Methods of Geometric Control in Hamiltonian Dynamics

Analysis and Operator Theory Seminar Ohio State University November 301, 2023

Marian Gidea Rafael de la Llave, Tere Seara

Objectives

- General problem of dynamics (Poincaré): understand the effect of small perturbations on integrable Hamiltonian systems
- Hamiltonian system:

$$H_0: (p,q) \in \mathbb{R}^{2n} \mapsto H_0(p,q) \in \mathbb{R}$$

$$\begin{cases} \dot{p} = -\frac{\partial H_0}{\partial q}(p,q) \\ \dot{q} = \frac{\partial H_0}{\partial p}(p,q) \end{cases}$$

- ► The total energy *H*₀ is a conserved quantity
- ► A Hamiltonian is integrable if there exists n 'independent', conserved quantities ⇔ there exists a smooth foliation of the phase space by invariant tori

Objectives

Perturbed Hamiltonian system

$$H_{\varepsilon}=H_0+\varepsilon H_1$$

where H_0 = integrable Hamiltonian, H_1 = Hamiltonian perturbation, ε = small parameter

- Given two points p, q, show that there exists a solution of H_{ε} that goes from p to q
- Motivation: in problems from celestial mechanics and space mission design, the Hamiltonians H₀, H₁ are explicit; e.g.,
 - H₀ describes motion of a spacecraft relative to the Earth
 - H₁ describes the perturbation by the Moon, Sun, etc.
 - Steer the trajectory of a chaser spacecraft to reach a target spacecraft

Control problem

Control system

$$\dot{x} = f(t, x(t), u(t))$$

where $x \in \mathbb{R}^n$ is the state and $u(t) \in \mathbb{R}^m$ is a control

For any pair of points, does there exist a control $u(\cdot) \in L^1([0,T],\mathbb{R}^m)$ such that the trajectory x(t) joins one point to the other?

Control problem

Non-holonomic system:

$$\begin{split} \dot{x} &= \sum_{i=1}^m u_i(t) X_i(x) \\ x &\in M \text{ smooth manifold of dimension } n \\ u &\in L^1([0,T],\mathbb{R}^m) \\ X_1,\dots,X_m \text{ smooth vector fields} \end{split}$$

- A point q is accessible from p if there exists a control u(t) and a solution x(t) such that x(0) = p and x(T) = q
- Remarks:
 - ▶ The problem is non-trivial when m < n, so $Span(\{X_i\}) \neq TM$
 - In control theory one typically chooses the control
 - In our work, we want to use the 'natural perturbation' of the system as a control

Geometric control

Lie bracket of two smooth vector fields X, Y on a manifold M:

$$\begin{split} [X,Y]_{x} &= \tfrac{1}{2} \lim_{t \to 0} \tfrac{\phi_{Y}^{-t} \circ \phi_{X}^{-t} \circ \phi_{Y}^{t} \circ \phi_{X}^{t}(x) - x}{t^{2}} \\ \text{where } \phi_{X}^{t}, \phi_{Y}^{t} \text{ are the flows of } X \text{ and } Y \end{split}$$

- Lie algebra generated by $\mathcal{X} = \{X_1, X_2, \dots, X_m\}$: $\text{Lie}(\mathcal{X}) = \text{Span}(X_i, [X_i, X_i], [[X_i, X_i], X_k], \dots)$
- Hörmander condition:

$$\boxed{\operatorname{Lie}(X_1,\ldots,X_m)=\mathit{TM}}$$

Geometric control

Theorem (Chow,1940), (Rashevsky,1938)

Assume that the smooth vector fields X_1, \ldots, X_m satisfy the Hörmander condition on a connected manifold M. Then for every $p, q \in M$ there exists a piecewise smooth curve connecting p to q, where each piece of the curve is a segment of the local flow of one of the X_i 's, followed in positive- or in negative-time.

