Sobolev embedding and quality of its non-compactness

Jan Lang, OSU

10/26/2023, AOTS, Columbus, OH

Function spaces seminar

Introduction

$T: X \rightarrow Y$ is bounded linear map between Banach spaces X and Y and B_{X} is unit ball in X.
Entropy numbers:
$e_{k}(T):=\inf \left\{\varepsilon>0: T\left(B_{X}\right)\right.$ can be covered by 2^{k-1} balls in Y with radius $\left.\varepsilon\right\}$
5-Numbers and in-Widths:
$a_{n}(T):=\inf _{P_{n}} \sup _{y \in T\left(B_{x}\right)}\left\|y-P_{n}(y)\right\|_{Y}$ (Approx. numbers) where $P_{n} \in L(X, Y)$ with rank $<\mathrm{n}$.
$d_{n}(T):=\inf _{Y_{n}} \sup _{z \in T\left(B_{X}\right)} \inf _{y \in Y_{n}}\|y-z\|_{Y}$ (Kolmogorov numbers) where $Y_{n} \subset Y$ is n-dimensional subspace.
$c_{n}(T):=\inf _{L_{n}} \sup _{y \in T}\left(B_{x}\right) \cap L_{N}\|y\|_{Y}$ (Gelfand numbers)
where L_{n} are closed subspaces of Y with codimension at most n.
$b_{n}(T):=\sup _{Y_{n}} \sup \left\{\lambda \geq 0: Y_{n} \cap \lambda B_{Y} \subset T\left(B_{Y}\right)\right\}$ (Bernstain numbers)
where γ_{n} is a subset of Y with dimension n.
$i_{n}(T):=\sup \left\{\|A\|^{-1}\|B\|^{-1}\right\}$ (isomorphism numbers)
where the sup. is taken over all Banach spaces G with $\operatorname{dim}(G) \geq n$ and
maps $A \in L(Y, G)$ and $B \in L(G, X)$ such that ATB is identity on G.

Introduction

$T: X \rightarrow Y$ is bounded linear map between Banach spaces X and Y and B_{X} is unit ball in X.

Entropy numbers:

$e_{k}(T):=\inf \left\{\varepsilon>0: T\left(B_{X}\right)\right.$ can be covered by 2^{k-1} balls in Y with radius $\left.\varepsilon\right\}$
s-Numbers and n-Widths:
$a_{n}(T):=\inf _{P_{n}} \sup _{y \in T\left(B_{X}\right)}\left\|y-P_{n}(y)\right\|_{Y}$ (Approx. numbers) where $P_{n} \in L(X, Y)$ with rank $<n$.
$d_{n}(T):=\inf _{y_{n}} \sup _{z \in T\left(B_{X}\right)}$ infy $\mathrm{f}_{y}\|y-z\|_{y}$ ('Koimogorov numbers) where $Y_{n} \subset Y$ is n-dimensional subspace.
$c_{n}(T):=\inf _{L_{n}} \sup _{y \in T\left(B_{X}\right) \cap L_{N}}\|y\|_{Y}$ (Gelfand numbers)
where L_{n} are closed subspaces of Y with codimension at most n.
$b_{n}(T):=\sup _{\gamma_{n}} \sup \left\{\lambda \geq 0: Y_{n} \cap \lambda B_{\gamma} \subset T\left(B_{Y}\right)\right\}$ (Bernstain numbers)
where Y_{n} is a subset of Y with dimension n.
$i_{n}(T):=\sup \left\{\|A\|^{-1}\|B\|^{-1}\right\}$ (isomorphism numbers)
where the sup. is taken over all Banach spaces G with $\operatorname{dim}(G) \geq n$ and maps $A \in L(Y, G)$ and $B \in L(G, X)$ such that ATB is identity on G.

Introduction

$T: X \rightarrow Y$ is bounded linear map between Banach spaces X and Y and B_{X} is unit ball in X.
Entropy numbers:
$e_{k}(T):=\inf \left\{\varepsilon>0: T\left(B_{X}\right)\right.$ can be covered by 2^{k-1} balls in Y with radius $\left.\varepsilon\right\}$
\mathbf{s}-Numbers and \mathbf{n}-Widths:
$a_{n}(T):=\inf _{P_{n}} \sup _{y \in T\left(B_{X}\right)}\left\|y-P_{n}(y)\right\|_{Y}$ (Approx. numbers) where $P_{n} \in L(X, Y)$ with rank $<\mathrm{n}$.
$d_{n}(T):=\inf _{Y_{n}} \sup _{z \in T\left(B_{X}\right)} \inf _{y \in Y_{n}}\|y-z\|_{Y}$ (Kolmogorov numbers)
where $Y_{n} \subset Y$ is n-dimensional subspace.
$c_{n}(T):=\inf _{L_{n}} \sup _{y \in T\left(B_{X}\right) \cap L_{N}}\|y\|_{Y}$ (Gelfand numbers)
where L_{n} are closed subspaces of Y with codimension at most n.
$b_{n}(T):=\sup _{Y_{n}} \sup \left\{\lambda \geq 0: Y_{n} \cap \lambda B_{Y} \subset T\left(B_{Y}\right)\right\}$ (Bernstain numbers) where Y_{n} is a subset of Y with dimension n.
$i_{n}(T):=\sup \left\{\|A\|^{-1}\|B\|^{-1}\right\}$ (isomorphism numbers)
where the sup. is taken over all Banach spaces G with $\operatorname{dim}(G) \geq n$ and maps $A \in L(Y, G)$ and $B \in L(G, X)$ such that $A T B$ is identity on G.

