Methods of Geometric Control in Hamiltonian Dynamics

Analysis and Operator Theory Seminar Ohio State University November 301, 2023

Marian Gidea
Rafael de la Llave, Tere Seara

Objectives

- General problem of dynamics (Poincaré): understand the effect of small perturbations on integrable Hamiltonian systems
- Hamiltonian system:

$$
H_{0}:(p, q) \in \mathbb{R}^{2 n} \mapsto H_{0}(p, q) \in \mathbb{R}
$$

$$
\left\{\begin{array}{l}
\dot{p}=-\frac{\partial H_{0}}{\partial q}(p, q) \\
\dot{q}=\frac{\partial H_{0}}{\partial p}(p, q)
\end{array}\right.
$$

- The total energy H_{0} is a conserved
 quantity
- A Hamiltonian is integrable if there exists n 'independent', conserved quantities \Leftrightarrow there exists a smooth foliation of the phase space by invariant tori

Objectives

- Perturbed Hamiltonian system

$$
H_{\varepsilon}=H_{0}+\varepsilon H_{1}
$$

where $H_{0}=$ integrable Hamiltonian, $H_{1}=$ Hamiltonian perturbation,
$\varepsilon=$ small parameter

- Given two points p, q, show that there exists a solution of H_{ε} that goes from p to q
- Motivation: in problems from celestial mechanics and space mission design, the Hamiltonians H_{0}, H_{1} are explicit; e.g.,
- H_{0} describes motion of a spacecraft relative to the Earth
- H_{1} describes the perturbation by the Moon, Sun, etc.
- Steer the trajectory of a chaser spacecraft to reach a target spacecraft

Control problem

- Control system

$$
\dot{x}=f(t, x(t), u(t))
$$

where $x \in \mathbb{R}^{n}$ is the state and $u(t) \in \mathbb{R}^{m}$ is a control
 the trajectory $x(t)$ joins one point to the other?

Control problem

- Non-holonomic system:

$$
\begin{aligned}
& \dot{x}=\sum_{i=1}^{m} u_{i}(t) X_{i}(x) \\
& x \in M \text { smooth manifold of dimension } n \\
& u \in L^{1}\left([0, T], \mathbb{R}^{m}\right) \\
& X_{1}, \ldots, X_{m} \text { smooth vector fields }
\end{aligned}
$$

- A point q is accessible from p if there exists a control $u(t)$ and a solution $x(t)$ such that $x(0)=p$ and $x(T)=q$
- Remarks:
- The problem is non-trivial when $m<n$, so $\operatorname{Span}\left(\left\{X_{i}\right\}\right) \neq T M$
- In control theory one typically chooses the control
- In our work, we want to use the 'natural perturbation' of the system as a control

Geometric control

- Lie bracket of two smooth vector fields X, Y on a manifold M :
$[X, Y]_{X}=\frac{1}{2} \lim _{t \rightarrow 0} \frac{\phi_{Y}^{-t} \circ \phi_{X}^{t} \circ \phi_{Y}^{t} \circ \phi_{X}^{t}(x)-x}{t^{2}}$ where $\phi_{X}^{t}, \phi_{Y}^{t}$ are the flows of X and Y
- $\phi_{[X, Y]}^{t^{2}}=\phi_{Y}^{-t} \circ \phi_{X}^{-t} \circ \phi_{Y}^{t} \circ \phi_{X}^{t}+o\left(t^{2}\right)$
- Lie algebra generated by $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}:$
$\operatorname{Lie}(\mathcal{X})=$

- Hörmander condition:

$$
\operatorname{Lie}\left(X_{1}, \ldots, X_{m}\right)=T M
$$

Geometric control

Theorem (Chow, 1940), (Rashevsky, 1938)
Assume that the smooth vector fields X_{1}, \ldots, X_{m} satisfy the Hörmander condition on a connected manifold M. Then for every $p, q \in M$ there exists a piecewise smooth curve connecting p to q, where each piece of the curve is a segment of the local flow of one of the X_{i} 's, followed in positive- or in negative-time.

