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Objectives

� General problem of dynamics (Poincaré):
understand the effect of small
perturbations on integrable Hamiltonian
systems

� Hamiltonian system:
H0 : pp, qq P R2n ÞÑ H0pp, qq P R#

9p � �BH0
Bq pp, qq

9q � BH0
Bp pp, qq

� The total energy H0 is a conserved
quantity

� A Hamiltonian is integrable if there exists
n ‘independent’, conserved quantities ô
there exists a smooth foliation of the
phase space by invariant tori



Objectives

� Perturbed Hamiltonian system

Hε � H0 � εH1

where H0 � integrable Hamiltonian,
H1 � Hamiltonian perturbation,
ε � small parameter

� Given two points p, q, show that there exists
a solution of Hε that goes from p to q

� Motivation: in problems from celestial
mechanics and space mission design, the
Hamiltonians H0,H1 are explicit; e.g.,

� H0 describes motion of a spacecraft relative
to the Earth

� H1 describes the perturbation by the Moon,
Sun, etc.

� Steer the trajectory of a chaser spacecraft to
reach a target spacecraft



Control problem

� Control system

9x � f pt, xptq, uptqq

where x P Rn is the state and uptq P Rm

is a control

� For any pair of points, does there exist a
control up�q P L1pr0,T s,Rmq such that
the trajectory xptq joins one point to the
other?



Control problem

� Non-holonomic system:

9x �
m̧

i�1

ui ptqXi pxq

x P M smooth manifold of dimension n

u P L1pr0,T s,Rmq

X1, . . . ,Xm smooth vector fields

� A point q is accessible from p if there exists a control uptq
and a solution xptq such that xp0q � p and xpT q � q

� Remarks:
� The problem is non-trivial when m   n, so SpanptXiuq � TM
� In control theory one typically chooses the control
� In our work, we want to use the ‘natural perturbation’ of the

system as a control



Geometric control

� Lie bracket of two smooth vector fields
X ,Y on a manifold M:

rX ,Y sx �
1
2 limtÑ0

ϕ�t
Y �ϕ�t

X �ϕt
Y �ϕ

t
X pxq�x

t2

where ϕt
X ,ϕ

t
Y are the flows of X and Y

� ϕt2

rX ,Y s � ϕ�t
Y � ϕ�t

X � ϕt
Y � ϕt

X � opt2q

� Lie algebra generated by
X � tX1,X2, . . . ,Xmu:
LiepX q �
Span pXi , rXi ,Xj s, rrXi ,Xj s,Xk s, . . .q

� Hörmander condition:

LiepX1, . . . ,Xmq � TM

X

Y

X

Y

x φt
X(x)

φtYφtX(x)φ-tXφtYφtX(x)

φ-tYφ-tXφtYφtX(x)



Geometric control

Theorem (Chow,1940), (Rashevsky,1938)

Assume that the smooth vector fields X1, . . . ,Xm satisfy the
Hörmander condition on a connected manifold M. Then for every
p, q P M there exists a piecewise smooth curve connecting p to q,
where each piece of the curve is a segment of the local flow of one
of the Xi ’s, followed in positive- or in negative-time.

� Remarks:
� Chow-Rashevsky Theorem: every two points are accessible

from one another, for some piecewise constant control u
� The Hörmander condition is satisfied by generic, sufficiently

smooth vector fields whenever m ¥ 2 (Gromov,1996)



Hamiltonian setting

� Hε � H0 � εH1

� For H0, there exists a normally hyperbolic invariant manifold
(NHIM) Λ0, with W upΛ0q �W spΛ0q

� For Hε, Λ0 persists as Λε

� Under generic conditions on H1, the stable and unstable
manifolds of Λε have transverse intersections

� There are two dynamics on Λε

� Inner dynamics, by the restriction to Λε

� Outer dynamics, along homoclinic orbits to Λε

� We can reduce to map dynamics fε via a Poincaré section

� Example:

