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e Radial motion g = mr'(t)
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What about the the quantum problem? (p — —iV)

Hi:Z—Aig, Q>0

e Kato-Rellich: H. is essentially self-adjoint with domain Ha(RR%).

Ilr~fll2 < €| Afll2 + Cc||f]l2 0<ex1

e U(t) = e"™=* is unitary: ‘
6" fllz = |Ifll2

Q:
® What are the dispersive properties of e+ ?
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Free Schrédinger Evolution
When V = 0;

e A f(x) = {efszA(,)} (x) = (47:02 /Ra eilX}ﬂz f(y) dy.

e L' - L dispersive estimate : || " f||i~ < Ci|t|”*?|f||,1,

o [P 1F dispersive estimate :
le” ™l < ColtPEP |l 1<p<2
e TT* argument and fractional integration
. . —itA 2 1 1
Strichartz estimates: ||e f\|L;7L; < Cllfll.z, 7 =3(z—=), g>2
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e Keel and Tao ‘98: The endpoint case q = 2.
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Can we say ||€™M*f||oo <t 2|f|1 ?

* opp(H-) = {— gz : k € L7}, 0ac(H-) = [0, 00)

e/'tH, f= Z eit)V,Jj(Hf)f + eitH, Pac(Hf)f
Aj€op
e ¢~ cannot hold L' — L dispersion bound unless we project away
from point spectrum.
® o(Hy) = cac(Hy) = [0, 0)

Theorem(Black, T., Biggio, Zhou’ 23)
Let f € S be spherically symmetric, then one has

€™ flo < CEE[fl1, t>1
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XNr>c:
(A, r) = crsin(Gr(A)(1 + O2(A)) + c2cos(Cr(A))(1 + O2(N))

2
o - les(4XTr)

GOy = — 5o = B o o)

fj—fz on the half-line with Dirichlet boundary condition has generalized
eigenfunctions
wo(A, r) = sin(Ar)
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® There exist 3,7 > 0, F cut-off function
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Mizutani *20: Strichartz estimate for ™+ including endpoint.
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What was known for ¢+?
Nakamura *94: Slowly decaying positive potentials: H = —A + W in R?
o |W(x)| < C(+x3)*2forp e (0,2)

® There exist 3,7 > 0, F cut-off function
IF (x| < BA2)F(H < X oo zSexp(—A5), A2 € (0,1].

Mizutani *20: Strichartz estimate for ™+ including endpoint.

® Hi:=—-A4+Z|x|7" + eVs(x)

® Z>0,uc(0,2),02{Vs(x)} < C(x)~ "1l

® For ¢ > 0 sufficiently small depending on Z, i1, and Vs,
n

| 2
HeltH1 f”LP(JR:Lq(JRn)) < C||fHL2(Rn)7 E —- — —

5o (n.p.a)#(2.00.).

Q>

* Proves frequency localized L' — L> = can not imply global L' — L.
® Does not give explicit Kernel for the evolution.
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(pre)-WKB

Consider the H = — 2, + V as the half line operator with
V:
Vi
£
V-
> T
a

Hy = Ev = ¢"(x) = (V = E)¥(x)

x<a=E<V: ¢(x)=e"V'"F* forbidden
x>a=E>V: ¢y(x)=e""VE-Y* allowed

The solution then will be determined by the boundary condition of the
extension.
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Generalized eigenfunction: p(\, r)

f(A r)

(N r) + = Nf(\, 1),

Action:
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Forbidden / P Allowed

WKB:

(A r) = eSO 4 aa(\, 1), (A r) =TSO 1 Ab(A, 1)), 0< A< 1

What is the boundary condition at zero?
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—5’—; + 1 on L% is an unbounded operator
r~' ¢ L = Picard iteration does not work

Frobenius solution: (X, r) = S20°; ak(A\)r

fi(\r)=r+0(r%) as r — 0 forfixed A

(A r)=a(\ r)f(\r)

fo(A\,r)=co+rlogr+ O(r) as r — 0 for fixed A

It is in the limit circle case at zero and has multiple self-adjoint
extensions.

We look for the reduced operator from H, which is self-adjoint with
domain H(R®), and 20X ¢ H,(R®).

o\, 1) = C(NE, 7).
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Distorted Fourier Transform

H= —g—; + V(r) with V(r) € L'[0, b), and let H be in the limit point case at
infinity.