- Remarks:
- Chow-Rashevsky Theorem: every two points are accessible from one another, for some piecewise constant control u
- The Hörmander condition is satisfied by generic, sufficiently smooth vector fields whenever $m \geqslant 2$ (Gromov, 1996)

Hamiltonian setting

- $H_{\varepsilon}=H_{0}+\varepsilon H_{1}$
- For H_{0}, there exists a normally hyperbolic invariant manifold $(\mathrm{NHIM}) \Lambda_{0}$, with $W^{u}\left(\Lambda_{0}\right)=W^{s}\left(\Lambda_{0}\right)$
- For $H_{\varepsilon}, \Lambda_{0}$ persists as Λ_{ε}
- Under generic conditions on H_{1}, the stable and unstable manifolds of Λ_{ε} have transverse intersections
- There are two dynamics on Λ_{ε}
- Inner dynamics, by the restriction to Λ_{ε}
- Outer dynamics, along homoclinic orbits to Λ_{ε}
- We can reduce to map dynamics f_{ε} via a Poincaré section
- Example:

$$
H_{\varepsilon}(I, \theta, p, q)=h_{0}(I)+\sum_{j=1}^{n}\left(\frac{p_{j}^{2}}{2}+V_{j}\left(q_{j}\right)\right)+\varepsilon H_{1}(I, \theta, p, q)
$$

- Objective: for any $p, q \in \Lambda_{\varepsilon}$, there is a trajectory of H_{ε}, obtained by intertwining the inner and the outer dynamics, that goes from near p to near q

Normally hyperbolic invariant manifold (NHIM)

- $f: M \rightarrow M, \mathcal{C}^{r}$-diffeomorphism
- $\Lambda \subset M$ is a NHIM if
- $T M=T \Lambda \oplus E^{u} \oplus E^{s}$ invariant under Df
- The expansion and contraction rates along $T \Lambda$ are dominated by expansion and contraction rates along E^{u}, E^{s}, respectively
- Λ is \mathcal{C}^{ℓ}-manifold, where ℓ depends on r and on the expansion/contraction rates; even if f is C^{∞}, Λ is only finitely differentiable
- $W^{s}(\Lambda), W^{u}(\Lambda)$ stable and unstable $\mathcal{C}^{\ell-1}$-manifolds; they are foliated by stable and unstable \mathcal{C}^{r}-leaves,

$$
W^{s}(\Lambda)=\bigcup_{z \in \Lambda} W^{s}(z), \quad W^{u}(\Lambda)=\bigcup_{z \in \Lambda} W^{u}(z)
$$

- Canonical projections along fibers

$$
\Omega^{ \pm}: W^{s, u}(\Lambda) \rightarrow \Lambda, \quad \Omega^{ \pm}(z)=z^{ \pm} \Leftrightarrow z \in W^{s, u}\left(z^{ \pm}\right)
$$

Scattering map

- Assume $W^{u}(\Lambda)$ intersects $W^{s}(\Lambda)$ along a homoclinic manifold Γ satisfying strong transversality conditions
- $\Omega_{\mid \Gamma}^{ \pm}$local diffeomorphism
- Restrict 「 to homoclinic channel: $\Omega^{ \pm}$are diffeomorphisms from Γ to $\Omega^{ \pm}(\Gamma)$
- Scattering map:

$$
\begin{aligned}
& \sigma: \operatorname{Dom}(\sigma)=\Omega^{-}(\Gamma) \rightarrow \operatorname{Im}(\sigma)=\Omega^{+}(\Gamma) \\
& \sigma=\Omega^{+} \circ\left(\Omega^{-}\right)^{-1} \\
& \sigma\left(z^{-}\right)=z^{+} \Rightarrow \\
& d\left(f^{-m}(z), f^{-m}\left(z^{-}\right)\right) \rightarrow 0, \\
& d\left(f^{n}(z), f^{n}\left(z^{+}\right)\right) \rightarrow 0, \text { as } m, n \rightarrow \infty
\end{aligned}
$$

- σ is symplectic if M, Λ, f are symplectic
- Systems of interest typically have many homoclinics, hence many scattering maps

Scattering map for perturbed Hamiltonians

- Assume
- Λ_{ε} is a NHIM for f_{ε}, with $\Lambda_{\varepsilon}=k_{\varepsilon}\left(\Lambda_{0}\right)$ for some smooth parametrization k_{ε}
- Γ_{ε} is a homoclinic channel
- σ_{ε} is a scattering map associated to Γ_{ε}
- We identify σ_{ε} on Λ_{ε} with $\sigma_{\varepsilon} \circ k_{\varepsilon}$ on Λ_{0}
- Then there exists a Hamiltonian vector field X such that

$$
\sigma_{\varepsilon}=\sigma_{0}+\varepsilon X \circ \sigma_{0}+O\left(\varepsilon^{2}\right)
$$

where $X=J \nabla S, J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and S given explicitly via Melnikov integrals