HεpI , θ, p, qq � h0pI q �
°n

j�1

�
p2j
2 � Vjpqjq



� εH1pI , θ, p, qq

� Objective: for any p, q P Λε, there is a trajectory of Hε,
obtained by intertwining the inner and the outer dynamics,
that goes from near p to near q



Normally hyperbolic invariant manifold (NHIM)

� f : M Ñ M, Cr -diffeomorphism
� Λ � M is a NHIM if

� TM � TΛ` E u ` E s invariant under Df
� The expansion and contraction rates along TΛ are dominated

by expansion and contraction rates along E u, E s , respectively

� Λ is Cℓ-manifold, where ℓ depends on r and on the
expansion/contraction rates; even if f is C8, Λ is only finitely
differentiable

� W spΛq, W upΛq stable and unstable Cℓ�1-manifolds; they are
foliated by stable and unstable Cr -leaves,

W spΛq �
¤
zPΛ

W spzq, W upΛq �
¤
zPΛ

W upzq

� Canonical projections along fibers

Ω� : W s,upΛq Ñ Λ, Ω�pzq � z� ô z PW s,upz�q



Scattering map

� Assume W upΛq intersects W spΛq along a
homoclinic manifold Γ satisfying strong
transversality conditions

� Ω�|Γ local diffeomorphism

� Restrict Γ to homoclinic channel:
Ω� are diffeomorphisms from Γ to Ω�pΓq

� Scattering map:
σ : Dompσq � Ω�pΓq Ñ Impσq � Ω�pΓq
σ � Ω� � pΩ�q�1

σpz�q � z� ñ
dpf �mpzq, f �mpz�qq Ñ 0,
dpf npzq, f npz�qq Ñ 0, as m, n Ñ8

� σ is symplectic if M,Λ, f are symplectic

� Systems of interest typically have many
homoclinics, hence many scattering maps

z+

Wu(z-)Ws(z+)

Λ
z-

z

 
f -m(z-) f n(z+)

Γ



Scattering map for perturbed Hamiltonians

� Assume
� Λε is a NHIM for fε, with Λε � kεpΛ0q for some smooth

parametrization kε
� Γε is a homoclinic channel
� σε is a scattering map associated to Γε
� We identify σε on Λε with σε � kε on Λ0

� Then there exists a Hamiltonian vector field X such that

σε � σ0 � εX � σ0 � Opε2q

where X � J∇S , J �
�
0 �I
I 0

�
, and S given explicitly via

Melnikov integrals

� If σ0 � Id, σε is the one-step Euler method for X

� Refs: (Delshams,de la Llave,Seara,2008)



Shadowing Lemmas (M.G.,de la Llave,Seara,2020)

Lemma (Shadowing of scattering paths)

Let γε � Λε be an integral curve of J∇S (a scattering path)
Then, there exists an orbit txiu of σε in Λε s.t.

� xi�1 � σεpxi q for some ki ¡ 0, and

� dpxi , γεpti qq   cε

Lemma (Shadowing of scattering orbits)

Assume:

� txiui�0,...,n is a finite orbit of the scattering map σε in Λε, i.e.
xi�1 � σεpxi q for all i � 0, . . . , n � 1

� The inner map pfεq|Λε
satisfies Poincaré recurrence on Λε

Then, there exists an orbit tziu of fε in M s.t.

� zi�1 � f kiε pzi q for some ki ¡ 0

� dpzi , xi q   cε



Shadowing Lemmas (M.G.,de la Llave,Seara,2020)

Lemma (Shadowing of orbits of the IFS given by the scattering
map and the inner map)

For every δ ¡ 0 and for every pseudo-orbit tyiui¥0 in Λε of the form

yi�1 � f mi
ε � σε � f

ni
ε pyi q,

with ni and mi sufficiently large (depending on previous ones),
there exists an orbit tziui¥0 of fε in M such that, for all i ¥ 0

zi�1 � f mi�ni
ε pzi q, and dpzi , yi q   δ.