Remarks:

- Chow-Rashevsky Theorem: every two points are accessible from one another, for some piecewise constant control u
- ► The Hörmander condition is satisfied by generic, sufficiently smooth vector fields whenever $m \ge 2$ (Gromov,1996)

Hamiltonian setting

- $H_{\varepsilon} = H_0 + \varepsilon H_1$
- For H_0 , there exists a normally hyperbolic invariant manifold (NHIM) Λ_0 , with $W^u(\Lambda_0) = W^s(\Lambda_0)$
- ▶ For H_{ε} , Λ_0 persists as Λ_{ε}
- Under generic conditions on H_1 , the stable and unstable manifolds of Λ_{ε} have transverse intersections
- There are two dynamics on $\Lambda_{arepsilon}$
 - Inner dynamics, by the restriction to Λ_{ε}
 - Outer dynamics, along homoclinic orbits to Λ_{ε}
- We can reduce to map dynamics f_{ε} via a Poincaré section
- Example:

$$H_{\varepsilon}(I,\theta,p,q) = h_0(I) + \sum_{j=1}^{n} \left(\frac{p_j^2}{2} + V_j(q_j) \right) + \varepsilon H_1(I,\theta,p,q)$$

▶ Objective: for any $p, q \in \Lambda_{\varepsilon}$, there is a trajectory of H_{ε} , obtained by intertwining the inner and the outer dynamics, that goes from near p to near q

Normally hyperbolic invariant manifold (NHIM)

- $f: M \to M$, C^r -diffeomorphism
- ▶ $\Lambda \subset M$ is a NHIM if
 - ► $TM = T\Lambda \oplus E^u \oplus E^s$ invariant under Df
 - The expansion and contraction rates along $T\Lambda$ are dominated by expansion and contraction rates along E^u , E^s , respectively
- Λ is \mathcal{C}^{ℓ} -manifold, where ℓ depends on r and on the expansion/contraction rates; even if f is C^{∞} , Λ is only finitely differentiable
- ▶ $W^s(\Lambda)$, $W^u(\Lambda)$ stable and unstable $\mathcal{C}^{\ell-1}$ -manifolds; they are foliated by stable and unstable \mathcal{C}^r -leaves,

$$W^{s}(\Lambda) = \bigcup_{z \in \Lambda} W^{s}(z), \quad W^{u}(\Lambda) = \bigcup_{z \in \Lambda} W^{u}(z)$$

Canonical projections along fibers

$$\Omega^{\pm}: W^{s,u}(\Lambda) \to \Lambda, \quad \Omega^{\pm}(z) = z^{\pm} \Leftrightarrow z \in W^{s,u}(z^{\pm})$$

Scattering map

- Assume $W^u(\Lambda)$ intersects $W^s(\Lambda)$ along a homoclinic manifold Γ satisfying strong transversality conditions
- $\Omega_{|\Gamma}^{\pm}$ local diffeomorphism
- Restrict Γ to homoclinic channel: Ω^\pm are diffeomorphisms from Γ to $\Omega^\pm(\Gamma)$
- Scattering map: $\sigma: \mathrm{Dom}(\sigma) = \Omega^{-}(\Gamma) \to \mathrm{Im}(\sigma) = \Omega^{+}(\Gamma)$ $\sigma = \Omega^{+} \circ (\Omega^{-})^{-1}$ $\sigma(z^{-}) = z^{+} \Rightarrow$ $d(f^{-m}(z), f^{-m}(z^{-})) \to 0,$

 Systems of interest typically have many homoclinics, hence many scattering maps

Scattering map for perturbed Hamiltonians

- Assume
 - Λ_{ε} is a NHIM for f_{ε} , with $\Lambda_{\varepsilon} = k_{\varepsilon}(\Lambda_0)$ for some smooth parametrization k_{ε}
 - Γ_{ε} is a homoclinic channel
 - σ_{ε} is a scattering map associated to Γ_{ε}
 - We identify σ_{ε} on Λ_{ε} with $\sigma_{\varepsilon} \circ k_{\varepsilon}$ on Λ_{0}
- ▶ Then there exists a Hamiltonian vector field X such that

$$\sigma_{\varepsilon} = \sigma_0 + \varepsilon X \circ \sigma_0 + O(\varepsilon^2)$$

where $X = J\nabla S$, $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, and S given explicitly via Melnikov integrals

- If $\sigma_0 = \operatorname{Id}$, σ_{ε} is the one-step Euler method for X
- ▶ Refs: (Delshams,de la Llave,Seara,2008)

Shadowing Lemmas (M.G.,de la Llave,Seara,2020)

Lemma (Shadowing of scattering paths)

Let $\gamma_{\varepsilon} \subseteq \Lambda_{\varepsilon}$ be an integral curve of $J\nabla S$ (a scattering path) Then, there exists an orbit $\{x_i\}$ of σ_{ε} in Λ_{ε} s.t.