Introduction

We have much more s-Numbers and n-Widths like: $m_{n}(T)$ - Mityagin numbers, $\quad n_{n}(T)$ - Weyl numbers $y_{n}(T)$ - Chang numbers, $\quad h_{n}(T)$ - Hilbert numbers, \ldots

For every s-number we have: $s_{1}=\|T\| \geq s_{2} \geq \ldots \geq 0$ + other properties

Above mentioned s-numbers are related:

There are many duality relations like: $a_{n}\left(T^{\prime}\right) \leq a_{n}(T) \leq 5 a_{n}\left(T^{\prime}\right)$, $c_{n}(T)=d_{n}\left(T^{\prime}\right), m_{n}(T)=b_{n}\left(T^{\prime}\right)$,
T - compact iff $\lim _{n \rightarrow \infty} e_{n}(T)=0$ iff $\lim _{n \rightarrow \infty} d_{n}(T)=0$. Measure of non-compactness: $\beta(T)=\lim e_{n}(T)$, plainly $0 \leq \beta(T) \leq\|T\|$ We say that T is maximally noncompact if $\|T\|=\beta(T)$.

Introduction

We have much more s-Numbers and n-Widths like: $m_{n}(T)$ - Mityagin numbers, $\quad n_{n}(T)$ - Weyl numbers $y_{n}(T)$ - Chang numbers, $\quad h_{n}(T)$ - Hilbert numbers, \ldots

For every s-number we have: $s_{1}=\|T\| \geq s_{2} \geq \ldots \geq 0+$ other properties

There are many duality relations like: $a_{n}\left(T^{\prime}\right) \leq a_{n}(T) \leq 5 a_{n}\left(T^{\prime}\right)$, $c_{n}(T)=d_{n}\left(T^{\prime}\right), m_{n}(T)=b_{n}\left(T^{\prime}\right)$,
T - compact iff $\lim m_{n \rightarrow \infty} e_{n}(T)=0$ iff $\lim _{n \rightarrow \infty} d_{n}(T)=0$. Measure of non-compactness: $\beta(T)=\lim e_{n}(T)$, plainly $0 \leq \beta(T) \leq\|T\|$ We say that T is maximally noncompact if $\|T\|=\beta(T)$.

Introduction

We have much more s-Numbers and n-Widths like: $m_{n}(T)$ - Mityagin numbers, $\quad n_{n}(T)$ - Weyl numbers $y_{n}(T)$ - Chang numbers, $\quad h_{n}(T)$ - Hilbert numbers, \ldots

For every s-number we have: $s_{1}=\|T\| \geq s_{2} \geq \ldots \geq 0+$ other properties

Above mentioned s-numbers are related:

$$
\begin{aligned}
& a_{n}(T) \geq \max \left(c_{n}(T), d_{n}(T)\right) \geq \min \left(c_{n}(T), d_{n}(T)\right) \\
& \geq \max \left(b_{n}(T) m_{n}(T)\right) \geq \min \left(b_{n}(T), m_{n}(T)\right) \geq i_{n}(T) \geq h_{n}(T)
\end{aligned}
$$

There are many duality relations like: $a_{n}\left(T^{\prime}\right) \leq a_{n}(T) \leq 5 a_{n}\left(T^{\prime}\right)$, $c_{n}(T)=d_{n}\left(T^{\prime}\right), m_{n}(T)=b_{n}\left(T^{\prime}\right), \ldots$

Introduction

We have much more s-Numbers and n-Widths like: $m_{n}(T)$ - Mityagin numbers, $\quad n_{n}(T)$ - Weyl numbers $y_{n}(T)$ - Chang numbers, $\quad h_{n}(T)$ - Hilbert numbers, \ldots

For every s-number we have: $s_{1}=\|T\| \geq s_{2} \geq \ldots \geq 0+$ other properties

Above mentioned s-numbers are related:
$a_{n}(T) \geq \max \left(c_{n}(T), d_{n}(T)\right) \geq \min \left(c_{n}(T), d_{n}(T)\right)$
$\geq \max \left(b_{n}(T) m_{n}(T)\right) \geq \min \left(b_{n}(T), m_{n}(T)\right) \geq i_{n}(T) \geq h_{n}(T)$
There are many duality relations like: $a_{n}\left(T^{\prime}\right) \leq a_{n}(T) \leq 5 a_{n}\left(T^{\prime}\right)$, $c_{n}(T)=d_{n}\left(T^{\prime}\right), m_{n}(T)=b_{n}\left(T^{\prime}\right), \ldots$
T - compact iff $\lim _{n \rightarrow \infty} e_{n}(T)=0$ iff $\lim _{n \rightarrow \infty} d_{n}(T)=0$.
Measure of non-compactness: $\beta(T)=\lim e_{n}(T)$,

$$
\text { plainly } 0 \leq \beta(T) \leq\|T\|
$$

We say that T is maximally noncompact if ||T

Introduction

We have much more s-Numbers and n-Widths like: $m_{n}(T)$ - Mityagin numbers, $\quad n_{n}(T)$ - Weyl numbers $y_{n}(T)$ - Chang numbers, $\quad h_{n}(T)$ - Hilbert numbers, \ldots

For every s-number we have: $s_{1}=\|T\| \geq s_{2} \geq \ldots \geq 0+$ other properties

Above mentioned s-numbers are related:
$a_{n}(T) \geq \max \left(c_{n}(T), d_{n}(T)\right) \geq \min \left(c_{n}(T), d_{n}(T)\right)$
$\geq \max \left(b_{n}(T) m_{n}(T)\right) \geq \min \left(b_{n}(T), m_{n}(T)\right) \geq i_{n}(T) \geq h_{n}(T)$
There are many duality relations like: $a_{n}\left(T^{\prime}\right) \leq a_{n}(T) \leq 5 a_{n}\left(T^{\prime}\right)$, $c_{n}(T)=d_{n}\left(T^{\prime}\right), m_{n}(T)=b_{n}\left(T^{\prime}\right), \ldots$
T - compact iff $\lim _{n \rightarrow \infty} e_{n}(T)=0$ iff $\lim _{n \rightarrow \infty} d_{n}(T)=0$.
Measure of non-compactness: $\beta(T)=\lim e_{n}(T)$,
plainly $0 \leq \beta(T) \leq\|T\|$
We say that T is maximally noncompact if $\|T\|=\beta(T)$.