Challenge

� The trajectories given by the
Chow-Rashevsky Theorem are followed in
positive- and negative-time

� The trajectories given by the scattering
map can only be followed in positive time

� Remark:
� (Krener,1974) describes the set that can

be reached by following only
positive-time trajectories

p A  (p)

q



Main Results

Assumptions:

(A1) pM , ωq is symplectic manifold, fε : M Ñ M smooth,
symplectic family of maps, ε P p�ε0, ε0q

(A2) Λε � M NHIM for fε, s.t. Λε � kεpΛ0q � Λε

(A3) DU0 � Λ0, such that almost every point
x P Uε � kεpU0q � Λε is recurrent for pfεq|Λε

(A4) W upΛεq and W spΛεq intersect transversally along homoclinic
channels Γjε, for j � 1, . . . ,m

(A5) Each unperturbed scattering map σj
0 � Id, and

σj
ε � Id� εXj � Opε2q

where Xj � J∇S j

(A6) The vector fields Xj satisfy the Hörmander condition on U0

(A7) Almost every point in U0 is recurrent for each of the vector
fields Xj



Main Results

Theorem (Controllability-I)

Assume (A1)-(A7) hold on Uε.
Then Dε0 ¡ 0, c ¡ 0, @0   |ε|   ε0,
@p, q P Uε, Dpzi qi�0,...N such that:

zi�1 � f tiε pzi q for some ti ¡ 0,

dpz0, pq   cε, dpzN , qq   cε.

p

q

U

z0

mz



Main Results

Corollary (Path shadowing)

Assume the same conditions as before.
Then Dε0 ¡ 0, c ¡ 0, @0   |ε|   ε0, s.t. for
the path ηε : r0, 1s Ñ Uε given by ηε � kε � η,
there exists an orbit pzi qi�0,...N of fε in M s.t.:

zi�1 � f tiε pzi q for some ti ¡ 0,

dpzi , ηεpsi qq   cε.

U

η



Sketch of the proof of the theorem on controllability

Replace negative-time orbits by
positive-time orbits via recurrence

� Assume (A1)-(A7)
� Follow the paths γi , i � 1, . . . , 4,
corresponding to one Lie bracket

�
dγ1

dt � X1pγ
1q

�
dγ2

dt � X2pγ
2q

�
dγ3

dt � �X1pγ
3q

�
dγ4

dt � �X2pγ
4q

� Follow
� γ1 by a positive orbit of X1

� γ2 by a positive orbit of X2

� γ3 by a positive orbit cut-out from a
recurrent orbit of X1

� γ4 by a positive orbit cut-out from a
recurrent orbit of X2

recurrent 
orbit 
of X2

positive-time orbit of X1

γ4

γ3

γ2

γ1

positive-time 
orbit of X2

recurrent orbit of X1



Sketch of the proof of the theorem on controllability

Replace negative-time orbits by
positive-time orbits via recurrence

� Assume (A1)-(A7)
� Follow the paths γi , i � 1, . . . , 4,
corresponding to one Lie bracket

�
dγ1

dt � X1pγ
1q

�
dγ2

dt � X2pγ
2q

�
dγ3

dt � �X1pγ
3q

�
dγ4

dt � �X2pγ
4q

� Follow
� γ1 by a positive orbit of X1

� γ2 by a positive orbit of X2

� γ3 by a positive orbit cut-out from a
recurrent orbit of X1

� γ4 by a positive orbit cut-out from a
recurrent orbit of X2

positive-time 
orbit 
of X2

positive-time orbit of X1

γ4

γ3

γ2

γ1

positive-time 
orbit of X2

positive-time orbit of X1



Sketch of the proof of the theorem on controllability

� Apply the shadowing lemma for
scattering paths to obtain a
positive orbit in Λε of the iterated
function system (IFS) defined by
σ1
ε , σ

2
ε

� Each scattering map is one step of
the Euler method with step-size ε
for the generating vector field Xj

� Use the recurrence of pfεq|Λε
on Λε

� Apply the shadowing lemmas to
obtain a true orbit of fε in M

x0

x1

x2

xT

Λ

...

