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The KdV equation

The KdV (Korteweg—de-Vries) equation is a nonlinear wave equation given by

9 9 &
sralxt) =6(5-alxt))alx t) = 55a(x 1), (xt) €RxRy

® Introduced by Boussinesque in 1877 and later studied by Korteweg and de-Vries in 1895.

® Models shallow water waves and admits soliton solutions, see Scott Russell 1834: "wave
of translation”.

® First example of an integrable PDE (linearizable via the scattering transform), see
Gardner, Greene, Kruskal, Miura 1968/ Lax 1968.

e Admits finite-gap solutions deeply related to compact Riemann surfaces, see lts,
Matveev 1975.

Are special solutions of the KdV equation generic? = Riemann-Hilbert approach (later)
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KdV solitons

One-soliton solution: observed by Scott Russell in 1834 in a water canal

oo

Muilti-soliton solutions: observed by Zabusky and Kruskal 1965 (see also
Fermi—Pasta—Ulam-Tsingou experiment)
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Figure: A two-soliton solution at time t = —1,0,1 (taken from Dunajski 2012)
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Lax 1968: Define the Schrodinger operator

and
3

9, s,
8 ~-3 +64(x, t)——|—3—q(x t)

P=Pq)=— o

The following equivalence holds:

L¢(Z7X7 t) = Z2'¢(Z,X, t)
Py (z,x,t) = S1(z,x, 1)

q(x, t) solves the KdV Eq. <= { is solvable

Proof: Both conditions are equivalent to the Lax pair equation %L = [P, L].
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Periodic KdV solutions

q(x, t) solves the KdV equation = spectrum o(L) is conserved in time:

o(La(x, 1) = o (L(a(x,0)))
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Periodic KdV solutions

q(x, t) solves the KdV equation = spectrum o(L) is conserved in time:

o(La(x, 1) = o (L(a(x,0)))
If g(x, t) is periodic in x, then
o(L(q)) = UZolEzi, E2it1] (1)
=- Bandstructure!
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Finite gap potentials

q is called a finite-gap potential if

o(L(q)) = U2 ylEzi, E2ital, with Epgy1 = +00, (2)

i.e. Ex = +oo for k >2g + 1.

Eo £y E Es Esg +00

= As the KdV flow is isospectral finite-gap initial data remains finite-gap for all time.
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Riemann surface

Related to a finite gap spectrum U?ZO[EQ,-, Esj11] define a Riemann surface by gluing two
copies of C along [Ej, Epit1]
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Finite gap KdV solutions

Theorem (Akhiezer, Dubrovin, Its, Matveev)

All reflectionless periodic finite gap solutions of the KdV equation with spectrum
J(L(q)) = [Eo, E1] U [EQ, E3] u-.-u [E2g, OO]

can be described explicitly in terms of the Jacobi theta function related to the hyperelliptic

Riemann surface with two sheets C \ U?:O[Eg,-, Esit1] (Exg+1 = o0) glued along the spectrum,
and related quantities:

2

0
q(X7 t) = _28X2

log ©(Ux + Wt + D) — 2h

These solutions can be characterized by a Riemann—Hilbert problem.

Belokolos, A. Bobenko, V. Enol’skii, A. Its and V. Matveev, Algebro-Geometric Approach to Nonlinear
Integrable Equations, Springer Series in Nonlinear Dynamics, Berlin, 1994.
10/40



Jacobi Theta functions

The genus 1 Jacobi Theta function (here C/(Z + 7Z) = R):
O(z|r) = Z elKrt2ka)mi

kez
Sum converges absolutely as Im(7) > 0. We have:

® periodicity = O(z + 1|7) = ©(z|1)
® quasi-periodicity = ©(z + 7|7) = e " 2"ZQ(z|T)
multivalued holomorphic function on C/(Z +7Z) = R.

Applications (see Olver et al. NIST):
® Number Theory: Riemann Zeta function, sum of squares...
® Physics: string theory, statistical mechanics
® Integrable wave equations and Riemann-Hilbert theory
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Jacobi Theta functions

Figure: Jacobi Theta function (source Wikipedia)
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Outline of the Talk

2. Riemann—Hilbert problems
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What is a Riemann—Hilbert problem?

m(z)

m(z)

Y ... finite union of smooth oriented arcs
m(z) ... holomorphic vector-valued function on C\ X

14 /40



What is a Riemann—Hilbert problem?

m(z)
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Definition of Riemann—Hilbert problem

Riemann-Hilbert problem
Given X, and a jump matrix v(k), k € ¥, find a holomorphic vector-valued function m(z) on
C\ %, such that
my (k) = m_(k)v(k), keZX.
and

Jim,m(z) = m

Remark: m(z) is a row vector = matrix multiplication from the right.
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Example: scalar R-H problem