- If $\sigma_{0}=\mathrm{Id}, \sigma_{\varepsilon}$ is the one-step Euler method for X
- Refs: (Delshams, de la Llave,Seara, 2008)

Shadowing Lemmas (M.G., de la Llave,Seara,2020)

Lemma (Shadowing of scattering paths)
Let $\gamma_{\varepsilon} \subseteq \Lambda_{\varepsilon}$ be an integral curve of $J \nabla S$ (a scattering path)
Then, there exists an orbit $\left\{x_{i}\right\}$ of σ_{ε} in Λ_{ε} s.t.

- $x_{i+1}=\sigma_{\varepsilon}\left(x_{i}\right)$ for some $k_{i}>0$, and
- $d\left(x_{i}, \gamma_{\varepsilon}\left(t_{i}\right)\right)<c \varepsilon$

Lemma (Shadowing of scattering orbits)
Assume:

- $\left\{x_{i}\right\}_{i=0, \ldots, n}$ is a finite orbit of the scattering map σ_{ε} in Λ_{ε}, i.e. $x_{i+1}=\sigma_{\varepsilon}\left(x_{i}\right)$ for all $i=0, \ldots, n-1$
- The inner map $\left(f_{\varepsilon}\right)_{\mid \Lambda_{\varepsilon}}$ satisfies Poincaré recurrence on Λ_{ε}

Then, there exists an orbit $\left\{z_{i}\right\}$ of f_{ε} in M s.t.

- $z_{i+1}=f_{\varepsilon}^{k_{i}}\left(z_{i}\right)$ for some $k_{i}>0$
- $d\left(z_{i}, x_{i}\right)<c \varepsilon$

Shadowing Lemmas (M.G., de la Llave,Seara,2020)

Lemma (Shadowing of orbits of the IFS given by the scattering map and the inner map)

For every $\delta>0$ and for every pseudo-orbit $\left\{y_{i}\right\}_{i \geqslant 0}$ in Λ_{ε} of the form

$$
y_{i+1}=f_{\varepsilon}^{m_{i}} \circ \sigma_{\varepsilon} \circ f_{\varepsilon}^{n_{i}}\left(y_{i}\right)
$$

with n_{i} and m_{i} sufficiently large (depending on previous ones), there exists an orbit $\left\{z_{i}\right\}_{i \geqslant 0}$ of f_{ε} in M such that, for all $i \geqslant 0$

$$
z_{i+1}=f_{\varepsilon}^{m_{i}+n_{i}}\left(z_{i}\right), \text { and } d\left(z_{i}, y_{i}\right)<\delta
$$

Challenge

- The trajectories given by the Chow-Rashevsky Theorem are followed in positive- and negative-time
- The trajectories given by the scattering map can only be followed in positive time
- Remark:
- (Krener,1974) describes the set that can
 be reached by following only positive-time trajectories

Main Results

Assumptions:
(A1) (\mathscr{M}, ω) is symplectic manifold, $f_{\varepsilon}: \mathscr{M} \rightarrow \mathscr{M}$ smooth, symplectic family of maps, $\varepsilon \in\left(-\varepsilon_{0}, \varepsilon_{0}\right)$
(A2) $\Lambda_{\varepsilon} \subseteq \mathscr{M} \mathrm{NHIM}$ for f_{ε}, s.t. $\Lambda_{\varepsilon}=k_{\varepsilon}\left(\Lambda_{0}\right) \subseteq \Lambda_{\varepsilon}$
(A3) $\exists \mathscr{U}_{0} \subset \Lambda_{0}$, such that almost every point $x \in \mathscr{U}_{\varepsilon}=k_{\varepsilon}\left(\mathscr{U}_{0}\right) \subseteq \Lambda_{\varepsilon}$ is recurrent for $\left(f_{\varepsilon}\right)_{\mid \Lambda_{\varepsilon}}$
(A4) $W^{\mathrm{u}}\left(\Lambda_{\varepsilon}\right)$ and $W^{\mathrm{s}}\left(\Lambda_{\varepsilon}\right)$ intersect transversally along homoclinic channels Γ_{ε}^{j}, for $j=1, \ldots, m$
(A5) Each unperturbed scattering map $\sigma_{0}^{j}=\mathrm{Id}$, and

