$$\sum_{j>0} J^{s}((\Delta_{j}f_{1})(S_{j-a}f_{2})\cdots(S_{j-a}f_{m}))(x)$$

$$=\sum_{j>0} \int (1+|\xi_{1}+\cdots+\xi_{m}|^{2})^{\frac{s}{2}} \widehat{\Delta_{j}}\widehat{f_{1}}(\xi_{1})$$

$$\times \widehat{S_{j-a}f_{2}}(\xi_{2})\cdots\widehat{S_{j-a}f_{m}}(\xi_{m})e^{2\pi i(\xi_{1}+\cdots+\xi_{m})\cdot x}d\xi_{1}\cdots d\xi_{m}$$

- Here $a \in \mathbb{N}$ is chosen big enough so that $|\xi_1 + \cdots + \xi_m| \sim |\xi_1|$.
- For boundedness we will use a *m*-linear multiplier theorem in the setting of multiple weights.

- The first use of a bilinear multiplier theorem that employed a Hörmander-type smoothness condition was introduced by Tomita.
- Grafakos and Si extended this multiplier theorem to the m-linear case.
- Li and Sun proved the $A_{\vec{P}}$ -weighted m-linear multiplier theorem with a Hörmander-type smoothness condition.

- The first use of a bilinear multiplier theorem that employed a Hörmander-type smoothness condition was introduced by Tomita.
- Grafakos and Si extended this multiplier theorem to the m-linear case.
- Li and Sun proved the $A_{\vec{P}}$ -weighted m-linear multiplier theorem with a Hörmander-type smoothness condition.

Let $\sigma \in L^{\infty}(\mathbb{R}^{mn})$. The *m*-linear Fourier multiplier is defined as

$$T_{\sigma}(f_1,\ldots,f_m)(x)=\int_{\mathbb{R}^{mn}}e^{2\pi ix\cdot(\xi_1+\cdots+\xi_m)}\sigma(\xi_1,\ldots,\xi_m)\widehat{f_1}(\xi_1)\cdots\widehat{f_m}(\xi_m)\,d\vec{\xi}.$$

Let Λ be a Schwartz function on \mathbb{R}^{mn} satisfying

$$\begin{split} \operatorname{supp} \Lambda &\subseteq \left\{ (\xi_1, \dots, \xi_m) : \frac{1}{2} \leq |\xi_1| + \dots + |\xi_m| \leq 2 \right\} \\ &\sum_{k \in \mathbb{Z}} \Lambda(2^{-k} \xi_1, \dots, 2^{-k} \xi_m) = 1, \forall (\xi_1, \dots, \xi_m) \neq \vec{0}. \end{split}$$

Theorem (Li, Sun 2012)

Let $\vec{P} = (p_1, \dots, p_m)$ with $1 < p_1, \dots, p_m < \infty$ and $\frac{1}{p_1} + \dots + \frac{1}{p_m} = \frac{1}{p}$. Suppose that $mn/2 < t \le mn$, and $\sigma \in L^{\infty}(\mathbb{R}^{mn})$ with

$$\sup_{k\in\mathbb{Z}}\left\|J^t\sigma_k\right\|_{L^2(\mathbb{R}^{mn})}<\infty,$$

where

$$\sigma_k(\xi_1,\ldots,\xi_m)=\Lambda(\xi_1,\ldots,\xi_m)\sigma(2^{-k}\xi_1,\ldots,2^{-k}\xi_m).$$

Let $r_0 := mn/t < p_1, \ldots, p_m < \infty$ and $\vec{w} \in A_{\vec{P}/r_0}$. Then

$$\left\| \mathcal{T}_{\sigma}(\vec{f}) \right\|_{L^{p}(w)} \lesssim \prod_{i=1}^{N} \left\| f_{i} \right\|_{L^{p_{i}}(w_{i})}.$$