Find a scalar-valued function «: C/([—ic, —ia] U [ia, ic]) — C s.t.:

ic

ia

—la

—ic
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Example: scalar R-H problem
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Example: scalar R-H problem

Find a scalar-valued function «: C/([—ic, —ia] U [ia, ic]) — C s.t.:

* y(k) =iv-(k), k€ [iaic] ic
® vi(k) = —iv—(k), k€ [-ia, —ic] ia
® im0 v(z) =1, R
® ~(z) has at most fourth root singularities —ia
at the endpoints +ia, tic.
—ic

. . 22432 /4
= Unique solution v(z) = <22+Cz)
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1 gap KdV solution

Let qgap(x, t) be a periodic 1-gap KdV solution with o(L(q)) = [—c?, —a?] U [0, c0).
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1 gap KdV solution

Let qgap(x, t) be a periodic 1-gap KdV solution with o(L(q)) = [—c?, —a?] U [0, c0).

= Qgap(X, t) can be characterized by a R-H problem:
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R-H problem for g,

Find a vector-valued function, holomorphic in C\ [—ic, ic]

w(zﬁﬂ t) = (¢1(27X’ t)? w2(z7xv t))

satisfying the
¢ jump condition ¢ (k, x,t) = _(k,x, t)v(k,x,t), k€ [—ic,ic]

(,) 6) , k € [ic,ia],

(
v(k,x, t) = <Oi Bl> k € [~ia, —ic],
(

with Q = Ux + Wt + D and o(L(q)) = [-c?, —a’] U [0, o).
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1 gap R-H problem cont.

® the symmetry condition,

Tﬂ(—ZaX, t) = w(ZaX, t) <§_) é) )
® and the normalization condition,

zIer;ow(z,x, t)=(1 1).
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1 gap R-H problem cont.

® the symmetry condition,

Tﬂ(—ZaX, t) = w(ZaX, t) <§_) é) )
® and the normalization condition,

ZIer;ow(z,x, t)=(1 1).
Question: How can we obtain a 1 gap solution ggap(x,t) from ¢ (z, x, t)?
Answer: If y(z,x,t) = (1 1)+ ang%(f’t)(—l 1)+ O(%) then

0
qgap(X, t) = &anp(x, t) —2h— 2% — c?

is a 1 gap solution of the KdV equation.
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Sketch of proof

Note: Uniqueness is equivalent to

1o satisfies R-H problem with normalization Ii_}m o(z) = (0 0) = vo(z) = (0 0)

(assume two solutions 1, 1, define 1o = 1 — 1) ...)
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Sketch of proof

Note: Uniqueness is equivalent to

1o satisfies R-H problem with normalization Ii_}m Yo(z) = (0 0) = vo(z) = (0 0)

(assume two solutions 1, 1, define 1o = 1 — 1) ...)
Step 1: Show that a unique R-H solution ) exists.
Step 2: Define Lax pair L, P with potential gg,p = %anp(x7 t) —2h —a%> — 2.

Step 3: Show that 1 = L — 2% (or 19 = Pip — £:1b) solve modified R-H problem and
vanish at infinity.

Step 4: By uniqueness of ¢ conclude
Lip — 2% =0
0
Py ——1¢ =0
¥ ot
Lax pair equation = The potential gg,p solves the KdV equation
(for details see P., Teschl '21). 21/40



Solution of R-H problem

The explicit solution v = (11, >) is given by (here A is the Abel map):

72 + 2

V2(z) = ¢1(—2).

1/ —ir— 182 z) -1 2 (zi
wl(z):<z2+az> e@(A(z) 2)0 (Az) - 9) 0 (%)

For the explicit derivation via a scalar R-H problem on the torus see P., Teschl '21.

From ¢ we obtain the 1-gap Its—Matveev KdV solution:

2
Qgap(X, t) = _288x2 log ©(Ux + Wt + D) — 2h
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Outline of the Talk

3. Applications: KdV with steplike initial data
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The steplike KdV Cauchy problem

Consider the KdV initial value problem
0 0 03
Sl t) = 6( a0 1) alx. ) — 5 5alx 1) (1) ERxR,

with steplike initial data g(x,0) = qo(x) (¢ > 0):

2

qo(x) — 0, as x — +oo,
qo(x) — —c*, as x — —o0,

Technical details:

o Jo > e@(|go(x)| + |qo(—x) + ¢*[)dx < 00, Cp>c >0,
o [(x8+1)g(x)|dx <00, i=1,..,11
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Existence result

Theorem (Egorova, Grunert, Teschl '09)

This Cauchy problem has a unique global solution q(-,t) € C3(R) satisfying

+o0o
| 090601+ la(x, 0+ P <o, teRs,
0

25 /40



A numerical solution

_li—m;vzﬂfu%“ﬁu'\ﬂ“uptﬂuﬂlﬂu'w Un\]ﬂﬂ[ u 50 N m m”