$$
\sigma_{\varepsilon}^{j}=\operatorname{Id}+\varepsilon X_{j}+O\left(\varepsilon^{2}\right)
$$

where $X_{j}=J \nabla S^{j}$
(A6) The vector fields X_{j} satisfy the Hörmander condition on \mathscr{U}_{0}
(A7) Almost every point in \mathscr{U}_{0} is recurrent for each of the vector fields X_{j}

Main Results

Theorem (Controllability-I)
Assume (A1)-(A7) hold on $\mathscr{U}_{\varepsilon}$.
Then $\exists \varepsilon_{0}>0, c>0, \forall 0<|\varepsilon|<\varepsilon_{0}$, $\forall p, q \in \mathscr{U}_{\varepsilon}, \exists\left(z_{i}\right)_{i=0, \ldots . N}$ such that:

$$
\begin{aligned}
& z_{i+1}=f_{\varepsilon}^{t_{i}}\left(z_{i}\right) \text { for some } t_{i}>0 \\
& d\left(z_{0}, p\right)<c \varepsilon, \quad d\left(z_{N}, q\right)<c \varepsilon
\end{aligned}
$$

Main Results

Corollary (Path shadowing)

Assume the same conditions as before. Then $\exists \varepsilon_{0}>0, c>0, \forall 0<|\varepsilon|<\varepsilon_{0}$, s.t. for the path $\eta_{\varepsilon}:[0,1] \rightarrow \mathscr{U}_{\varepsilon}$ given by $\eta_{\varepsilon}=k_{\varepsilon} \circ \eta$, there exists an orbit $\left(z_{i}\right)_{i=0, \ldots . N}$ of f_{ε} in \mathscr{M} s.t.:

$$
\begin{aligned}
& z_{i+1}=f_{\varepsilon}^{t_{i}}\left(z_{i}\right) \text { for some } t_{i}>0 \\
& d\left(z_{i}, \eta_{\varepsilon}\left(s_{i}\right)\right)<c \varepsilon
\end{aligned}
$$

Sketch of the proof of the theorem on controllability

Replace negative-time orbits by positive-time orbits via recurrence

- Assume (A1)-(A7)
- Follow the paths $\gamma_{i}, i=1, \ldots, 4$, corresponding to one Lie bracket
- $\frac{d \gamma^{1}}{d t}=X_{1}\left(\gamma^{1}\right)$
- $\frac{d \gamma^{2}}{d t}=X_{2}\left(\gamma^{2}\right)$
- $\frac{d \gamma^{3}}{d t}=-X_{1}\left(\gamma^{3}\right)$
- $\frac{d \gamma^{4}}{d t}=-X_{2}\left(\gamma^{4}\right)$
- Follow

- γ_{1} by a positive orbit of X_{1}
- γ_{2} by a positive orbit of X_{2}
- γ_{3} by a positive orbit cut-out from a recurrent orbit of X_{1}
- γ_{4} by a positive orbit cut-out from a recurrent orbit of X_{2}

Sketch of the proof of the theorem on controllability

Replace negative-time orbits by positive-time orbits via recurrence

- Assume (A1)-(A7)
- Follow the paths $\gamma_{i}, i=1, \ldots, 4$, corresponding to one Lie bracket
- $\frac{d \gamma^{1}}{d t}=X_{1}\left(\gamma^{1}\right)$
- $\frac{d \gamma^{2}}{d t}=X_{2}\left(\gamma^{2}\right)$
- $\frac{d \gamma^{3}}{d t}=-X_{1}\left(\gamma^{3}\right)$
- $\frac{d \gamma^{4}}{d t}=-X_{2}\left(\gamma^{4}\right)$
- Follow
- γ_{1} by a positive orbit of X_{1}
- γ_{2} by a positive orbit of X_{2}
- γ_{3} by a positive orbit cut-out from a recurrent orbit of X_{1}
- γ_{4} by a positive orbit cut-out from a recurrent orbit of X_{2}