- $x_{i+1} = \sigma_{\varepsilon}(x_i)$ for some $k_i > 0$, and
- $d(x_i, \gamma_{\varepsilon}(t_i)) < c\varepsilon$

Lemma (Shadowing of scattering orbits)

Assume:

- $\{x_i\}_{i=0,\dots,n}$ is a finite orbit of the scattering map σ_{ε} in Λ_{ε} , i.e. $x_{i+1} = \sigma_{\varepsilon}(x_i)$ for all $i = 0, \dots, n-1$
- ▶ The inner map $(f_{\varepsilon})_{|\Lambda_{\varepsilon}}$ satisfies Poincaré recurrence on Λ_{ε}

Then, there exists an orbit $\{z_i\}$ of f_{ε} in M s.t.

- $ightharpoonup z_{i+1} = f_{\varepsilon}^{k_i}(z_i)$ for some $k_i > 0$
- $d(z_i, x_i) < c\varepsilon$

Shadowing Lemmas (M.G., de la Llave, Seara, 2020)

Lemma (Shadowing of orbits of the IFS given by the scattering map and the inner map)

For every $\delta > 0$ and for every pseudo-orbit $\{y_i\}_{i \geqslant 0}$ in Λ_{ε} of the form

$$y_{i+1} = f_{\varepsilon}^{m_i} \circ \sigma_{\varepsilon} \circ f_{\varepsilon}^{n_i}(y_i),$$

with n_i and m_i sufficiently large (depending on previous ones), there exists an orbit $\{z_i\}_{i\geqslant 0}$ of f_{ε} in M such that, for all $i\geqslant 0$

$$z_{i+1} = f_{\varepsilon}^{m_i + n_i}(z_i), \text{ and } d(z_i, y_i) < \delta.$$

Challenge

- The trajectories given by the Chow-Rashevsky Theorem are followed in positive- and negative-time
- The trajectories given by the scattering map can only be followed in positive time
- ▶ Remark:
 - (Krener,1974) describes the set that can be reached by following only positive-time trajectories

Assumptions:

- (A1) (\mathcal{M}, ω) is symplectic manifold, $f_{\varepsilon} : \mathcal{M} \to \mathcal{M}$ smooth, symplectic family of maps, $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$
- (A2) $\Lambda_{\varepsilon} \subseteq \mathscr{M}$ NHIM for f_{ε} , s.t. $\Lambda_{\varepsilon} = k_{\varepsilon}(\Lambda_0) \subseteq \Lambda_{\varepsilon}$
- (A3) $\exists \mathscr{U}_0 \subset \Lambda_0$, such that almost every point $x \in \mathscr{U}_{\varepsilon} = k_{\varepsilon}(\mathscr{U}_0) \subseteq \Lambda_{\varepsilon}$ is recurrent for $(f_{\varepsilon})_{|\Lambda_{\varepsilon}}$
- (A4) $W^{\mathrm{u}}(\Lambda_{\varepsilon})$ and $W^{\mathrm{s}}(\Lambda_{\varepsilon})$ intersect transversally along homoclinic channels Γ^{j}_{ε} , for $j=1,\ldots,m$
- (A5) Each unperturbed scattering map $\sigma_0^j = \operatorname{Id}$, and $\sigma_\varepsilon^j = \operatorname{Id} + \varepsilon X_j + O(\varepsilon^2)$ where $X_j = J \nabla S^j$
- (A6) The vector fields X_i satisfy the Hörmander condition on \mathcal{U}_0
- (A7) Almost every point in \mathcal{U}_0 is recurrent for each of the vector fields X_i

Theorem (Controllability-I)

Assume (A1)-(A7) hold on $\mathscr{U}_{\varepsilon}$. Then $\exists \varepsilon_0 > 0$, c > 0, $\forall 0 < |\varepsilon| < \varepsilon_0$, $\forall p, q \in \mathscr{U}_{\varepsilon}$, $\exists (z_i)_{i=0,...N}$ such that:

$$\begin{aligned} z_{i+1} &= f_{\varepsilon}^{t_i}(z_i) \text{ for some } t_i > 0, \\ d(z_0, p) &< c\varepsilon, \quad d(z_N, q) < c\varepsilon. \end{aligned}$$

Corollary (Path shadowing)

Assume the same conditions as before. Then $\exists \varepsilon_0 > 0, \ c > 0, \ \forall 0 < |\varepsilon| < \varepsilon_0, \ \text{s.t.}$ for the path $\eta_\varepsilon : [0,1] \to \mathscr{U}_\varepsilon$ given by $\eta_\varepsilon = k_\varepsilon \circ \eta$, there exists an orbit $(z_i)_{i=0,\dots,N}$ of f_ε in \mathscr{M} s.t.:

$$\begin{split} z_{i+1} &= f_{\varepsilon}^{t_i}(z_i) \text{ for some } t_i > 0, \\ d(z_i, \eta_{\varepsilon}(s_i)) &< c \varepsilon. \end{split}$$