$$\begin{split} & \sum_{j>0} J^{s} \big((\Delta_{j} f_{1}) (S_{j-b} f_{2}) \cdots (S_{j-b} f_{m}) \big) (x) \\ & = \sum_{j>0} \int (1 + |\xi_{1} + \dots + \xi_{m}|^{2})^{\frac{s}{2}} \widehat{\Delta_{j}} \widehat{f_{1}} (\xi_{1}) \\ & \times \widehat{S_{j-b} f_{2}} (\xi_{1}) \cdots \widehat{S_{j-b} f_{2}} (\xi_{2}) e^{2\pi i (\xi_{1} + \dots + \xi_{m}) \cdot x} d\xi_{1} \cdots d\xi_{m} \\ & = \sum_{j>0} \int (1 + |\xi_{1} + \dots + \xi_{m}|^{2})^{\frac{s}{2}} (1 + |\xi_{1}|^{2})^{-\frac{s}{2}} \widehat{\Delta_{j}} \widehat{J^{s}} \widehat{f_{1}} (\xi_{1}) \\ & \times \widehat{S_{j-b} f_{2}} (\xi_{1}) \cdots \widehat{S_{j-b} f_{2}} (\xi_{2}) e^{2\pi i (\xi_{1} + \dots + \xi_{m}) \cdot x} d\xi_{1} \cdots d\xi_{m} \end{split}$$

In order to apply the multiplier theorem with t=mn to the off-diagonal term we need to show the following Hörmander smoothness condition

$$\sup_{k\in\mathbb{Z}}\sum_{|\alpha|\leq nm}\left\|\partial^{\alpha}\sigma_{k}\right\|_{L^{2}(\mathbb{R}^{nm})}<\infty$$

where

$$\sigma_{k}(\vec{\xi}) = \Lambda(\xi_{1}, \dots, \xi_{m})(1 + |2^{-k}\xi_{1} + \dots + 2^{-k}\xi_{m}|^{2})^{\frac{s}{2}}(1 + |2^{-k}\xi_{1}|^{2})^{-\frac{s}{2}} \times \sum_{j>-k} \widehat{\psi}(2^{-j}\xi_{1})\widehat{\phi}(2^{-j+a}\xi_{2}) \cdots \widehat{\phi}(2^{-j+a}\xi_{m}).$$

In order to apply the multiplier theorem with t=mn to the off-diagonal term we need to show the following Hörmander smoothness condition

$$\sup_{k\in\mathbb{Z}}\sum_{|\alpha|\leq nm}\left\|\partial^{\alpha}\sigma_{k}\right\|_{L^{2}(\mathbb{R}^{nm})}<\infty$$

where

$$\sigma_k(\vec{\xi}) = \Lambda(\xi_1, \dots, \xi_m) (1 + |2^{-k}\xi_1 + \dots + 2^{-k}\xi_m|^2)^{\frac{s}{2}} (1 + |2^{-k}\xi_1|^2)^{-\frac{s}{2}} \times \sum_{j>-k} \widehat{\psi}(2^{-j}\xi_1) \widehat{\phi}(2^{-j+a}\xi_2) \cdots \widehat{\phi}(2^{-j+a}\xi_m).$$

• This is advantageous since now we can use normal Leibniz rule.

$$\sup_{k\in\mathbb{Z}}\sum_{|\alpha|\leq nm}\left\|\partial^{\alpha}\sigma_{k}\right\|_{L^{2}(\mathbb{R}^{nm})}<\infty$$

where

$$\sigma_{k}(\vec{\xi}) = \Lambda(\xi_{1}, \dots, \xi_{m})(1 + |2^{-k}\xi_{1} + \dots + 2^{-k}\xi_{m}|^{2})^{\frac{s}{2}}(1 + |2^{-k}\xi_{1}|^{2})^{-\frac{s}{2}} \times \sum_{j>-k} \widehat{\psi}(2^{-j}\xi_{1})\widehat{\phi}(2^{-j+a}\xi_{2}) \cdots \widehat{\phi}(2^{-j+a}\xi_{m})$$

$$= \Lambda(\xi_{1}, \dots, \xi_{m})2^{-ks}(2^{2k} + |\xi_{1} + \dots + \xi_{m}|^{2})^{\frac{s}{2}}2^{ks}(2^{2k} + |\xi_{1}|^{2})^{-\frac{s}{2}} \times \sum_{j>-k} \widehat{\psi}(2^{-j}\xi_{1})\widehat{\phi}(2^{-j+a}\xi_{2}) \cdots \widehat{\phi}(2^{-j+a}\xi_{m}).$$

Outline

- Preliminaries
- 2 The 2-factor \Rightarrow 3-factor in full range of indices
- 3 Kato-Ponce For Multiple Weights (Main result)
- 4 Lemmas
- 5 Strategy of proof
- 6 Density

Theorem (Douglas, Grafakos 2023)