σε

ε
σε

σεγε

J   S

∆



Application to product systems

� Assume:
� pΛ, ωΛq, pΣ, ωΣq compact, symplectic

manifolds of any (even) dimension
� f : ΛÑ Λ, g : ΣÑ Σ symplectic

diffeomorphisms
� M � pΛ� Σ, ωΛ b ωΣq
� f0 : M Ñ M a symplectic diffeomorphism

of the form f0px , yq � pf pxq, gpyqq
� fε : M Ñ M , for |ε|   ε0, a family of

symplectic diffeomorphisms depending
smoothly on ε

� Assume:

(C1) g has a hyperbolic fixed point O in Σ
(C2) The Lyapunov exponents of g at O

dominate those of f on Λ
(C3) W s

g pOq and W u
g pOq intersect transversally

at Q1, . . . ,Qm, m ¥ 2, in Σ, that are
geometrically distinct

K

Σ



Application to product systems

� For ε � 0 we have:
� Λ0 � Λ� tOu is a NHIM for f0
� Γk0 :� Λ� tQku, k � 1, . . . ,m, are homoclinic channels for f0
� the associated scattering maps σk

0 : Λ0 Ñ Λ0 are globally
defined, symplectic diffeomorphisms of Λ0

� For all ε �� 0 sufficiently small we have:
� Λε is a NHIM for fε
� there exist homoclinic channels Γkε for fε
� there exist globally defined, symplectic scattering maps

σk
ε : Λε Ñ Λε with associated vector fields Xk

� Under these conditions, the system described above satisfies
the assumptions (A1) – (A5), and (A7)

� Assume that the vector fields Xk , k � 1, . . . ,m, satisfy the
Hörmander condition (A6) – generic condition

� Then the controllability and path shadowing results apply



Generalized Hörmander condition
Condition for accessibility by positive-time orbits

� The span of commutators LiekpX q up to order k , defines a
distribution on Λ

� Also, LiekpX q is determined by the distribution SpanpX q
� Define the (non-negative) cones

CpX qpxq � ta1pxqX1pxq � � � � � ampxqXmpxq | a1pxq, . . . ampxq ¥ 0u

� Given a cone CpX qpxq, there is a unique linear space of
maximal dimension (possibly trivial) in CpX qpxq
V :� VpX q � CpX q X p�CpX qq

� V determines a distribution

� Since LiepLiepVpX qqq � LiepVpX qq, by Frobenius theorem the
distribution LiepVpX qq is integrable

� Generalized Hörmander condition:

LiepVpX qq � TΛ



Generalized Hörmander condition

Theorem (Extension of Chow-Rashevsky Theorem)

Assume that generalized Hörmander condition holds on Uε.
Then, given any points p, q P Uε there is continuous curve, formed
by segments of positive orbits of the Xj ’s starting at p and ending
arbitrarily close to q

� Remark: The generalized Hörmander condition is not robust,
unless VpX q � TΛ



Main Results

Theorem (Controllability-II)

Assume (A1)-(A5) and

(A6’) The vector fields Xj satisfy the generalized Hörmander
condition.

Then Dε0 ¡ 0, c ¡ 0, @0   |ε|   ε0, @p, q P Uε, Dpzi qi�0,...N such
that:

zi�1 � f tiε pzi q for some ti ¡ 0,

dpz0, pq   cε, dpzN , qq   cε.

