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Objectives

» General problem of dynamics (Poincaré):
understand the effect of small
perturbations on integrable Hamiltonian
systems

» Hamiltonian system:
Ho : (p,q) € R*" — Ho(p,q) € R

> The total energy Hp is a conserved

quantity

» A Hamiltonian is integrable if there exists
n ‘independent’, conserved quantities <
there exists a smooth foliation of the
phase space by invariant tori



Objectives

» Perturbed Hamiltonian system
H. = Ho+ ety

where Hp = integrable Hamiltonian,
H; = Hamiltonian perturbation,
€ = small parameter

» Given two points p, g, show that there exists
a solution of H. that goes from p to g

» Motivation: in problems from celestial
mechanics and space mission design, the
Hamiltonians Hy, H; are explicit; e.g.,

> Hp describes motion of a spacecraft relative
to the Earth

» H; describes the perturbation by the Moon,
Sun, etc.

> Steer the trajectory of a chaser spacecraft to
reach a target spacecraft




Control problem

» Control system
x = f(t,x(t), u(t))

where x € R" is the state and u(t) € R™ .

is a control N oot
» For any pair of points, does there exist a

control u(-) € L([0, T],R™) such that : L

the trajectory x(t) joins one point to the

other?




Control problem

» Non-holonomic system:

%= ui(6)X(x)
i=1

x € M smooth manifold of dimension n
ve ([0, T],R™)
X1, ..., Xm smooth vector fields

» A point q is accessible from p if there exists a control u(t)
and a solution x(t) such that x(0) = p and x(T) = g
» Remarks:

» The problem is non-trivial when m < n, so Span({X;}) # TM
> In control theory one typically chooses the control

> In our work, we want to use the ‘natural perturbation’ of the
system as a control



Geometric control

» Lie bracket of two smooth vector fields
X, Y on a manifold M:

_to —to tO t _
[X, Y]i = L limq Dr2fxe% B (x)—x

where ¢} ,¢}, are the flows of X and Y
» Ofx.v) = Oy 0 8x' 0 gl 0 bk +o(t?)
> Lie algebra generated by

X = (X1, X, ..., Xm}:

Lie(X) =

Span (X, [X5, X1, [[X X71, Xil. - )

» Hormander condition:

dixdydix(x) dyd'x(x)

Oty txdtydtx(x)

Lie(X1, ..., Xm) = TM
| |




Geometric control

Theorem (Chow,1940), (Rashevsky,1938)

Assume that the smooth vector fields Xi, ..., X, satisfy the
Hormander condition on a connected manifold M. Then for every
p, q € M there exists a piecewise smooth curve connecting p to g,
where each piece of the curve is a segment of the local flow of one
of the X;'s, followed in positive- or in negative-time.

» Remarks:
» Chow-Rashevsky Theorem: every two points are accessible
from one another, for some piecewise constant control u
» The Hormander condition is satisfied by generic, sufficiently
smooth vector fields whenever m > 2 (Gromov,1996)



Hamiltonian setting

»>

>

H. = Hy 4+ eH

For Hy, there exists a normally hyperbolic invariant manifold
(NHIM) Ao, with WY(Ag) = W*(Ao)

For H., A persists as A,

Under generic conditions on Hj, the stable and unstable
manifolds of A, have transverse intersections
There are two dynamics on A,

> Inner dynamics, by the restriction to A,
> Outer dynamics, along homoclinic orbits to A,

We can reduce to map dynamics f. via a Poincaré section

Example:
2
H(10.0.0) = ho) + S50 (F 4 (@) ) + <hh(1.6.p.0)

Objective: for any p,q € A, there is a trajectory of H,,
obtained by intertwining the inner and the outer dynamics,
that goes from near p to near g



Normally hyperbolic invariant manifold (NHIM)

» f: M — M, C'-diffeomorphism
» Ac M is a NHIM if

> TM = TA@® EY @ ES invariant under Df
> The expansion and contraction rates along TA are dominated
by expansion and contraction rates along E“, E*, respectively

v

A is C’-manifold, where ¢ depends on r and on the
expansion/contraction rates; even if f is C®, A is only finitely
differentiable