Let
$$m \in \mathbb{Z}^+$$
, $\frac{1}{m} , $1 < p_1, \dots, p_m \le \infty$ satisfy $\frac{1}{\rho} = \frac{1}{\rho_1} + \dots + \frac{1}{\rho_m}$. Let$

$$\mathbf{w}_t(x) = \begin{cases} |x|^{a_t} & |x| \le 1\\ |x|^{b_t} & |x| > 1 \end{cases}$$

with $a_t, b_t \in (-n, n(p_t-1))$, $b_t \ge 0$ and $w = w_1^{\frac{p}{p_1}} \cdots w_m^{\frac{p}{p_m}}$ with $t \in \{1, \dots, m\}$. If $s > \max\left(n(\frac{\tau_w}{p}-1), 0\right)$, then there exists a constant

 $C = C(n, m, w_1, \dots, w_m, s, p_1, \dots, p_m) < \infty$ such that for all $f_t \in L_s^{p_t}(w_t)$ with $t \in \{1, \dots, m\}$ we have

$$||J^{s}(f_{1}\cdots f_{m})||_{h^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots + ||f_{1}||_{L^{p_{1}}(w_{n})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}.$$

• Note $f_t \in L^{p_t}_{\mathbf{c}}(\mathbf{w}_t)$, rather than Schwartz functions.

• The weighted fractional Sobolev space $L_s^p(w)$ for 0 , <math>s > 0, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $J^s u$ is a function in $L^p(w)$.

- The weighted fractional Sobolev space $L_s^p(w)$ for 0 , <math>s > 0, and $w \in A_{\infty}$ is defined to be the space of tempered distributions, u, such that $J^s u$ is a function in $L^p(w)$.
- The weighted local Hardy space $h^p(w)$ for $0 , and <math>w \in A_\infty$ is defined to be the space of tempered distributions, u, such that $\|u\|_{h^p(w)} := \|\sup_{0 < t < 1} |t^{-n}\phi(t^{-1}\cdot) * u|\|_{L^p(w)} < \infty$.

- The weighted fractional Sobolev space $L_s^p(w)$ for 0 , <math>s > 0, and $w \in A_\infty$ is defined to be the space of tempered distributions, u, such that $J^s u$ is a function in $L^p(w)$.
- The weighted local Hardy space $h^p(w)$ for $0 , and <math>w \in A_\infty$ is defined to be the space of tempered distributions, u, such that $\|u\|_{h^p(w)} := \|\sup_{0 < t < 1} |t^{-n}\phi(t^{-1}\cdot) * u|\|_{L^p(w)} < \infty$.
- The need for $h^p(w)$ is because $J^s(f_1 \cdots f_m)$ for $f_j \in L^{p_j}_s(w_j)$ is only (potentially) defined as a tempered distribution.

- The weighted fractional Sobolev space $L_s^p(w)$ for 0 , <math>s > 0, and $w \in A_\infty$ is defined to be the space of tempered distributions, u, such that $J^s u$ is a function in $L^p(w)$.
- The weighted local Hardy space $h^p(w)$ for $0 , and <math>w \in A_\infty$ is defined to be the space of tempered distributions, u, such that $\|u\|_{h^p(w)} := \|\sup_{0 < t < 1} |t^{-n}\phi(t^{-1}\cdot) * u|\|_{L^p(w)} < \infty$.
- The need for $h^p(w)$ is because $J^s(f_1 \cdots f_m)$ for $f_j \in L^{p_j}_s(w_j)$ is only (potentially) defined as a tempered distribution.
- For $p \geq 1$ the previous theorem can be obtained via duality. For p < 1 the key ingredients include a weighted Sobolev embedding theorem, density of Schwartz functions, completeness of $h^p(w)$ and the fact $h^p(w)$ continuously embeds into \mathcal{S}' .

Thank You!

Proposition

Let $g \in L^q(w)$, $1 \le q < \infty$ where $w \in A_q$, then g is a well defined tempered distribution.