Figure: Numerically computed solution g(x,t) of the KdV equation at time t = 10, with initial condition

q(x,0) = 3(erf(x) — 1) — Bsech(x — 1) [taken from Egorova, Gladka, Kotlyarov, Teschl '13] 2640



Asymptotic behaviour

We observe the following behaviour: f'“_mwf;,wwﬂﬁtﬂpﬂu”h\m N J i

-2

® x < —6c?t: decaying dispersive tail ‘
o —6c%t < x < 4c?t: elliptic wave

® 4c%t < x: finitely many solitons -or

The elliptic wave region is related to the 1 gap solutions from the previous slides!
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Modulated 1 gap solution

\ (] s0 [ 100 150

Figure: Modulated 1 gap solution
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Rigorous analysis

Question: How to get a quantitative and rigorous result?

Answer: Riemann—Hilbert method!
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Gardner, Greene, Kruskal, Miura method

The direct scattering transform (in the absence of solitons):

q(x,t) — S(t) = {R(k,t), k € R; x(k,t), k € [—ic,ic]}

Theorem (cf. Gardner, Greene, Kruskal, Miura '68/Lax '68)

R(k,t) = R(k,0)e8ik’t,

q(x, t) satisfies KdV Eq. <— (ko t) = x(k, 0)68ik3t,

This effectively linearizes the KdV equation.
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(Inverse) Scattering Transform

linear time evolution

5(0) S(t)
ST IST
q(x,0) --------------- > q(x,t)

Key Insight:

The inverse scattering transform (IST) can be formulated as a Riemann—Hilbert problem.
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Steplike KdV Riemann—Hilbert problem

M(z) = M(z, x, t) is uniquely characterized by the following Riemann—Hilbert problem:
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Steplike KdV Riemann—Hilbert problem cont.

Find a vector-valued function M(z) = M(z, x, t) which is holomorphic away from R U [—ic, ic]
and satisfies:

® The jump condition M, (k) = M_(k)V (k)

1—|R(k)]? —R(k)e *®)
(ot RO e
V(k) = (X(k)t"’(k) 2) k € (0,ic],
0]
<(1) X(k)l ) k € [~ic,0),

Where the phase function ®(k) = ®(k, x, t) is given by ®(k) = 8ik3t + 2ikx.
Here R(k), x(k) is the scattering data of the initial data go(x).
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Steplike KdV Riemann—Hilbert problem cont.

® the symmetry condition: M(—z) = M(z) (2 (1)> ,

® and the normalization condition: lim,_,., M(z) = (1 1).
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Steplike KdV Riemann—Hilbert problem cont.

® the symmetry condition: M(—z) = M(z) (2 (1)> ,

® and the normalization condition: lim,_,., M(z) = (1 1).

Question: How can we obtain the steplike solution g(x, t) from M(z, x, t)?
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Steplike KdV Riemann—Hilbert problem cont.

® the symmetry condition: M(—z) = M(z) (2 (1)> ,

® and the normalization condition: lim,_,., M(z) = (1 1).

Question: How can we obtain the steplike solution g(x, t) from M(z, x, t)?

Answer: If M(z,x,t) = (1 1)+ 20 (—1 1)+ O(L) then

2zi

0
aQ(Xv t)

is the solution of the steplike KdV Cauchy problem with g(x,0) = go(x).

q(x, t) =

34/40



Deift—Zhou nonlinear steepest descent method

General idea of the Deift—Zhou nonlinear steepest method for R-H problems:
Step 1: Start with a R-H problem (e.g. the steplike KdV problem for M)
Step 2: Perform a series of
® jump matrix factorizations
® matrix conjugations
® contour deformations
to arrive at a R-H problem which is a perturbation of an explicitly solvable R-H problem.

Step 3: Solve this simple R-H problem, and bound the error.
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Initial jump contour for steplike KdV R-H problem

The jump contour for the initial R-H problem for the steplike KdV problem:

ic

—ic
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Deformation and conjugation steps

After a few conjugation and deformation steps we obtain an equivalent Riemann—Hilbert
problem with jump contour (see Egorova et al. '13):

® dashed contour: jump matrices converge exponentially to the identity matrix,
® interval [—ic,ic]: jump matrices equal to the 1 gap R-H problem from before,

® points tia: need a local parametrix solution (exponential convergence nonuniform).
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Main result

Theorem (Egorova, P., Teschl '23 / P. '23)

In the transition region, —6c? + & < x/t < 4c® — ¢ with € > 0, the solution q(x, t) with
steplike initial data qo(x) satisfies:

q(X’ t) = anp(X, t) + O(til)v
where
8
Qa5 b)) = 8 ~5 logO(Ux + Wt + D 1) —2h

is a 1 gap periodic solution of the KdV equation, with h, U, W, D, T depending only on the
slowly varying parameter £ = %
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Thank you!
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