Sketch of the proof of the theorem on controllability

- Apply the shadowing lemma for scattering paths to obtain a positive orbit in Λ_{ε} of the iterated function system (IFS) defined by $\sigma_{\varepsilon}^{1}, \sigma_{\varepsilon}^{2}$
- Each scattering map is one step of the Euler method with step-size ε for the generating vector field X_{j}
- Use the recurrence of $\left(f_{\varepsilon}\right)_{\mid \Lambda_{\varepsilon}}$ on Λ_{ε}
\wedge_{ε}

- Apply the shadowing lemmas to obtain a true orbit of f_{ε} in \mathscr{M}

Application to product systems

- Assume:
- $\left(\Lambda, \omega_{\Lambda}\right),\left(\Sigma, \omega_{\Sigma}\right)$ compact, symplectic manifolds of any (even) dimension
- $f: \Lambda \rightarrow \Lambda, g: \Sigma \rightarrow \Sigma$ symplectic diffeomorphisms
- $\mathscr{M}=\left(\Lambda \times \Sigma, \omega_{\Lambda} \otimes \omega_{\Sigma}\right)$
- $f_{0}: \mathscr{M} \rightarrow \mathscr{M}$ a symplectic diffeomorphism of the form $f_{0}(x, y)=(f(x), g(y))$
- $f_{\varepsilon}: \mathscr{M} \rightarrow \mathscr{M}$, for $|\varepsilon|<\varepsilon_{0}$, a family of symplectic diffeomorphisms depending smoothly on ε
- Assume:
(C1) g has a hyperbolic fixed point O in Σ
(C2) The Lyapunov exponents of g at O dominate those of f on Λ
(C3) $W_{g}^{\mathrm{s}}(O)$ and $W_{g}^{\mathrm{u}}(O)$ intersect transversally at $Q_{1}, \ldots, Q_{m}, m \geqslant 2$, in Σ, that are geometrically distinct

Application to product systems

- For $\varepsilon=0$ we have:
- $\Lambda_{0}=\Lambda \times\{O\}$ is a NHIM for f_{0}
- $\Gamma_{0}^{k}:=\Lambda \times\left\{Q_{k}\right\}, k=1, \ldots, m$, are homoclinic channels for f_{0}
- the associated scattering maps $\sigma_{0}^{k}: \Lambda_{0} \rightarrow \Lambda_{0}$ are globally defined, symplectic diffeomorphisms of Λ_{0}
- For all $\varepsilon \neq 0$ sufficiently small we have:
- Λ_{ε} is a NHIM for f_{ε}
- there exist homoclinic channels Γ_{ε}^{k} for f_{ε}
- there exist globally defined, symplectic scattering maps $\sigma_{\varepsilon}^{k}: \Lambda_{\varepsilon} \rightarrow \Lambda_{\varepsilon}$ with associated vector fields X_{k}
- Under these conditions, the system described above satisfies the assumptions (A1) - (A5), and (A7)
- Assume that the vector fields $X_{k}, k=1, \ldots, m$, satisfy the Hörmander condition (A6) - generic condition
- Then the controllability and path shadowing results apply

Generalized Hörmander condition

Condition for accessibility by positive-time orbits

- The span of commutators $\operatorname{Lie}^{k}(\mathcal{X})$ up to order k, defines a distribution on Λ
- Also, Lie ${ }^{k}(\mathcal{X})$ is determined by the distribution $\operatorname{Span}(\mathcal{X})$
- Define the (non-negative) cones

$$
\mathcal{C}(\mathcal{X})(x)=\left\{a_{1}(x) X_{1}(x)+\cdots+a_{m}(x) X_{m}(x) \mid a_{1}(x), \ldots a_{m}(x) \geqslant 0\right\}
$$