Proof. Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$, and $\theta = w^{-\frac{q'}{q}}$ which is the dual weight of $w \in A_q$. Observe,

$$\begin{split} |\langle g, \varphi \rangle| &\leq \int |g| |\varphi| w^{\frac{1}{q}} w^{-\frac{1}{q}} (1 + |x|)^{n+1} (1 + |x|)^{-(n+1)} \\ &\leq \|g\|_{L^{q}(w)} \|(1 + |x|)^{-(n+1)} \|_{L^{q'}(\theta)} \sup_{x \in} (1 + |x|)^{n+1} |\varphi(x)| \\ &\lesssim \|g\|_{L^{q}(w)} \|(1 + |x|)^{-(n+1)} \|_{L^{q'}(\theta)} \sum_{|\alpha| \leq n+1} \sup_{x \in} |x|^{\alpha} |\varphi(x)|. \end{split}$$

Let $Q_{\nu,m}\subset\mathbb{R}^n$ denote, for $\nu\in\mathbb{N}_0$ and $m\in\mathbb{Z}^n$, the *n*-dimensional cube with sides parallel to the coordinate axes, centered at $2^{-\nu}m$, and with side length $2^{-\nu}$. Furthermore, let $w(Q)=\int_Q w(x)\,dx$ for a weight w and a cube Q.

Theorem (Meyries, Veraar)

Let s>0, $1< p\leq q<\infty$, $w_0\in A_p$, and $w_1\in A_q$. Then $L^p_s(w_0)\hookrightarrow L^q(w_1)$ if and only if

$$\sup_{\nu\in\mathbb{N}_{\mathbf{0}},m\in\mathbb{Z}^n}2^{-\nu s}w_0(Q_{\nu,m})^{-\frac{1}{p}}w_1(Q_{\nu,m})^{\frac{1}{q}}<\infty.$$

Let $Q_{\nu,m}\subset\mathbb{R}^n$ denote, for $\nu\in\mathbb{N}_0$ and $m\in\mathbb{Z}^n$, the *n*-dimensional cube with sides parallel to the coordinate axes, centered at $2^{-\nu}m$, and with side length $2^{-\nu}$. Furthermore, let $w(Q)=\int_Q w(x)\,dx$ for a weight w and a cube Q.

Theorem (Meyries, Veraar)

Let s>0, $1< p\leq q<\infty$, $w_0\in A_p$, and $w_1\in A_q$. Then $L^p_s(w_0)\hookrightarrow L^q(w_1)$ if and only if

$$\sup_{\nu\in\mathbb{N}_0,m\in\mathbb{Z}^n}2^{-\nu s}w_0(Q_{\nu,m})^{-\frac{1}{p}}w_1(Q_{\nu,m})^{\frac{1}{q}}<\infty.$$

- This theorem can be extended to more general function spaces.
- In general two weight inequalities are challenging.
- For power weights the above theorem can be simplified.

Let

$$\mathbf{w}_{\beta,\alpha}(x) = \begin{cases} |x|^{\beta} & \text{if } |x| \le 1, \\ |x|^{\alpha} & \text{if } |x| > 1. \end{cases}$$

Proposition

Let $\alpha_0, \beta_0, \alpha_1, \beta_1 > -n$, 1 and <math>s > 0. Then for weights $w_0 = w_{\beta_0, \alpha_0}$, $w_1 = w_{\beta_1, \alpha_1}$ we obtain $L^p_s(w_0) \hookrightarrow L^q(w_1)$ if and only if

$$\begin{aligned} s - \frac{n + \beta_0}{p} &\geq -\frac{n + \beta_1}{q} \\ s - \frac{n}{p} &\geq -\frac{n}{q} \\ \frac{\alpha_0}{p} &\geq \frac{\alpha_1}{q}. \end{aligned}$$

Let w and w_j be power weights and suppose $\frac{\tau_w}{p}>1$. Let $\tau:=\tau_w+\epsilon>1$ such that $s>n(\tau/p-1)>0$. Notice this implies $\frac{\tau}{p}>1$. We will use the previous Proposition to show if $f_j\in L^{p_j}_s(w_j)$ then $f_1\cdots f_m\in L^{\tau}(w)$. Observe,

$$||f_1 \cdots f_m||_{L^{\tau}(w)} \lesssim \left(\int \left(|f_1|^{\frac{\tau}{p}} \cdots |f_m|^{\frac{\tau}{p}} w_1^{\frac{1}{p_1}} \cdots w_m^{\frac{1}{p_2}} \right)^p \right)^{\frac{1}{\tau}}$$

$$\leq \left(\int |f_1|^{\frac{\tau}{p}p_1} w_1 \right)^{\frac{1}{p_1} \frac{p}{\tau}} \cdots \left(\int |f_m|^{\frac{\tau}{p}p_m} w_m \right)^{\frac{1}{p_m} \frac{p}{\tau}}.$$

The terms on the RHS of the above inequality are finite by the Sobolev embedding theorem i.e.

$$\|f_j\|_{L^{\frac{\tau}{p}\rho_j}(\mathbf{w}_j)} \lesssim \|J^{\mathbf{s}}f_j\|_{L^{\rho_j}(\mathbf{w}_j)}.$$

Hence $J^{s}(f_1 \cdots f_m)$ is well defined.