Strictly singular maps

Let X, Y be Banach spaces with norms $\|\cdot\|_{X},\|\cdot\|_{Y}$ respectively. The map $T: X \rightarrow Y$ is said to be strictly singular if there is no infinite dimensional closed subspace Z of X such that the restriction $\left.T\right|_{Z}$ of T to Z is an isomorphism of Z onto $T(Z)$.
$\inf \left\{\left\|T_{X}\right\|_{Y}:\|x\|_{X}=1, x \in Z\right\}=0$.

If T has the property that given any $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if E is a subspace of X with $\operatorname{dim} E \geq N(\varepsilon)$, then there exists $x \in E$ with $\|x\|_{X}=1$, such that $\left\|T_{X}\right\|_{Y} \leq \varepsilon$, then T is said to be finitely strictly singular
This second definition can be expressed in terms of the Bernstein numbers $b_{k}(T)$ of T. We recall that these are given, for each $k \in \mathbb{N}$, by

Then T is finitely strictly singular if and only if
$h_{k}(T) \rightarrow 0$ as $k \rightarrow \infty$

Strictly singular maps

Let X, Y be Banach spaces with norms $\|\cdot\|_{X},\|\cdot\|_{Y}$ respectively. The map $T: X \rightarrow Y$ is said to be strictly singular if there is no infinite dimensional closed subspace Z of X such that the restriction $\left.T\right|_{Z}$ of T to Z is an isomorphism of Z onto $T(Z)$.
Equivalently, for each infinite-dimensional closed subspace Z of X,

$$
\inf \left\{\left\|T_{X}\right\|_{Y}:\|x\|_{X}=1, x \in Z\right\}=0
$$

Then T is finitely strictly singular if and only if

Strictly singular maps

Let X, Y be Banach spaces with norms $\|\cdot\|_{X},\|\cdot\|_{Y}$ respectively. The map $T: X \rightarrow Y$ is said to be strictly singular if there is no infinite dimensional closed subspace Z of X such that the restriction $\left.T\right|_{Z}$ of T to Z is an isomorphism of Z onto $T(Z)$.
Equivalently, for each infinite-dimensional closed subspace Z of X,

$$
\inf \left\{\left\|T_{X}\right\|_{Y}:\|x\|_{X}=1, x \in Z\right\}=0
$$

If T has the property that given any $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if E is a subspace of X with $\operatorname{dim} E \geq N(\varepsilon)$, then there exists $x \in E$, with $\|x\|_{X}=1$, such that $\left\|T_{x}\right\|_{Y} \leq \varepsilon$, then T is said to be finitely strictly singular.
This second definition can be expressed in terms of the Bernstein
numbers $b_{k}(T)$ of T. We recall that these are given, for each $k \in \mathbb{N}$, by

Then T is finitely strictly singular if and only if

Strictly singular maps

Let X, Y be Banach spaces with norms $\|\cdot\|_{X},\|\cdot\|_{Y}$ respectively. The map $T: X \rightarrow Y$ is said to be strictly singular if there is no infinite dimensional closed subspace Z of X such that the restriction $\left.T\right|_{Z}$ of T to Z is an isomorphism of Z onto $T(Z)$.
Equivalently, for each infinite-dimensional closed subspace Z of X,

$$
\inf \left\{\left\|T_{X}\right\|_{Y}:\|x\|_{X}=1, x \in Z\right\}=0
$$

If T has the property that given any $\varepsilon>0$ there exists $N(\varepsilon) \in \mathbb{N}$ such that if E is a subspace of X with $\operatorname{dim} E \geq N(\varepsilon)$, then there exists $x \in E$, with $\|x\|_{X}=1$, such that $\left\|T_{x}\right\|_{Y} \leq \varepsilon$, then T is said to be finitely strictly singular.
This second definition can be expressed in terms of the Bernstein numbers $b_{k}(T)$ of T. We recall that these are given, for each $k \in \mathbb{N}$, by

$$
b_{k}(T)=\sup _{E \subset X, \operatorname{dim} E=k \in E,\|\times\|_{X}=1} \inf _{X X} \| T
$$

Then T is finitely strictly singular if and only if

$$
b_{k}(T) \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Strictly singular maps

The relations between these notions and that of compactness of T are illustrated by the following diagram:
T compact $\Longrightarrow T$ finitely strictly singular $\Longrightarrow T$ strictly singular and each reverse implication is false in general.

Sobolev Embedding

If T is an embedding map between function spaces on an open set $\Omega \subset \mathbf{R}^{n}$, possible reasons for noncompactness include:
(i) Ω unbounded
(ii) if Ω bounded then due bad boundary $\partial \Omega$, or
(iii) due particular values of the parameters involved in functions spaces (inner structure of spaces)

Sobolev Embedding: We consider: id : $W_{0}^{k, p}(\Omega) \rightarrow L^{q}(\Omega)$ with $k \in N$, $p \in[1, \infty), k p<n, 1 \leq q<n p /(n-k p)$

Sobolev Embedding

If T is an embedding map between function spaces on an open set $\Omega \subset \mathbf{R}^{n}$, possible reasons for noncompactness include:
(i) Ω unbounded
(ii) if Ω bounded then due bad boundary $\partial \Omega$,or
(iii) due particular values of the parameters involved in functions spaces (inner structure of spaces)

Sobolev Embedding: We consider: id : $W_{0}^{k, p}(\Omega) \rightarrow L^{q}(\Omega)$ with $k \in N$, $p \in[1, \infty), k p<n, 1 \leq q<n p /(n-k p)$,

Sobolev Embedding

If T is an embedding map between function spaces on an open set $\Omega \subset \mathbf{R}^{n}$, possible reasons for noncompactness include:
(i) Ω unbounded
(ii) if Ω bounded then due bad boundary $\partial \Omega$,

```
(iii) due particular values of the parameters involved in functions spaces
(inner structure of spaces)
```

Sobolev Embedding: We consider: id : $W_{0}^{k, p}(\Omega) \rightarrow L^{q}(\Omega)$ with $k \in \mathbf{N}$, $p \in[1, \infty), k p<n, 1 \leq q<n p /(n-k p)$