- Given a cone $\mathcal{C}(\mathcal{X})(x)$, there is a unique linear space of maximal dimension (possibly trivial) in $\mathcal{C}(\mathcal{X})(x)$ $\mathcal{V}:=\mathcal{V}(\mathcal{X})=\mathcal{C}(\mathcal{X}) \cap(-\mathcal{C}(\mathcal{X}))$
- \mathcal{V} determines a distribution
- Since $\operatorname{Lie}(\operatorname{Lie}(\mathcal{V}(X)))=\operatorname{Lie}(\mathcal{V}(X))$, by Frobenius theorem the distribution $\operatorname{Lie}(\mathcal{V}(X))$ is integrable
- Generalized Hörmander condition:

$$
\operatorname{Lie}(\mathcal{V}(\mathcal{X}))=T \Lambda
$$

Generalized Hörmander condition

Theorem (Extension of Chow-Rashevsky Theorem)
Assume that generalized Hörmander condition holds on $\mathscr{U}_{\varepsilon}$. Then, given any points $p, q \in \mathscr{U}_{\varepsilon}$ there is continuous curve, formed by segments of positive orbits of the X_{j} 's starting at p and ending arbitrarily close to q

- Remark: The generalized Hörmander condition is not robust, unless $\mathcal{V}(\mathcal{X})=T \Lambda$

Main Results

Theorem (Controllability-II)
Assume (A1)-(A5) and
(A6') The vector fields X_{j} satisfy the generalized Hörmander condition.
Then $\exists \varepsilon_{0}>0, c>0, \forall 0<|\varepsilon|<\varepsilon_{0}, \forall p, q \in \mathscr{U}_{\varepsilon}, \exists\left(z_{i}\right)_{i=0, \ldots N}$ such that:

$$
\begin{aligned}
& z_{i+1}=f_{\varepsilon}^{t_{i}}\left(z_{i}\right) \text { for some } t_{i}>0, \\
& d\left(z_{0}, p\right)<c \varepsilon, \quad d\left(z_{N}, q\right)<c \varepsilon .
\end{aligned}
$$

- Remarks:
- This result does not require the vector fields X_{j} to be recurrent
- Systems with time-reversal symmetries yield vector fields X_{j} that satisfy (A6')

Exponential map

- A vector field X can be interpreted as a derivation operator
- $\exp (X)$ is defined as the time-1 map of the evolution PDE

$$
\partial_{t} \phi=X \phi
$$

- Using the method of characteristics: $\exp (X) \phi=\phi \circ A_{X}$ for A_{X} being the time-1 map of the ODE $\dot{x}=X(x)$
- We identify

$$
\exp (X) \equiv A_{X}
$$

so $\exp (X)$ can be viewed as a map/vector field/derivation

- Expansion

$$
\exp (X) \phi=\sum_{n \geqslant 0} \frac{1}{n!} X^{n} \phi \quad \text { where } X^{n}=\underbrace{X \ldots X}_{n \text { times }}
$$

- If $\phi \in \mathcal{C}^{r}$ with $r<\infty$, we truncate the series at some order M

High-order expansions of scattering maps

- Consider higher-order expansions of the scattering maps

$$
\sigma_{\varepsilon}^{j}=\exp \left(X_{\varepsilon}^{j}\right)
$$

where

$$
X_{\varepsilon}^{j}=\sum_{n \geqslant 1} \varepsilon^{j} X_{n}^{j}
$$

is a formal power series

- Degenerate case: it is possible that

$$
\operatorname{Lie}\left(X_{1}^{1}, \ldots, X_{1}^{m}\right) \neq T M
$$

but

$$
\operatorname{Lie}\left(X_{\varepsilon}^{1}, \ldots, X_{\varepsilon}^{m}\right)=T M \text { for } 0<\varepsilon<\varepsilon_{0}
$$

The Campbell-Hausdorff formula

- For X, Y vector fields

$$
\exp (X) \exp (Y)=\exp (C H(X, Y))
$$

where

$$
\begin{aligned}
C H(X, Y)= & \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sum_{r_{i}+s_{i}>0} \frac{\left[X^{\left(r_{1}\right)}, Y^{\left(s_{1}\right)}, \ldots, X^{\left(r_{n}\right)}, Y^{\left(s_{n}\right)}\right]}{\left(\sum_{i=1}^{n}\left(r_{i}+s_{i}\right)\right) \Pi_{i=1}^{n} r_{i}!s_{i}!} \\
= & X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X,[X, Y]]-[Y,[X, Y]]) \\
& -\frac{1}{48}([X,[X,[X, Y]]]+[Y,[X,[X, Y]])+\ldots
\end{aligned}
$$

(Dynkin,1947)

- If we are considering \mathcal{C}^{r} vector fields instead, the formal power series stop being valid after a finite number of terms N
- If r is sufficiently large, the number N can be taken arbitrarily large