Ws(A), W¥(A) stable and unstable C*~!-manifolds; they are
foliated by stable and unstable C"-leaves,

Wen) = | we(z), wein = wi(2)

zeN zeN

v

» Canonical projections along fibers

QF WSUA) > A, QF(z2) = 2t & ze WoU(2h)



Scattering map

» Assume WY(A) intersects W*(A) along a
homoclinic manifold I satisfying strong
transversality conditions

> QlJF local diffeomorphism

> Restrict [ to homoclinic channel:
Q* are diffeomorphisms from I to Q*(I)

» Scattering map:
o :Dom(o) = Q*(F) — Im(o) = QN

oc=Qto(Q)?
o(z7)=zt =
d(f~"(z),f="(z7)) = 0,

d(f"(z),f"(z")) > 0, as m,n — o
» o is symplectic if M, A, f are symplectic

» Systems of interest typically have many
homoclinics, hence many scattering maps

f'm(z) //,’7




Scattering map for perturbed Hamiltonians

» Assume

» Acis a NHIM for £, with A, = k-(Ag) for some smooth
parametrization k.

> [, is a homoclinic channel

> 0. is a scattering map associated to I,

> We identify . on A; with 0. 0 k. on A

v

Then there exists a Hamiltonian vector field X such that

0. = 0o +eXoog+ 0(e?)

where X = JVS, J = ((l) B/), and S given explicitly via
Melnikov integrals

v

If o9 = 1d, o, is the one-step Euler method for X
Refs: (Delshams,de la Llave,Seara,2008)

v



Shadowing Lemmas (M.G. de la Llave,Seara,2020)

Lemma (Shadowing of scattering paths)
Let 7. € A. be an integral curve of JVS (a scattering path)
Then, there exists an orbit {x;} of 0. in A; s.t.

» x;i+1 = 0:(x;) for some k; > 0, and

> d(xi, 76 (t) < ce

Lemma (Shadowing of scattering orbits)

Assume:
» {xi}i-o0,...,n is a finite orbit of the scattering map o, in A, i.e.
Xjiy1 = 0e(x;) forall i =0,...,n—1
> The inner map (f:)|a. satisfies Poincaré recurrence on A,
Then, there exists an orbit {z;} of - in M s.t.
> Zip1 = fek" (z;) for some k; > 0

> d(Z,',X,') < ce



Shadowing Lemmas (M.G. de la Llave,Seara,2020)

Lemma (Shadowing of orbits of the IFS given by the scattering
map and the inner map)

For every § > 0 and for every pseudo-orbit {y;}i=0 in A of the form
Yiy1 = £ oo 0 £ (y;),

with n; and m; sufficiently large (depending on previous ones),
there exists an orbit {z;};>¢ of £ in M such that, for all i >0

ziv1 = £ (Z;), and d(z,y;) < 6.



Challenge

» The trajectories given by the
Chow-Rashevsky Theorem are followed in
positive- and negative-time

» The trajectories given by the scattering
map can only be followed in positive time

» Remark:

» (Krener,1974) describes the set that can
be reached by following only
positive-time trajectories




Main Results

Assumptions:

(A1) (A ,w) is symplectic manifold, . : .# — .# smooth,
symplectic family of maps, € € (—¢o, €o)

(A2) A. € . NHIM for £, s.t. A. = k(Ag) S Az

(A3) 3% < Mo, such that almost every point
X € U = k(%) = N is recurrent for (f.)|a,

(A4) WU(A;) and W5(A.) intersect transversally along homoclinic
channels T, for j =1,...,m

(A5) Each unperturbed scattering map oJ(; =1d, and

ot =Id +eX; + 0(£?)

where X; = JVS/

(A6) The vector fields X; satisfy the Hormander condition on %

(A7) Almost every point in % is recurrent for each of the vector
fields X;



Main Results

Theorem (Controllability-I)

Assume (A1)-(A7) hold on Z..
Then 3g9 > 0, ¢ > 0, VO < |¢] < &,
Vp,q € %, 3(zj)i—o,...n such that:

ziy1 = £fi(z) for some t; > 0,

d(zo,p) < ce, d(zn,q) < ce.