Sobolev Embedding

If T is an embedding map between function spaces on an open set
$\Omega \subset \mathbf{R}^{n}$, possible reasons for noncompactness include:
(i) Ω unbounded
(ii) if Ω bounded then due bad boundary $\partial \Omega$,or
(iii) due particular values of the parameters involved in functions spaces (inner structure of spaces)

Sobolev Embedding: We consider: id : $W_{0}^{k, p}(\Omega) \rightarrow L^{q}(\Omega)$ with $k \in N$, $p \in[1, \infty), k p<n, 1 \leq q<n p /(n-k p)$

Sobolev Embedding

If T is an embedding map between function spaces on an open set
$\Omega \subset \mathbf{R}^{n}$, possible reasons for noncompactness include:
(i) Ω unbounded
(ii) if Ω bounded then due bad boundary $\partial \Omega$,or
(iii) due particular values of the parameters involved in functions spaces (inner structure of spaces)

Sobolev Embedding: We consider: id : $W_{0}^{k, p}(\Omega) \rightarrow L^{q}(\Omega)$ with $k \in \mathbf{N}$, $p \in[1, \infty), k p<n, 1 \leq q<n p /(n-k p)$.

Sobolev Embedding - case (i)

Question: Let $n=2, \Omega=\mathbf{R} \times(0, \pi)$ and $I: W_{0}^{1, p}(\Omega) \rightarrow L^{p}(\Omega)$. We can see that I is noncompact and that $\beta(I)>0$. What is the exact value of $\beta(I)$?

Answer:(Edmunds, Mihula, L, 21) Let $n \geq 2, k \in\{1, \ldots, n-1\}$, norm on $W_{0}^{1, p}(D)$ is defined by:

Consider $I_{p}: W_{0}^{1, p}(D) \rightarrow L^{P}(D)$. Then

Note: For $p=2, n=2, b_{1}-a_{1}=\pi$ we have $\beta(I)=\|I\|=1 / \sqrt{2}$.

Sobolev Embedding - case (i)

Question: Let $n=2, \Omega=\mathbf{R} \times(0, \pi)$ and $I: W_{0}^{1, p}(\Omega) \rightarrow L^{p}(\Omega)$. We can see that I is noncompact and that $\beta(I)>0$. What is the exact value of $\beta(I)$?

Answer:(Edmunds, Mihula, L, 21) Let $n \geq 2, k \in\{1, \ldots, n-1\}$, $1<p<\infty$ and $-\infty<a_{i}<b_{i}<\infty$. Set $D=\mathbf{R}^{k} \times \Pi_{i=1}^{n-k}\left(a_{i}, b_{i}\right)$; the norm on $W_{0}^{1, p}(D)$ is defined by:

$$
\left(\|u\|_{p, D}^{p}+\left\||\nabla u|_{\mid p}\right\|_{p, D}^{p}\right)^{1 / p} .
$$

Consider $I_{p}: W_{0}^{1, p}(D) \rightarrow L^{p}(D)$. Then

$$
\beta\left(I_{p}\right)=\left\|I_{p}\right\|=\left(1+(p-1)\left(\frac{2 \pi}{p \sin (\pi / n)}\right)^{p} \sum_{i=1}^{n-k}\left(b_{i}-a_{i}\right)^{-p}\right)^{-1 / p}
$$

Note: For $p=2, n=2, b_{1}-a_{1}=\pi$ we have $\beta(I)=\|I\|=1 / \sqrt{2}$.

Sobolev Embedding - case (i)

Question: Let $n=2, \Omega=\mathbf{R} \times(0, \pi)$ and $I: W_{0}^{1, p}(\Omega) \rightarrow L^{p}(\Omega)$. We can see that I is noncompact and that $\beta(I)>0$. What is the exact value of $\beta(I)$?

Answer:(Edmunds, Mihula, L, 21) Let $n \geq 2, k \in\{1, \ldots, n-1\}$, $1<p<\infty$ and $-\infty<a_{i}<b_{i}<\infty$. Set $D=\mathbf{R}^{k} \times \Pi_{i=1}^{n-k}\left(a_{i}, b_{i}\right)$; the norm on $W_{0}^{1, p}(D)$ is defined by:

$$
\left(\|u\|_{p, D}^{p}+\left\||\nabla u|_{\mid p}\right\|_{p, D}^{p}\right)^{1 / p} .
$$

Consider $I_{p}: W_{0}^{1, p}(D) \rightarrow L^{p}(D)$. Then

$$
\beta\left(I_{p}\right)=\left\|I_{p}\right\|=\left(1+(p-1)\left(\frac{2 \pi}{p \sin (\pi / n)}\right)^{p} \sum_{i=1}^{n-k}\left(b_{i}-a_{i}\right)^{-p}\right)^{-1 / p}
$$

Note: For $p=2, n=2, b_{1}-a_{1}=\pi$ we have $\beta(I)=\|I\|=1 / \sqrt{2}$.

Sobolev Embedding - case (i)

By product: Set $R=\Pi_{i=1}^{n}\left(a_{i}, b_{i}\right)$. Note that the extreme function for Rayleigh quotient

$$
\inf _{0 \neq u \in W_{0}^{1, p}(R)} \frac{\left\||\operatorname{grad} u|_{\rho \rho}\right\|_{p, R}^{p}}{\|u\|_{p, R}^{p}}
$$

is the first eigenvalue of the pseudo- p-Laplacian operator with Dirichlet conditions, i.e.: $\tilde{\Delta}_{p} u=\tilde{\lambda}_{p}|u|^{p-2} u$, with $u=0$ on ∂R, where

$$
\tilde{\Delta}_{p} u=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right) .
$$

Sobolev Embedding - case (i)

By product: Set $R=\Pi_{i=1}^{n}\left(a_{i}, b_{i}\right)$. Note that the extreme function for Rayleigh quotient

$$
\inf _{0 \neq u \in W_{0}^{1, p}(R)} \frac{\left\||\operatorname{grad} u|_{\rho \|}\right\|_{p, R}^{p}}{\|u\|_{p, R}^{p}}
$$

is the first eigenvalue of the pseudo- p-Laplacian operator with Dirichlet conditions, i.e.: $\tilde{\Delta}_{p} u=\tilde{\lambda}_{p}|u|^{p-2} u$, with $u=0$ on ∂R, where

$$
\tilde{\Delta}_{p} u=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right) .
$$

And the first eigenfunction is $u(x)=\Pi_{i=1}^{n} \sin _{p}\left(\frac{\pi_{\rho}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right), x \in R$. Also this function is the extreme function for Sobolev embedding: $I: W_{0}^{1, p}(R) \rightarrow L^{p}(R)$.
More-over functions of the form $\Pi_{i=1}^{n} \sin _{p}\left(\frac{\pi_{p} k_{i}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right), x \in R$, and $k_{i} \in \mathbf{N}$ are eigenfunctions of the above pseudo-p-Laplacian.