Do = {f: f,f € L%, f(0) = af (0)}, |a| =1

Fundamental set of solution to Hf = Z*f
® $a(2,r), Ba(z,r) are real valued for Z%,r € R
® ¢.(z,r) holds the boundary condition in Do, W(¢a,0.) = 1.
by Picard iteration

There is a unique Weyl-m solution at infinity: L2 around infinity for $(z2) > 0.
® Yo(z,r) =0a(z,r) + m(2)pa(z,r)
as H is limit point case at infinity.
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* 9(r) =[5~ 9(nea(r, r)ar

* 90 = Jy G)6=(0. AN,

[M(X + ie) — m(A — ie)] dX =" p(d)

27rl

® gllew,) = 191l 2,0

forany f € S
(™ (1) / / €™ pa (A, g (N, S)H(S)2X p(dN\)ds

We would like to apply this to L = —? +r!
o > _

dr2 + r~" has multiple self-adjoint extensions
® The extensions can not be classified by boundary conditions:

fa(r,\) = co + rlog r + O(r) = £(0) not defined

Gesztesy-Zinchenko’08: DFT holds for strongly singular potentials. They
choose any reference point xo > 0 and solve the ODE from that point.
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The kernel of et is

K,(r,s):/ e f(N DA, s) 20 [eX — 1] 'dA
a(H)

¢(>H r) = [2)\(e§ - 1)]_1/2f1 (A7 r)
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[e”HOf](I’) — / I’_1Kt(f, s)sf(s)ds
0

Aim:
K, (r,s)
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r,s

The integral representation of Whittaker functions are not useful for
small \.

® Abramowitz, Stegun: asymptotic expansions when Ar — 0 or A\r — oc.
Not enough as both the variable and the lower index depend on .
Therefore, we use streching of variables to approximate fi (X, r).
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Streching of variables-Lioville Green Transformation
For some W small in some sense
f'(x) = Q)f(x), x € I = Ww(€) = Q(E)w(E) + W(w(E), €€ J

In our case: Q(x) = £+ (1 —1), Qo(§) =¢
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Streching of variables-Lioville Green Transformation

For some W small in some sense

f'(x) = QU)f(x), x € I = w(§) = Q(E)w(E) + W(Ew(), € € J
In our case: Q(x) = i%(} - 1), Q(&) =¢
w : | — J diffeomorphism such that f(x) = (1/€'(x)) ™" w(¢)

f7(x) = (V(E ()P (€) + 2{(+/€ (x)) " }w(&)

using it in the original equation

(V€)W (&) + FH(VE (X)) Iw(€) = Q)(VE (x) ™ w(e)

W) = QU)(E' ()72 w(&) — (V€ () ) °O{(VE ()" w(®)
—— —

Qo(&) w(g)
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Langer Transform

Mg (A x) = (% - 1)g(A,x)

Q) =A2(}=1)ifx < 1and Q(x) = A"2(1- 1) ifx > 1
£(x) = QU)(E'(x))
LT: ¢(x) = A~ 3sgn{(1 — x)} ( [V —ut du)5

WO(€) = Ew(€) + AW(E)w(€)

Solve the perturbed Airy equation to obtain solutions as a linear
combination of

¢)1()‘7 X) = A/(f)(.‘ + )\31()\,6))
¢)2()‘7X) = B/(f)“ + )‘32()‘75))

Costin, Schlag, Staubach and Tanveer'08, Donninger, Schlag, Soffer '10 ,
Pasqualotto, Shlapentokh-Rothman, Van de Moortel'23.
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Q) =A2(}=1)ifx < 1and Q(x) = A"2(1- 1) ifx > 1
£(x) = QU)(E'(x))
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WO(€) = Ew(€) + AW(E)w(€)

Solve the perturbed Airy equation to obtain solutions as a linear
combination of

¢)1()‘7 X) = A/(f)(.‘ + )\31()\,6))
¢)2()‘7X) = B/(f)“ + )‘32()‘75))

Costin, Schlag, Staubach and Tanveer'08, Donninger, Schlag, Soffer '10,
Pasqualotto, Shlapentokh-Rothman, Van de Moortel'23.
Erdélyi, Kennedy, McGregor, Swanson '55 : not multiplicative error
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® W(¢) has singularity at £(0)

® The multiplicative error of the extended solutions blows up as x = 0.