Main Results

Corollary (Path shadowing)

Assume the same conditions as before.

Then 3g9 > 0, ¢ > 0, V0 < |g| < &g, s.t. for
the path 7. : [0,1] — % given by n. = k- o,
there exists an orbit (z)j=o,.n of 2 in A s.t.

ziy1 = £i(z) for some t; > 0,

d(zj,n-(si)) < ce.



Sketch of the proof of the theorem on controllability

Replace negative-time orbits by
positive-time orbits via recurrence
» Assume (Al)-(AT7)
> Follow the paths ~v;, i =1,...,4,
corresponding to one Lie bracket

>

>

>

>

3
th4 —X1(7?)
T = X (")

» Follow

>

>

>

~1 by a positive orbit of X3
Y2 by a positive orbit of X3

~3 by a positive orbit cut-out from a

recurrent orbit of X;

4 by a positive orbit cut-out from a

recurrent orbit of X5

recurrent .=y =

orbit K
of X,

positive-time
orbit of X,

positive-time orbit of X;
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of X, o
4 positive-time
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Sketch of the proof of the theorem on controllability

Apply the shadowing lemma for
scattering paths to obtain a
positive orbit in A, of the iterated
function system (IFS) defined by
oz, 02

Each scattering map is one step of
the Euler method with step-size ¢

for the generating vector field X;

Ne

Use the recurrence of (f:)|a. on A:

Apply the shadowing lemmas to
obtain a true orbit of £, in A




Application to product systems

» Assume:

>

>

(A, wp), (X, ws) compact, symplectic
manifolds of any (even) dimension
f:AN—> N\ g: ¥ — ¥ symplectic
diffeomorphisms

M = (/\ X 2, WA ®w):)

fo: M — M a symplectic diffeomorphism
of the form fo(x, y) — (£(x), &(1))

fo: M — M, for |g| < eg, a family of
symplectic diffeomorphisms depending
smoothly on ¢

» Assume:

(C1)
(C2)

(C3)

g has a hyperbolic fixed point O in &
The Lyapunov exponents of g at O
dominate those of f on A

W;(0) and W;'(O) intersect transversally
at Q1,...,Qm, m>=2, in X, that are
geometrically distinct




Application to product systems

v

For € = 0 we have:
» Ao = A x {0} is a NHIM for fy
> Fé = Ax{Qk}, k=1,...,m, are homoclinic channels for fy
> the associated scattering maps Ué : Ng — g are globally
defined, symplectic diffeomorphisms of Ag

v

For all € # 0 sufficiently small we have:

> A. is a NHIM for £,

> there exist homoclinic channels I'* for £

> there exist globally defined, symplectic scattering maps
aé‘ : N\ — A, with associated vector fields X

v

Under these conditions, the system described above satisfies
the assumptions (A1) — (Ab), and (A7)

» Assume that the vector fields Xy, k = 1,..., m, satisfy the
Hormander condition (A6) — generic condition

v

Then the controllability and path shadowing results apply



Generalized Hormander condition

Condition for accessibility by positive-time orbits

»>

The span of commutators Lie“(X') up to order k, defines a
distribution on A

Also, LieX(X) is determined by the distribution Span(X)
Define the (non-negative) cones

C(X)(x) ={a1(x)X1(x) + -+ + am(x) Xm(x) | a1(x), . . . am(x) = 0}
Given a cone C(X)(x), there is a unique linear space of
maximal dimension (possibly trivial) in C(X)(x)

V:i=V(X) =C(X)n (—C(X))

)V determines a distribution

Since Lie(Lie(V(X))) = Lie(V(X)), by Frobenius theorem the
distribution Lie(V(X)) is integrable

Generalized Hormander condition:

Lie(V(X)) = TA|




Generalized Hormander condition

Theorem (Extension of Chow-Rashevsky Theorem)

Assume that generalized Hormander condition holds on %..