Sketch of the proof of the theorem on controllability

Replace negative-time orbits by positive-time orbits via recurrence

- Assume (A1)-(A7)
- Follow the paths γ_i , $i=1,\ldots,4$, corresponding to one Lie bracket

$$\frac{d\gamma^3}{dt} = -X_1(\gamma^3)$$

- Follow
 - γ_1 by a positive orbit of X_1
 - γ_2 by a positive orbit of X_2
 - γ_3 by a positive orbit cut-out from a recurrent orbit of X_1
 - γ_4 by a positive orbit cut-out from a recurrent orbit of X_2

Sketch of the proof of the theorem on controllability

Replace negative-time orbits by positive-time orbits via recurrence

- Assume (A1)-(A7)
- Follow the paths γ_i , $i=1,\ldots,4$, corresponding to one Lie bracket

$$\frac{d\gamma^3}{dt} = -X_1(\gamma^3)$$

- Follow
 - γ_1 by a positive orbit of X_1
 - γ_2 by a positive orbit of X_2
 - γ_3 by a positive orbit cut-out from a recurrent orbit of X_1
 - γ_4 by a positive orbit cut-out from a recurrent orbit of X_2

Sketch of the proof of the theorem on controllability

- Apply the shadowing lemma for scattering paths to obtain a positive orbit in Λ_{ε} of the iterated function system (IFS) defined by σ_{ε}^{1} , σ_{ε}^{2}
- ▶ Each scattering map is one step of the Euler method with step-size ε for the generating vector field X_i
- Use the recurrence of $(f_{\varepsilon})_{|\Lambda_{\varepsilon}}$ on Λ_{ε}
- Apply the shadowing lemmas to obtain a true orbit of f_{ε} in \mathcal{M}

Application to product systems

Assume:

- $(\Lambda, \omega_{\Lambda})$, $(\Sigma, \omega_{\Sigma})$ compact, symplectic manifolds of any (even) dimension
- ▶ $f: \Lambda \to \Lambda$, $g: \Sigma \to \Sigma$ symplectic diffeomorphisms
- $\mathcal{M} = (\Lambda \times \Sigma, \omega_{\Lambda} \otimes \omega_{\Sigma})$
- $f_0: \mathcal{M} \to \mathcal{M}$ a symplectic diffeomorphism of the form $f_0(x,y) = (f(x),g(y))$
- $f_{\varepsilon}: \mathcal{M} \to \mathcal{M}$, for $|\varepsilon| < \varepsilon_0$, a family of symplectic diffeomorphisms depending smoothly on ε

Assume:

- (C1) g has a hyperbolic fixed point O in Σ
- (C2) The Lyapunov exponents of g at O dominate those of f on Λ
- (C3) $W_g^{\rm s}(O)$ and $W_g^{\rm u}(O)$ intersect transversally at $Q_1,\ldots,Q_m,\ m\geqslant 2$, in Σ , that are geometrically distinct

Application to product systems

- For $\varepsilon = 0$ we have:
 - $\Lambda_0 = \Lambda \times \{O\}$ is a NHIM for f_0
 - $\Gamma_0^k := \Lambda \times \{Q_k\}, \ k = 1, \dots, m$, are homoclinic channels for f_0
 - the associated scattering maps $\sigma_0^k: \Lambda_0 \to \Lambda_0$ are globally defined, symplectic diffeomorphisms of Λ_0
- For all $\varepsilon \neq 0$ sufficiently small we have:
 - Λ_{ε} is a NHIM for f_{ε}
 - there exist homoclinic channels Γ_{ε}^{k} for f_{ε}
 - ▶ there exist globally defined, symplectic scattering maps $\sigma_{\varepsilon}^{k}: \Lambda_{\varepsilon} \to \Lambda_{\varepsilon}$ with associated vector fields X_{k}
- Under these conditions, the system described above satisfies the assumptions (A1) – (A5), and (A7)
- Assume that the vector fields X_k , k = 1, ..., m, satisfy the Hörmander condition (A6) generic condition
- ▶ Then the controllability and path shadowing results apply