Sobolev Embedding - case (i)

By product: Set $R=\prod_{i=1}^{n}\left(a_{i}, b_{i}\right)$. Note that the extreme function for Rayleigh quotient

$$
\inf _{0 \neq u \in W_{0}^{1, p}(R)} \frac{\left\||\operatorname{grad} u|_{\rho \|}\right\|_{p, R}^{p}}{\|u\|_{p, R}^{p}}
$$

is the first eigenvalue of the pseudo- p-Laplacian operator with Dirichlet conditions, i.e.: $\tilde{\Delta}_{p} u=\tilde{\lambda}_{p}|u|^{p-2} u$, with $u=0$ on ∂R, where

$$
\tilde{\Delta}_{p} u=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right) .
$$

And the first eigenfunction is $u(x)=\Pi_{i=1}^{n} \sin _{p}\left(\frac{\pi_{\rho}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right), x \in R$. Also this function is the extreme function for Sobolev embedding: $I: W_{0}^{1, p}(R) \rightarrow L^{p}(R)$.
More-over functions of the form $\Pi_{i=1}^{n} \sin _{p}\left(\frac{\pi_{p} k_{i}\left(x_{i}-a_{i}\right)}{b_{i}-a_{i}}\right), x \in R$, and $k_{i} \in \mathbf{N}$ are eigenfunctions of the above pseudo-p-Laplacian.
(Question: Are all eigenfunctions of that form?)

Sobolev Embedding - case (ii)

When $\Omega \subset \mathbb{R}^{n}$ is bounded and has a "good" boundary then, obviously, $E: W_{p}^{1}(\Omega) \rightarrow L_{p}(\Omega)$ is compact.

Theorem (Edmunds , L. 22)

Let $n \geq 2$. There is a bounded open set $\Omega \subset \mathbb{R}^{n}$ such that $E: W_{p}^{1}(\Omega)$ $\rightarrow L_{p}(\Omega)$ is not strictly singular.

Sobolev Embedding - case (ii)

When $\Omega \subset \mathbb{R}^{n}$ is bounded and has a "good" boundary then, obviously, $E: W_{p}^{1}(\Omega) \rightarrow L_{p}(\Omega)$ is compact.

Theorem (Edmunds , L. 22)

Let $n \geq 2$. There is a bounded open set $\Omega \subset \mathbb{R}^{n}$ such that $E: W_{p}^{1}(\Omega)$ $\rightarrow L_{p}(\Omega)$ is not strictly singular.

Sobolev Embedding - case (ii)

Figure: The domain Ω_{1}
Set $a_{i}=\sum_{k=1}^{i} k^{-p}(i \in \mathbb{N}), a_{0}=0$, and $\Omega_{b, m}=\Omega_{b} \cap\left([0,2 b] \times\left[0, a_{m}\right]\right)$ Now we construct a continuous function $f_{b, m}: \Omega_{b, m} \rightarrow \mathbb{R}$ that has the shape of an increasing staircase with slope $1 / b$ on C_{i} and landings on A_{i} and B_{i} with zero value at B_{0}. More precisely we can write that:

$$
f_{b, m}(x)=\left\{\begin{array}{cc}
0, & x \in B_{0} \cup C_{1} \cup A_{1}, \\
2 i-2, & x \in A_{i},(i \in \mathbb{N}) \\
2 i-1, & x \in B_{i}(i \in \mathbb{N})
\end{array}\right.
$$

Sobolev Embedding - case (ii)

A routine calculations show that

$$
\begin{gathered}
\left\|\nabla f_{b, m}\right\|_{p, \Omega_{b, m}}=\left(\sum_{i=1}^{m}\left|C_{i}\right|\right)^{1 / p} b^{-1}=b^{-(p-1) / p}\left(a_{m}\right)^{1 / p}, \\
\left\|f_{b, m}\right\|_{p, \Omega_{b, m}} \approx\left(\sum_{i=1}^{[m / 2]}\left\{(2 i-1)^{-p}+(2 i)^{-p}\right\} i^{p}\right)^{1 / p} b^{1 / p} \approx\left(\sum_{i=1}^{[m / 2]} 1\right)^{1 / p} b^{1 / p} \\
=[m / 2]^{1 / p} b^{1 / p}, \quad \text { where }[.] \text { is the greatest integer function. }
\end{gathered}
$$

Thus

$$
\sup _{g \in W_{p}^{\sim}\left(\Omega_{b, m}\right)} \frac{\|g\|_{p, \Omega_{b}, m}}{\|\nabla g\|_{p, \Omega_{b}, m}} \approx\left(\frac{[m / 2] b}{a_{m}}\right)^{1 / p} .
$$

Sobolev Embedding - case (ii)

Now we set

$$
\Omega:=((0,1) \times(-1,0)) \cup\left(\cup_{i=1}^{\infty}\left(\left(\Omega_{b_{i}, m_{i}} \cup\left(0,2 b_{i}\right) \times\{0\}\right)+\left(x_{i}, 0\right)\right)\right)
$$

To justify this, consider the sequence $\left\{f_{i}\right\}$ of functions defined by $f_{i}(x)=f_{b_{i}, m_{i}}\left(x-\tilde{x}_{i}\right)$, where $\tilde{x}_{i}=\left(x_{i}, 0\right)$. Then $\operatorname{supp} f_{i} \subset \overline{\Omega_{b_{i}, m_{i}}+\tilde{x}_{i}}$ and

$$
\frac{\left\|f_{i}\right\|_{p, \Omega}}{\left\|\nabla f_{i}\right\|_{p, \Omega}} \gtrsim \gamma
$$

The claim follows.