Then, given any points p, g € %. there is continuous curve, formed
by segments of positive orbits of the Xj's starting at p and ending
arbitrarily close to ¢

» Remark: The generalized Hormander condition is not robust,
unless V(X) = TA



Main Results

Theorem (Controllability-I1)

Assume (A1)-(A5) and

(A6’) The vector fields X; satisfy the generalized Hormander
condition.

Then 3g9 > 0, ¢ > 0, V0 < |e| < €9, Vp, q € %, (zj)i—o,..n such
that:

ziv1 = £i(z) for some t; > 0,
d(207p) < ¢cg, d(ZN7 q) < Cce.

» Remarks:
> This result does not require the vector fields X; to be recurrent

> Systems with time-reversal symmetries yield vector fields X;
that satisfy (A6")



Exponential map

» A vector field X can be interpreted as a derivation operator

» exp(X) is defined as the time-1 map of the evolution PDE

Oep = X¢p
» Using the method of characteristics: exp(X)¢ = ¢ o Ax for
Ax being the time-1 map of the ODE x = X(x)

» We identify
exp(X) = Ax

so exp(X) can be viewed as a map/vector field/derivation

» Expansion

exp(X)¢ = Z X"¢ where X" = X ... X

”>0 n times

» If ¢ € C" with r < oo, we truncate the series at some order M



High-order expansions of scattering maps

» Consider higher-order expansions of the scattering maps
ol = exp(X{)

where
J — J xJ
Xi=> X
n=1
is a formal power series

» Degenerate case: it is possible that
Lie(X{,...,X{") # T™M

but
Lie(X},...,X™) = TM for 0 < ¢ < &g



The Campbell-Hausdorff formula
» For X, Y vector fields

exp(X) exp(Y) = exp(CH(X, Y))

where

(—1)"+t 3 [X(m) vy o x(m) y(sn)]
n ri+si>0 (27:1(” T S’.))nfilr’.!s"!

CH(X,Y) = i
n=1

XY+ S YT+ s (DG Y - [V X VD)
1

= 28 GGG YIT IV DG DX YD +

(Dynkin,1947)
» If we are considering C" vector fields instead, the formal power
series stop being valid after a finite number of terms N

» If r is sufficiently large, the number N can be taken arbitrarily
large



Degenerate Hormander condition

» For every multi-index o = (43, ..., £jp), with
(1,---5Jn) €{1,...,m}", we define the vector field X& by

oo oot = exp(XY) + O(e My

» X can be computed in terms of the the original XZ, through
repeated applications of the Campbell-Hausdorff formula

» Degenerate Hormander condition:

(A6”) For a point p € TA; there exists N > 0 and &g such
that for all 0 < & < gp we have

Span({X}jaj<n)p = (TA:)p




Main Results

Theorem (Controllability-III)

Assume (A1)-(A5) and (A6”) hold on some relatively compact,
open subset % of A. of size O(1).
Then, for every pair of points p and q in %, we can move from p
to g, up to an error of O(EK’“"‘), for some Knin = 1, by repeated
applications of scattering maps and their inverses, i.e., by an orbit
of the IFS

(o), ()7L, j=1,...,m}.

If, additionally, the scattering maps satisfy the recurrence condition
(A7), we can move from p to g, up to an error of O(ghmin), by
repeated applications of the scattering maps only.



Sketch of the proof

> Note that if X} = O(¢%) and
X2 = O(e"2), then [X21, X2] may have an
order higher than O(gkitk)

> XO = eKa X 4 0(eM), with X& # 0

> L(XO‘ X2 = efaar X2 1 0(eM), with
Xaa £0

> Starting from p, we can move 0(29)
along the integral curve of X&, by
repeated applications of exp(X%) of
step-size O(X), with very small global
error




Sketch of the proof

> There exists a ball B of radius O(¢29) .
around p, such that for every point re B
we can move, from p to an “
O(ghmin)-neighborhood of r, by repeated ’
applications of different exp(X%)'s, with a
small global error; here,

Kmin = min{Ka, Kaa/}
» Choose a geodesic curve from p to g; :

cover it with balls as above and move
from one ball to another

o
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