@(§) = &w(&) + AW (§)w(§)
Q(x) = A72(x~" — 1) has singularity at x = 0.
W(¢) has singularity at £(0)
The multiplicative error of the extended solutions blows up as x = 0.

F(x) =1



@(§) = &w(&) + AW (§)w(§)
Q(x) = A72(x~" — 1) has singularity at x = 0.
W(¢) has singularity at £(0)
The multiplicative error of the extended solutions blows up as x = 0.

f'(x) = L = f(x) = c1vxh(2VX) + cv/xKi (2V/X)



(&) = €w(€) + AW(E)w(€)

* Q(x) = A3(x~" — 1) has singularity at x = 0.

W(¢) has singularity at £(0)

The multiplicative error of the extended solutions blows up as x = 0.

o f'(x) = L = f(x) = a1 vxh(2VX) + cV/XKi (2V/X)

L(x) = x(1 4+ O(x)), Ki(x) = x~'(1 + O(x))

* We use modified Bessel functions to approximate the solutions

Erdélyi, A. and Swanson,55: not multiplicative error. Pasqualotto,
Shlapentokh-Rothman, Van de Moortel’23.
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9" (A x) = /\’2(% - 1)g()\,x) =0

PN, X) = —(\/€)TTAIE) + IBI(E)[1 + Aby (N, €)]

Y- (A x) = =(VE) T (AE)

— (VY
— (Y

—iBi(&))[1 + Ab— (X, €)]

A(©)(1 + Aai (X, €))
Bi(§)(1 + A& (A, €))



* x>1

So(X

9" (A x) = /\’2(% - 1)g()\,x) =0

PN, X) = —(\/€)TTAIE) + IBI(E)[1 + Aby (N, €)]
-\ x) = —(VE) T (AIE) — IBI(E))T + Ab- (X, €)]
<1
= —(VE) A1 + Aai (), )
= —(VE)TB(E)(1 + Aax(), €))
<3
so(0x) = () HS(E + Ao, )

):)‘71‘[0)( 13_



What gives the optimal decay t=3

Q-n/zf\

Super fLabE 1/)‘2

Oscillation hits

1 i(2¢8 _x _3
A+ Bi(¢) = — e 7D (1 4 0 2)), -
(©) ﬁze ( (€72)), £€— o0

2ef = JIVAG 1)~ log(vX + Vx — 1)
x = M\?r gives
e\, 1) = (1 + 0:(N)
11

G(N) = Ar = o — 5 log(4X°r) + 6o + A O((*) )
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® G(A) = Ar— 55 — 2 log(4X°r) + co + AT O((XPr) )
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Ki(r,s) = /Oo eitAZe:ti(Cr )ECs(A ()\)M

B i 14 0x(\)Y’
Ki(r,s) — L/ s (X(/\)ei (Cr(*)iCs(A))%) A
0
® G(N) = Ar— 5 — S log(4NPr) +co + AT O((N%r) )

o G = rl1 + = L O(x2r)B)] e r
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)= [ 8 (xneicoreon (1 Qg
0

® G(A) = Ar— g5 — 55 log(4X°r) + ao + A7 O((A*r) )

o G = rl1 + = L O(x2r)B)] e r
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o di(\r) = 21
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Ki(r,r') = 27/ e 0y (A2)d,

* (A r) =X £ (G £ G(N)
o ('~r

2
° C;/()\) _ = Iog1(24;\3rr)+2 <0
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S 1) = 2 £ 2(G () £ G(V)
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Gl(}\) _ Iog1(24;\3rr <0

@¢(\, r) is non-degenerate

Vander Corput: one can gain additional t~'/2 decay.



Ki(r,r') = 27/ e 0y (A2)d,

Gt(A 1) = A% £ H(¢ (V) £ G(N)
¢ ~r
7 _ —log(4x2
() = 802 <
@¢(\, r) is non-degenerate
Vander Corput: one can gain additional t~'/2 decay.
careful consideration of r, s gives the required bound with no weight.



THANK YOU!