Let
$$q_j \coloneqq \frac{\tau p_j}{p}$$
, then $\frac{1}{q_1} + \cdots \frac{1}{q_m} = \frac{1}{\tau}$.

• Pick Schwartz functions f_i^j , for $i \in \{1, ..., m\}$ converging to f_i respectively in $L_s^{p_i}(w_i)$ as $j \to \infty$.

Let
$$q_j \coloneqq rac{ au \, p_j}{p}$$
, then $rac{1}{q_1} + \cdots rac{1}{q_m} = rac{1}{ au}$.

- Pick Schwartz functions f_i^j , for $i \in \{1, ..., m\}$ converging to f_i respectively in $L_s^{p_i}(w_i)$ as $j \to \infty$.
- It can be shown that $J^{s}(f_{1}^{j},...,f_{m}^{j})$ converges to $J^{s}(f_{1},...,f_{m})$ in S'.

Let
$$q_j \coloneqq rac{ au \, p_j}{p}$$
, then $rac{1}{q_1} + \cdots rac{1}{q_m} = rac{1}{ au}$.

- Pick Schwartz functions f_i^J , for $i \in \{1, ..., m\}$ converging to f_i respectively in $L_s^{p_i}(w_i)$ as $j \to \infty$.
- It can be shown that $J^s(f_1^j, \ldots, f_m^j)$ converges to $J^s(f_1, \ldots, f_m)$ in S'.
- Also, by the KP inequality for Schwartz functions the sequence $J^s(f_1^j, \ldots, f_m^j)$ is Cauchy in $h^p(w)$, and thus it converges to G in $h^p(w)$, hence it converges to G in S'.

Let
$$q_j \coloneqq \frac{\tau \rho_j}{\rho}$$
, then $\frac{1}{q_1} + \cdots \frac{1}{q_m} = \frac{1}{\tau}$.

- Pick Schwartz functions f_i^j , for $i \in \{1, ..., m\}$ converging to f_i respectively in $L_s^{p_i}(w_i)$ as $j \to \infty$.
- It can be shown that $J^s(f_1^j, \ldots, f_m^j)$ converges to $J^s(f_1, \ldots, f_m)$ in S'.
- Also, by the KP inequality for Schwartz functions the sequence $J^{s}(f_{1}^{j},...,f_{m}^{j})$ is Cauchy in $h^{p}(w)$, and thus it converges to G in $h^{p}(w)$, hence it converges to G in S'.
- By the uniqueness of the limit in S', we have that $G = J^{s}(f_1, \ldots, f_m)$.

Let
$$q_j \coloneqq rac{ au \, p_j}{p}$$
, then $rac{1}{q_1} + \cdots rac{1}{q_m} = rac{1}{ au}$.

- Pick Schwartz functions f_i^j , for $i \in \{1, ..., m\}$ converging to f_i respectively in $L_s^{p_i}(w_i)$ as $j \to \infty$.
- It can be shown that $J^{s}(f_{1}^{j},...,f_{m}^{j})$ converges to $J^{s}(f_{1},...,f_{m})$ in \mathcal{S}' .
- Also, by the KP inequality for Schwartz functions the sequence $J^{s}(f_{1}^{j},...,f_{m}^{j})$ is Cauchy in $h^{p}(w)$, and thus it converges to G in $h^{p}(w)$, hence it converges to G in S'.
- By the uniqueness of the limit in S', we have that $G = J^{s}(f_{1}, \ldots, f_{m})$.

$$||J^{s}(f_{1}\cdots f_{m})||_{L^{p}(w)} \lesssim ||J^{s}f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||f_{m}||_{L^{p_{m}}(w_{m})} + \cdots \cdots + ||f_{1}||_{L^{p_{1}}(w_{1})}||f_{2}||_{L^{p_{2}}(w_{2})}\cdots ||J^{s}f_{m}||_{L^{p_{m}}(w_{m})}$$

Thank You!