� Remarks:
� This result does not require the vector fields Xj to be recurrent
� Systems with time-reversal symmetries yield vector fields Xj

that satisfy (A6’)



Exponential map

� A vector field X can be interpreted as a derivation operator

� exppX q is defined as the time-1 map of the evolution PDE

Btϕ � Xϕ

� Using the method of characteristics: exppX qϕ � ϕ � AX for
AX being the time-1 map of the ODE 9x � X pxq

� We identify
exppX q � AX

so exppX q can be viewed as a map/vector field/derivation

� Expansion

exppX qϕ �
¸
n¥0

1

n!
X nϕ where X n � X . . .Xloomoon

n times

� If ϕ P Cr with r   8, we truncate the series at some order M



High-order expansions of scattering maps

� Consider higher-order expansions of the scattering maps

σj
ε � exppX j

εq

where
X j
ε �

¸
n¥1

εjX j
n

is a formal power series

� Degenerate case: it is possible that

LiepX 1
1 , . . . ,X

m
1 q � TM

but
LiepX 1

ε , . . . ,X
m
ε q � TM for 0   ε   ε0



The Campbell-Hausdorff formula
� For X ,Y vector fields

exppX q exppY q � exppCHpX ,Y qq

where

CHpX ,Y q �
8̧

n�1

p�1qn�1

n

¸
ri�si¡0

rX pr1q,Y ps1q, . . . ,X prnq,Y psnqs

p
°n

i�1pri � si qqΠn
i�1ri !si !

�X � Y �
1

2
rX ,Y s �

1

12
prX , rX ,Y ss � rY , rX ,Y ssq

�
1

48
prX , rX , rX ,Y sss � rY , rX , rX ,Y ssq � . . .

(Dynkin,1947)

� If we are considering Cr vector fields instead, the formal power
series stop being valid after a finite number of terms N

� If r is sufficiently large, the number N can be taken arbitrarily
large



Degenerate Hörmander condition

� For every multi-index α � p�j1, . . . ,�jnq, with
pj1, . . . , jnq P t1, . . . ,mu

n, we define the vector field Xα
ε by

σ�jn
ε � � � � � σ�j1

ε � exppXα
ε q � OpεMq

� Xα
ε can be computed in terms of the the original X j

ε , through
repeated applications of the Campbell-Hausdorff formula

� Degenerate Hörmander condition:

(A6”) For a point p P TΛε there exists N ¡ 0 and ε0 such
that for all 0   ε   ε0 we have

SpanptXα
ε u|α|¤Nqp � pTΛεqp



Main Results

Theorem (Controllability-III)

Assume (A1)-(A5) and (A6”) hold on some relatively compact,
open subset Uε of Λε of size Op1q.
Then, for every pair of points p and q in Uε, we can move from p
to q, up to an error of OpεKminq, for some Kmin ¥ 1, by repeated
applications of scattering maps and their inverses, i.e., by an orbit
of the IFS

tσj
ε, pσ

j
εq
�1, j � 1, . . . ,mu.

If, additionally, the scattering maps satisfy the recurrence condition
(A7), we can move from p to q, up to an error of OpεKminq, by
repeated applications of the scattering maps only.



Sketch of the proof

� Note that if X 1
ε � Opεk1q and

X 2
ε � Opεk2q, then rX 1

ε ,X
2
ε s may have an

order higher than Opεk1�k2q

� Xα
ε � εKαX̃α

ε � OpεMq, with X̃α
ε � 0

� =pXα
ε ,X

α1
ε q � εKαα1 X̃αα1

ε � OpεMq, with
X̃αα1
ε � 0

� Starting from p, we can move Opε0.9q
along the integral curve of X̃α

ε , by
repeated applications of exppXα

ε q of
step-size OpεKαq, with very small global
error

p



Sketch of the proof

� There exists a ball B of radius Opε0.9q
around p, such that for every point r P B
we can move, from p to an
OpεKminq-neighborhood of r , by repeated
applications of different exppXα

ε q’s, with a
small global error; here,
Kmin � mintKα,Kαα1u

� Choose a geodesic curve from p to q;
cover it with balls as above and move
from one ball to another

p

r

p

q
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