Sobolev Embedding - case (iii)

Let $k, n \in \mathbf{N}, k<n, \Omega$ open subset in $\mathbf{R}^{n}, p \in[1, n / k)$ and $p^{*}=\frac{n p}{n-k p}$ then one has

$$
I_{1}: V_{0}^{k, p} \rightarrow L^{p^{*}}(\Omega)
$$

where $\|u\|_{V_{0}^{k, p}}=\sum_{|\beta|=k}\left\|D^{\beta} u\right\|_{p}$.
We know that I_{1} is maximally non-compact (Hencl 03).
Note that $L P^{P^{*}}$ is not the optimal target space which is Lorentz space $L^{p^{*}, p}$. Consider now:

Then for $p * \leq q<\infty$ we have maximally non-compact embedding (Bouchala, 20). Question what about the target space L^{p}

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega)
$$

Sobolev Embedding - case (iii)

Let $k, n \in \mathbf{N}, k<n, \Omega$ open subset in $\mathbf{R}^{n}, p \in[1, n / k)$ and $p^{*}=\frac{n p}{n-k p}$ then one has

$$
I_{1}: V_{0}^{k, p} \rightarrow L^{p^{*}}(\Omega)
$$

where $\|u\|_{V_{0}^{k, p}}=\sum_{|\beta|=k}\left\|D^{\beta} u\right\|_{p}$.
We know that I_{1} is maximally non-compact (Hencl 03).
Note that $L^{P^{*}}$ is not the optimal target space which is Lorentz space $L^{P^{*}, P}$. Consider now:

Then for $p * \leq q<\infty$ we have maximally non-compact embedding (Bouchala, 20). Question what about the target space $L^{p^{*}, \infty}$, i.e.

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega) .
$$

Sobolev Embedding - case (iii)

Let $k, n \in \mathbf{N}, k<n, \Omega$ open subset in $\mathbf{R}^{n}, p \in[1, n / k)$ and $p^{*}=\frac{n p}{n-k p}$ then one has

$$
I_{1}: V_{0}^{k, p} \rightarrow L^{p^{*}}(\Omega)
$$

where $\|u\|_{V_{0}^{k, p}}=\sum_{|\beta|=k}\left\|D^{\beta} u\right\|_{p}$.
We know that I_{1} is maximally non-compact (Hencl 03).
Note that $L^{p^{*}}$ is not the optimal target space which is Lorentz space $L^{p^{*}, p}$. Consider now:

$$
I_{2}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, q}(\Omega), \text { with } p^{*} \leq q \leq \infty .
$$

Then for $p * \leq q<\infty$ we have maximally non-compact embedding (Bouchala, 20). Question what about the target space $L^{p^{*}}$

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega)
$$

Sobolev Embedding - case (iii)

Let $k, n \in \mathbf{N}, k<n, \Omega$ open subset in $\mathbf{R}^{n}, p \in[1, n / k)$ and $p^{*}=\frac{n p}{n-k p}$ then one has

$$
I_{1}: V_{0}^{k, p} \rightarrow L^{p^{*}}(\Omega)
$$

where $\|u\|_{V_{0}^{k, p}}=\sum_{|\beta|=k}\left\|D^{\beta} u\right\|_{p}$.
We know that I_{1} is maximally non-compact (Hencl 03).
Note that $L^{p^{*}}$ is not the optimal target space which is Lorentz space $L^{p^{*}, p}$. Consider now:

$$
I_{2}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, q}(\Omega), \text { with } p^{*} \leq q \leq \infty
$$

Then for $p * \leq q<\infty$ we have maximally non-compact embedding (Bouchala, 20).

Sobolev Embedding - case (iii)

Let $k, n \in \mathbf{N}, k<n, \Omega$ open subset in $\mathbf{R}^{n}, p \in[1, n / k)$ and $p^{*}=\frac{n p}{n-k p}$ then one has

$$
I_{1}: V_{0}^{k, p} \rightarrow L^{p^{*}}(\Omega)
$$

where $\|u\|_{V_{0}^{k, p}}=\sum_{|\beta|=k}\left\|D^{\beta} u\right\|_{p}$.
We know that I_{1} is maximally non-compact (Hencl 03).
Note that $L^{p^{*}}$ is not the optimal target space which is Lorentz space $L^{p^{*}, p}$. Consider now:

$$
I_{2}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, q}(\Omega), \text { with } p^{*} \leq q \leq \infty
$$

Then for $p * \leq q<\infty$ we have maximally non-compact embedding (Bouchala, 20). Question what about the target space $L^{p^{*}, \infty}$, i.e.

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega)
$$

Sobolev Embedding - case (iii)

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega) .
$$

Problem - $L^{p^{*}, \infty}(\Omega)$ is not disjointly superadditive.
Definition: We say that a (quasi)normed linear space $X(\Omega)$ containing functions defined on Ω is disjointly superadditive if there exist $\gamma>0$ and $C>0$ such that for every $m \in \mathbf{N}$ and every finite sequence of functions $\left\{f_{k}\right\}_{k=1}^{m}$ with pairwise disjoint supports in Ω one has

Answer: I_{3} is maximally non-compact embedding. (Musil, Olsak, Pick, L. 2020)

Sobolev Embedding - case (iii)