Degenerate Hörmander condition

- For every multi-index $\alpha=\left(\pm j_{1}, \ldots, \pm j_{n}\right)$, with $\left(j_{1}, \ldots, j_{n}\right) \in\{1, \ldots, m\}^{n}$, we define the vector field X_{ε}^{α} by

$$
\sigma_{\varepsilon}^{ \pm j_{n}} \circ \cdots \circ \sigma_{\varepsilon}^{ \pm j_{1}}=\exp \left(X_{\varepsilon}^{\alpha}\right)+O\left(\varepsilon^{M}\right)
$$

- X_{ε}^{α} can be computed in terms of the the original X_{ε}^{j}, through repeated applications of the Campbell-Hausdorff formula
- Degenerate Hörmander condition:
(A6") For a point $p \in T \Lambda_{\varepsilon}$ there exists $N>0$ and ε_{0} such that for all $0<\varepsilon<\varepsilon_{0}$ we have

$$
\operatorname{Span}\left(\left\{X_{\varepsilon}^{\alpha}\right\}_{|\alpha| \leqslant N}\right)_{p}=\left(T \Lambda_{\varepsilon}\right)_{p}
$$

Main Results

Theorem (Controllability-III)

Assume (A1)-(A5) and (A6") hold on some relatively compact, open subset $\mathscr{U}_{\varepsilon}$ of Λ_{ε} of size $O(1)$.
Then, for every pair of points p and q in $\mathscr{U}_{\varepsilon}$, we can move from p to q, up to an error of $\mathcal{O}\left(\varepsilon^{K_{\text {min }}}\right)$, for some $K_{\text {min }} \geqslant 1$, by repeated applications of scattering maps and their inverses, i.e., by an orbit of the IFS

$$
\left\{\sigma_{\varepsilon}^{j},\left(\sigma_{\varepsilon}^{j}\right)^{-1}, j=1, \ldots, m\right\}
$$

If, additionally, the scattering maps satisfy the recurrence condition (A7), we can move from p to q, up to an error of $\mathcal{O}\left(\varepsilon^{K_{\text {min }}}\right)$, by repeated applications of the scattering maps only.

Sketch of the proof

- Note that if $X_{\varepsilon}^{1}=\mathcal{O}\left(\varepsilon^{k_{1}}\right)$ and $X_{\varepsilon}^{2}=\mathcal{O}\left(\varepsilon^{k_{2}}\right)$, then $\left[X_{\varepsilon}^{1}, X_{\varepsilon}^{2}\right]$ may have an order higher than $\mathcal{O}\left(\varepsilon^{k_{1}+k_{2}}\right)$
- $X_{\varepsilon}^{\alpha}=\varepsilon^{K_{\alpha}} \tilde{X}_{\varepsilon}^{\alpha}+O\left(\varepsilon^{M}\right)$, with $\tilde{X}_{\varepsilon}^{\alpha} \neq 0$
- $\angle\left(X_{\varepsilon}^{\alpha}, X_{\varepsilon}^{\alpha^{\prime}}\right)=\varepsilon^{K_{\alpha \alpha^{\prime}}} \tilde{X}_{\varepsilon}^{\alpha \alpha^{\prime}}+O\left(\varepsilon^{M}\right)$, with $\tilde{X}_{\varepsilon}^{\alpha \alpha^{\prime}} \neq 0$
- Starting from p, we can move $\mathcal{O}\left(\varepsilon^{0.9}\right)$ along the integral curve of $\tilde{X}_{\varepsilon}^{\alpha}$, by
 repeated applications of $\exp \left(X_{\varepsilon}^{\alpha}\right)$ of step-size $O\left(\varepsilon^{K_{\alpha}}\right)$, with very small global error

Sketch of the proof

- There exists a ball B of radius $\mathcal{O}\left(\varepsilon^{0.9}\right)$ around p, such that for every point $r \in B$ we can move, from p to an $\mathcal{O}\left(\varepsilon^{K_{\text {min }}}\right)$-neighborhood of r, by repeated applications of different $\exp \left(X_{\varepsilon}^{\alpha}\right)$'s, with a small global error; here,
$K_{\text {min }}=\min \left\{K_{\alpha}, K_{\alpha \alpha^{\prime}}\right\}$
- Choose a geodesic curve from p to q; cover it with balls as above and move from one ball to another