Generalized Hörmander condition

Condition for accessibility by positive-time orbits

- ▶ The span of commutators $Lie^k(\mathcal{X})$ up to order k, defines a distribution on Λ
- Also, $\mathsf{Lie}^k(\mathcal{X})$ is determined by the distribution $\mathsf{Span}(\mathcal{X})$
- ▶ Define the (non-negative) cones $C(\mathcal{X})(x) = \{a_1(x)X_1(x) + \dots + a_m(x)X_m(x) \mid a_1(x), \dots a_m(x) \ge 0\}$
- Given a cone $\mathcal{C}(\mathcal{X})(x)$, there is a unique linear space of maximal dimension (possibly trivial) in $\mathcal{C}(\mathcal{X})(x)$ $\mathcal{V} := \mathcal{V}(\mathcal{X}) = \mathcal{C}(\mathcal{X}) \cap (-\mathcal{C}(\mathcal{X}))$
- V determines a distribution
- ▶ Since $Lie(Lie(\mathcal{V}(X))) = Lie(\mathcal{V}(X))$, by Frobenius theorem the distribution $Lie(\mathcal{V}(X))$ is integrable
- Generalized Hörmander condition:

$$\mathsf{Lie}(\mathcal{V}(\mathcal{X})) = \mathsf{T}\mathsf{\Lambda}$$

Generalized Hörmander condition

Theorem (Extension of Chow-Rashevsky Theorem)

Assume that generalized Hörmander condition holds on $\mathscr{U}_{\varepsilon}$. Then, given any points $p,q\in\mathscr{U}_{\varepsilon}$ there is continuous curve, formed by segments of positive orbits of the X_j 's starting at p and ending arbitrarily close to q

▶ Remark: The generalized Hörmander condition is not robust, unless $\mathcal{V}(\mathcal{X}) = T\Lambda$

Theorem (Controllability-II)

Assume (A1)-(A5) and

(A6') The vector fields X_j satisfy the generalized Hörmander condition.

Then $\exists \varepsilon_0 > 0$, c > 0, $\forall 0 < |\varepsilon| < \varepsilon_0$, $\forall p, q \in \mathscr{U}_{\varepsilon}$, $\exists (z_i)_{i=0,...N}$ such that:

$$z_{i+1} = f_{\varepsilon}^{t_i}(z_i)$$
 for some $t_i > 0$, $d(z_0, p) < c\varepsilon$, $d(z_N, q) < c\varepsilon$.

- ▶ Remarks:
 - ▶ This result does not require the vector fields X_j to be recurrent
 - Systems with time-reversal symmetries yield vector fields X_j that satisfy (A6')

Exponential map

- ▶ A vector field X can be interpreted as a derivation operator
- $ightharpoonup \exp(X)$ is defined as the time-1 map of the evolution PDE

$$\partial_t \phi = X \phi$$

- Using the method of characteristics: $\exp(X)\phi = \phi \circ A_X$ for A_X being the time-1 map of the ODE $\dot{x} = X(x)$
- We identify

$$\exp(X) \equiv A_X$$

so exp(X) can be viewed as a map/vector field/derivation

Expansion

$$\exp(X)\phi = \sum_{n\geq 0} \frac{1}{n!} X^n \phi$$
 where $X^n = \underbrace{X \dots X}_{n \text{ times}}$

▶ If $\phi \in C^r$ with $r < \infty$, we truncate the series at some order M

High-order expansions of scattering maps

Consider higher-order expansions of the scattering maps

$$\sigma_{\varepsilon}^j = \exp(X_{\varepsilon}^j)$$

where

$$X_{\varepsilon}^{j} = \sum_{n \geq 1} \varepsilon^{j} X_{n}^{j}$$

is a formal power series

Degenerate case: it is possible that

$$\operatorname{Lie}(X_1^1,\ldots,X_1^m) \neq TM$$

but

$$\operatorname{Lie}(X_{\varepsilon}^1,\ldots,X_{\varepsilon}^m)=TM \text{ for } 0<\varepsilon<\varepsilon_0$$

The Campbell-Hausdorff formula

▶ For X, Y vector fields

$$\exp(X) \exp(Y) = \exp(CH(X, Y))$$

where

$$CH(X,Y) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{r_i+s_i>0} \frac{[X^{(r_1)}, Y^{(s_1)}, \dots, X^{(r_n)}, Y^{(s_n)}]}{(\sum_{i=1}^{n} (r_i + s_i)) \prod_{i=1}^{n} r_i! s_i!}$$

$$= X + Y + \frac{1}{2} [X, Y] + \frac{1}{12} ([X, [X, Y]] - [Y, [X, Y]])$$

$$- \frac{1}{48} ([X, [X, [X, Y]]] + [Y, [X, [X, Y]]) + \dots$$

(Dynkin, 1947)