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega) .
$$

Problem - $L^{p^{*}, \infty}(\Omega)$ is not disjointly superadditive.
Definition: We say that a (quasi)normed linear space $X(\Omega)$ containing functions defined on Ω is disjointly superadditive if there exist $\gamma>0$ and $C>0$ such that for every $m \in \mathbf{N}$ and every finite sequence of functions $\left\{f_{k}\right\}_{k=1}^{m}$ with pairwise disjoint supports in Ω one has

$$
\sum_{k=1}^{m}\left\|f_{k}\right\|_{X(\Omega)}^{\gamma} \leq C\left\|\sum_{k=1}^{m} f_{k}\right\|_{X(\Omega)}^{\gamma}
$$

Answer: I_{3} is maximally non-compact embedding. (Musil, Olsak, Pick, L. 2020)

$$
I_{3}: V_{0}^{k, p}(\Omega) \rightarrow L^{p^{*}, \infty}(\Omega) .
$$

Problem - $L^{p^{*}, \infty}(\Omega)$ is not disjointly superadditive.
Definition: We say that a (quasi)normed linear space $X(\Omega)$ containing functions defined on Ω is disjointly superadditive if there exist $\gamma>0$ and $C>0$ such that for every $m \in \mathbf{N}$ and every finite sequence of functions $\left\{f_{k}\right\}_{k=1}^{m}$ with pairwise disjoint supports in Ω one has

$$
\sum_{k=1}^{m}\left\|f_{k}\right\|_{X(\Omega)}^{\gamma} \leq C\left\|\sum_{k=1}^{m} f_{k}\right\|_{X(\Omega)}^{\gamma}
$$

Answer: I_{3} is maximally non-compact embedding. (Musil, Olsak, Pick,
L. 2020)

Sobolev Embedding - case (iii)

Consider:

$$
I_{4}: V_{0}^{k} L^{n / k, 1}(\Omega) \rightarrow L^{\infty}(\Omega), \quad \Omega \subset \mathbf{R}^{n}, k \leq n
$$

(the optimal target space L^{∞} !)
Using Triangle coloring problem we obtain:
$\beta(/)=2^{-k / n}\left\|I_{4}\right\|$
Then I_{4} is not maximally non-compact embedding.

Sobolev Embedding - case (iii)

Consider:

$$
I_{4}: V_{0}^{k} L^{n / k, 1}(\Omega) \rightarrow L^{\infty}(\Omega), \quad \Omega \subset \mathbf{R}^{n}, k \leq n
$$

(the optimal target space L^{∞} !)
Using Triangle coloring problem we obtain:
$\beta(I)=2^{-k / n}\left\|I_{4}\right\|$
Then I_{4} is not maximally non-compact embedding.

Sobolev Embedding - case (iii)

Let us consider:

$$
I_{5}: V_{0}^{1} L^{d, 1}(Q) \rightarrow C(Q), \quad Q \text { cube in } \mathbf{R}^{d}, d \geq 2
$$

and

$$
I_{6}: V_{0}^{1} L^{1}(I) \rightarrow C(I), \quad I \subset \mathbf{R}
$$

We need Zig-Zag theorem:
Let E be an n-dimensional subspace of $C(I)$ where I is any bounded closed interval. Then to every $\varepsilon>0$ there exist a function $g \in E$, $\|g\|_{\infty} \leq 1+\varepsilon$, and an n-tuple of points $t_{1}<t_{2}<\cdots<t_{n}$ in $/$ such that

Sobolev Embedding - case (iii)

Let us consider:

$$
I_{5}: V_{0}^{1} L^{d, 1}(Q) \rightarrow C(Q), \quad Q \text { cube in } \mathbf{R}^{d}, d \geq 2
$$

and

$$
I_{6}: V_{0}^{1} L^{1}(I) \rightarrow C(I), \quad I \subset \mathbf{R}
$$

We need Zig-Zag theorem:
Let E be an n-dimensional subspace of $C(I)$ where I is any bounded closed interval. Then to every $\varepsilon>0$ there exist a function $g \in E$, $\|g\|_{\infty} \leq 1+\varepsilon$, and an n-tuple of points $t_{1}<t_{2}<\cdots<t_{n}$ in I such that

$$
g\left(t_{k}\right)=(-1)^{k} \quad \text { for } 1 \leq k \leq n
$$

Sobolev Embedding - case (iii)

In case

$$
I_{6}: V_{0}^{1} L^{1}(I) \rightarrow C(I), \quad I \subset \mathbf{R}
$$

we have, use the above zig-zag theorem [L,Musil 18] and obtain:

$$
s_{n}\left(I_{6}\right)=\frac{1}{2 n}
$$

where s_{n} stands for n-th Bernstein or isomorphism numbers,

$$
s_{n}\left(I_{6}\right)=1 / 2
$$

where s_{n} stands for approximation or Gelfand numbers for every $n \geq 2$,

$$
d_{n}\left(I_{6}\right)=1 / 4
$$

where d_{n} stands for n-th Kolmogorov number.

Strictly singular map

For embedding

$$
I_{5}: V_{0}^{1} L^{d, 1}(Q) \rightarrow C(Q), \quad Q \text { cube in } \mathbf{R}^{d}, d \geq 2
$$

we need higher dimensional zig-zag theorem but such theorem does not exist.

We need to use Hilbert curves:

Strictly singular map

For embedding

$$
I_{5}: V_{0}^{1} L^{d, 1}(Q) \rightarrow C(Q), \quad Q \text { cube in } \mathbf{R}^{d}, d \geq 2 .
$$

we need higher dimensional zig-zag theorem but such theorem does not exist.

We need to use Hilbert curves:

Sobolev Embedding - case (iii)

Then for embedding

$$
I_{5}: V_{0}^{1} L^{d, 1}(Q) \rightarrow C(Q), \quad Q \text { cube in } \mathbf{R}^{d}, d \geq 2 .
$$

We obtain [L,Musil 18]:

$$
s_{n}\left(I_{5}\right) \asymp n^{-1 / 2}
$$

where s_{n} stands for n-th Bernstein or isomorphism numbers,

$$
s_{n}\left(I_{5}\right) \asymp 1
$$

where s_{n} stands for approximation, Gelfand or Kolmogorov numbers.