- If we are considering C^r vector fields instead, the formal power series stop being valid after a finite number of terms N
- If r is sufficiently large, the number N can be taken arbitrarily large

Degenerate Hörmander condition

For every multi-index $\alpha=(\pm j_1,\ldots,\pm j_n)$, with $(j_1,\ldots,j_n)\in\{1,\ldots,m\}^n$, we define the vector field X_ε^α by

$$\sigma_{\varepsilon}^{\pm j_n} \circ \cdots \circ \sigma_{\varepsilon}^{\pm j_1} = \exp(X_{\varepsilon}^{\alpha}) + O(\varepsilon^{M})$$

- X_{ε}^{α} can be computed in terms of the the original X_{ε}^{j} , through repeated applications of the Campbell-Hausdorff formula
- ▶ Degenerate Hörmander condition:

(A6") For a point $p \in T\Lambda_{\varepsilon}$ there exists N > 0 and ε_0 such that for all $0 < \varepsilon < \varepsilon_0$ we have

$$\overline{\mathrm{Span}(\{X_\varepsilon^\alpha\}_{|\alpha|\leqslant N})_p = (T\Lambda_\varepsilon)_p}$$

Theorem (Controllability-III)

Assume **(A1)-(A5)** and **(A6")** hold on some relatively compact, open subset $\mathscr{U}_{\varepsilon}$ of Λ_{ε} of size O(1).

Then, for every pair of points p and q in $\mathscr{U}_{\varepsilon}$, we can move from p to q, up to an error of $\mathcal{O}(\varepsilon^{K_{\min}})$, for some $K_{\min} \geqslant 1$, by repeated applications of scattering maps and their inverses, i.e., by an orbit of the IFS

$$\{\sigma_{\varepsilon}^j, (\sigma_{\varepsilon}^j)^{-1}, j=1,\ldots,m\}.$$

If, additionally, the scattering maps satisfy the recurrence condition (A7), we can move from p to q, up to an error of $\mathcal{O}(\varepsilon^{K_{\min}})$, by repeated applications of the scattering maps only.

Sketch of the proof

- Note that if $X_{\varepsilon}^1 = \mathcal{O}(\varepsilon^{k_1})$ and $X_{\varepsilon}^2 = \mathcal{O}(\varepsilon^{k_2})$, then $[X_{\varepsilon}^1, X_{\varepsilon}^2]$ may have an order higher than $\mathcal{O}(\varepsilon^{k_1 + k_2})$
- $\quad \quad \ \ \, \boldsymbol{X}_{\varepsilon}^{\alpha} = \varepsilon^{\boldsymbol{K}_{\alpha}} \tilde{X}_{\varepsilon}^{\alpha} + O(\varepsilon^{\boldsymbol{M}}) \text{, with } \tilde{X}_{\varepsilon}^{\alpha} \neq 0$
- $\begin{array}{l} {}^{\blacktriangleright} \ \angle (X_{\varepsilon}^{\alpha},X_{\varepsilon}^{\alpha'}) = \varepsilon^{K_{\alpha\alpha'}} \tilde{X}_{\varepsilon}^{\alpha\alpha'} + O(\varepsilon^{M}) \text{, with} \\ \tilde{X}_{\varepsilon}^{\alpha\alpha'} \neq 0 \end{array}$
- Starting from p, we can move $\mathcal{O}(\varepsilon^{0.9})$ along the integral curve of $\tilde{X}_{\varepsilon}^{\alpha}$, by repeated applications of $\exp(X_{\varepsilon}^{\alpha})$ of step-size $O(\varepsilon^{K_{\alpha}})$, with very small global error

Sketch of the proof

- There exists a ball B of radius $\mathcal{O}(\varepsilon^{0.9})$ around p, such that for every point $r \in B$ we can move, from p to an $\mathcal{O}(\varepsilon^{K_{\min}})$ -neighborhood of r, by repeated applications of different $\exp(X_{\varepsilon}^{\alpha})$'s, with a small global error; here, $K_{\min} = \min\{K_{\alpha}, K_{\alpha\alpha'}\}$
- Choose a geodesic curve from p to q; cover it with balls as above and move from one ball to another