Generalization:

Let $X(Q)$ be any Banach function space over the cube Q in $\mathbb{R}^{d}, d \geq 2$, satisfying $X(Q) \subset L^{d, 1}(\Omega)$. Then for every $n \in \mathbb{N}$

$$
s_{n}\left(V_{0}^{1} X(Q) \rightarrow C(Q)\right) \asymp n^{-\frac{1}{d}}
$$

in which s_{n} stands for n-th Bernstein or isomorphism number

Sobolev Embedding - case (iii)

Then for embedding

$$
I_{5}: V_{0}^{1} L^{d, 1}(Q) \rightarrow C(Q), \quad Q \text { cube in } \mathbf{R}^{d}, d \geq 2 .
$$

We obtain [L,Musil 18]:

$$
s_{n}\left(I_{5}\right) \asymp n^{-1 / 2}
$$

where s_{n} stands for n-th Bernstein or isomorphism numbers,

$$
s_{n}\left(I_{5}\right) \asymp 1
$$

where s_{n} stands for approximation, Gelfand or Kolmogorov numbers.

Generalization:

Let $X(Q)$ be any Banach function space over the cube Q in $\mathbf{R}^{d}, d \geq 2$, satisfying $X(Q) \subset L^{d, 1}(\Omega)$. Then for every $n \in \mathbf{N}$

$$
s_{n}\left(V_{0}^{1} X(Q) \rightarrow C(Q)\right) \asymp n^{-\frac{1}{d}},
$$

in which s_{n} stands for n-th Bernstein or isomorphism number.

Strictly singular map

In [Bourgain, Gromov 87] we have: Let $d \geq 1$ and Ω is the unit ball in \mathbf{R}^{d}. Then

$$
b_{n}\left(I: W^{1,1}(\Omega) \rightarrow L_{d /(d-1)}(\Omega)\right) \leq c_{d} n^{-1 / d}
$$

where c_{d} only depends on d.
Natural Question: Are all extremal Sobolev embedding finitely strictly singular?

Answer: No (but in some cases yes)

Strictly singular map

In [Bourgain, Gromov 87] we have: Let $d \geq 1$ and Ω is the unit ball in \mathbf{R}^{d}. Then

$$
b_{n}\left(I: W^{1,1}(\Omega) \rightarrow L_{d /(d-1)}(\Omega)\right) \leq c_{d} n^{-1 / d}
$$

where c_{d} only depends on d .
Natural Question: Are all extremal Sobolev embedding finitely strictly singular?

Answer: No (but in some cases yes)

Strictly singular map

In [Bourgain, Gromov 87] we have: Let $d \geq 1$ and Ω is the unit ball in \mathbf{R}^{d}. Then

$$
b_{n}\left(I: W^{1,1}(\Omega) \rightarrow L_{d /(d-1)}(\Omega)\right) \leq c_{d} n^{-1 / d}
$$

where c_{d} only depends on d .
Natural Question: Are all extremal Sobolev embedding finitely strictly singular?

Answer: No (but in some cases yes)

Strictly singular map

In [Bourgain, Gromov 87] we have: Let $d \geq 1$ and Ω is the unit ball in \mathbf{R}^{d}. Then

$$
b_{n}\left(I: W^{1,1}(\Omega) \rightarrow L_{d /(d-1)}(\Omega)\right) \leq c_{d} n^{-1 / d}
$$

where c_{d} only depends on d .
Natural Question: Are all extremal Sobolev embedding finitely strictly singular?

Answer: No (but in some cases yes)

Sobolev Embedding - case (iii)

In [L,Mihula 22] it was proved:
Let $\Omega \subseteq \mathbf{R}^{d}$ be a nonempty bounded open set, $m \in \mathbf{N}, 1 \leq m<d$, and $p \in[1, d / m)$.
Denote by I_{p} the identity operator $I_{p}: V_{0}^{m, p}(\Omega) \rightarrow L^{p^{*}, p}(\Omega)$, where $p^{*}=d p /(d-m p)$.
(i) We have

$$
\begin{equation*}
b_{n}(I)=\|I\| \quad \text { for every } n \in \mathbf{N}, \tag{1}
\end{equation*}
$$

where $\|I\|$ denotes the operator norm. Furthermore, I is not strictly singular.
(ii) Denote by $I_{p^{*}}$ the identity operator $I_{p^{*}}: V_{0}^{m, p}(\Omega) \rightarrow L^{p^{*}}(\Omega)$, where
$p^{*}=d p /(d-m p)$. There exists $n_{0} \in \mathbf{N}$, depending only on d and m, such that

Here C_{1} and C_{2} are constants depending only on d, m and p. In particular, $I_{p^{*}}$ is finitely strictly singular.

Sobolev Embedding - case (iii)

In [L,Mihula 22] it was proved:
Let $\Omega \subseteq \mathbf{R}^{d}$ be a nonempty bounded open set, $m \in \mathbf{N}, 1 \leq m<d$, and $p \in[1, d / m)$.
Denote by I_{p} the identity operator $I_{p}: V_{0}^{m, p}(\Omega) \rightarrow L^{p^{*}, p}(\Omega)$, where $p^{*}=d p /(d-m p)$.
(i) We have

$$
\begin{equation*}
b_{n}(I)=\|I\| \quad \text { for every } n \in \mathbf{N}, \tag{1}
\end{equation*}
$$

where $\|I\|$ denotes the operator norm. Furthermore, I is not strictly singular.
(ii) Denote by $I_{p^{*}}$ the identity operator $I_{p^{*}}: V_{0}^{m, p}(\Omega) \rightarrow L^{p^{*}}(\Omega)$, where $p^{*}=d p /(d-m p)$. There exists $n_{0} \in \mathbf{N}$, depending only on d and m, such that

$$
\begin{equation*}
C_{1} n^{-\frac{m}{d}} \leq b_{n}\left(I_{p^{*}}\right) \leq C_{2} n^{-\frac{m}{d}} \quad \text { for every } n \geq n_{0} . \tag{2}
\end{equation*}
$$

Here C_{1} and C_{2} are constants depending only on d, m and p. In particular, $I_{p^{*}}$ is finitely strictly singular.

