Doubly periodic models of the Aztec diamond

Arno Kuijlaars, Mateusz Piorkowski

KU Leuven

Ohio Probability Seminar,
Ohio State University, 15th Nov. 2023

KULEUVEN

Outline of the Talk

1. Background on the Aztec diamond
2. Biased 2×2-periodic Aztec diamond
3. Algebraic properties of arctic curves
4. Matrix-valued orthogonal polynomials

Outline of the Talk

1. Background on the Aztec diamond

2. Biased 2×2-periodic Aztec diamond

3. Algebraic properties of arctic curves
4. Matrix-valued orthogonal polynomials

Tilings of the Aztec diamond

Goal: Tile the following region with 2×1 and 1×2 dominos:

Tilings of the Aztec diamond

Goal: Tile the following region with 2×1 and 1×2 domino:

Types of dominos

North

Uniform tilings of Aztec diamonds

Random equidistributed tilings of size 10, 100, 1000 [taken from Debin, de Kemmeter, Ruelle '23]
[Jockusch, Propp, Shor '98]: Arctic Circle Theorem.

Tilings as non-intersecting paths

West

East

Figure: Line segments on the dominos.

Tilings as non-intersecting paths

West

East
$\square \Rightarrow \square$ North

Figure: Line segments on the dominos.

Figure: Non-intersecting paths on a tiled Aztec Diamond.

Fluctuations of the arctic curve

Figure: Upper path separating the frozen from the mixed region, [taken from Johansson '05]

Fluctuations of the arctic curve

Theorem (Johansson '05)

The upper most path, separating the frozen north region from the mixed region, converges to the Airy process in the sense of convergence of finite-dimensional distributions.

Corollary

The upper most path is distributed according to the Tracy-Widom distribution F_{2}.

Fluctuations of the arctic curve comt.

Figure: taken from Debin, de Kemmeter, Ruelle '23

Conjecture

It has been conjectured that the first n upper most paths converge to the Airy line ensemble, see [Debin, de Kemmeter, Ruelle '23] for numerical evidence.

Outline of the Talk

1. Background on the Aztec diamond

2. Biased 2×2-periodic Aztec diamond
3. Algebraic properties of arctic curves
4. Matrix-valued orthogonal polynomials

Aztec diamond as a dimer model

Domino tilings of the Aztec diamond are equivalent to dimer configurations on part of the square lattice.

Dimer models

- graph: $G=(V, E)$,
- edge weights: $w: E \rightarrow \mathbb{R}_{+}$,
- dimer configurations:

$$
\mathcal{M}=\{M: M \subseteq E \text { is a perfect matching (dimer configuration) of } G\}
$$

\Rightarrow Dimer model:

$$
\operatorname{Prob}(M)=\frac{\prod_{e \in M} w(e)}{\sum_{M^{\prime} \in \mathcal{M}} \prod_{e^{\prime} \in M^{\prime}} w\left(e^{\prime}\right)}
$$

Periodic weightings (unbiased case)

Simplest model with frozen, rough and smooth phase,
see [Kenyon, Okounkov, Sheffield '06],

Tiling of a large 2×2-periodic Aztec diamond

Tilings of large Aztec diamonds under the unbiased 2×2-periodic weighting exhibit three phases: frozen, rough, smooth.

- frozen: dominos are perfectly correlated (no randomness),
- rough: domino correlations decay quadratically with distance,
- smooth: domino correlations decay exponentially with distance.

Taken from Duits, Kuijlaars '21

Periodic weightings (biased case)

- model introduced by [Borodin, Duits '23],
- the bias parameter $b>1$ favors horizontal vs. vertical dominos
- is related to a linear flow on a genus-1 Riemann surface (see [Borodin, Duits '23] and [Chhita, Duits '23])

Tiling of a large biased 2×2-periodic Aztec diamond

Tilings of large Aztec diamonds under the biased 2×2-periodic weighting exhibit three phases: frozen, rough, smooth; but are more "flattened":

generated through code provided by Christophe Charlier

Global coordinates of the Aztec diamond

Global coordinates of the Aztec diamond cont.

Some interesting questions

The behaviour of random tilings near an arctic curve is of great interest.

Some interesting questions

The behaviour of random tilings near an arctic curve is of great interest.

- What are the geometric/algebraic properties of the arctic curve?
\Rightarrow singularities, degree, irreducibility ...

Some interesting questions

The behaviour of random tilings near an arctic curve is of great interest.

- What are the geometric/algebraic properties of the arctic curve?
\Rightarrow singularities, degree, irreducibility ...
- What are the domino fluctuations/correlations away and near the arctic curve?
\Rightarrow Dominos give rise to a determinantal point process (see [Kenyon, '97]).
\Rightarrow What is the correlation kernel? (see [Beffara, Chhita, Johansson '18, '22])

Some interesting questions

The behaviour of random tilings near an arctic curve is of great interest.

- What are the geometric/algebraic properties of the arctic curve?
\Rightarrow singularities, degree, irreducibility ...
- What are the domino fluctuations/correlations away and near the arctic curve?
\Rightarrow Dominos give rise to a determinantal point process (see [Kenyon, '97]).
\Rightarrow What is the correlation kernel? (see [Beffara, Chhita, Johansson '18, '22])
- What about more general models of the Aztec diamond?
\Rightarrow higher periodicity (see [Berggren, Borodin '23]), nonperiodic weights (e.g. $q^{\text {vol }}$ weights), general weights ...

Some interesting questions

The behaviour of random tilings near an arctic curve is of great interest.

- What are the geometric/algebraic properties of the arctic curve?
\Rightarrow singularities, degree, irreducibility ...
- What are the domino fluctuations/correlations away and near the arctic curve?
\Rightarrow Dominos give rise to a determinantal point process (see [Kenyon, '97]).
\Rightarrow What is the correlation kernel? (see [Beffara, Chhita, Johansson '18, '22])
- What about more general models of the Aztec diamond?
\Rightarrow higher periodicity (see [Berggren, Borodin '23]), nonperiodic weights (e.g. $q^{\text {vol }}$ weights), general weights ...

In this talk we will focus on algebraic properties of the arctic curve.

Techniques

Techniques:

- Matrix-valued orthogonal polynomials related to the Aztec diamond as introduced to tiling models in [Duits, Kuijlaars '21] using the Lindström-Gessel-Viennot Lemma

Techniques

Techniques:

- Matrix-valued orthogonal polynomials related to the Aztec diamond as introduced to tiling models in [Duits, Kuijlaars '21] using the Lindström-Gessel-Viennot Lemma
- Iterative Wiener-Hopf factorizations introduced by [Berggren, Duits '19] (see [Borodin, Duits '23], [Berggren, Borodin '23]),

Techniques

Techniques:

- Matrix-valued orthogonal polynomials related to the Aztec diamond as introduced to tiling models in [Duits, Kuijlaars '21] using the Lindström-Gessel-Viennot Lemma
- Iterative Wiener-Hopf factorizations introduced by [Berggren, Duits '19] (see [Borodin, Duits '23], [Berggren, Borodin '23]),
- Domino shuffle algorithm for the Aztec diamond, see, [Propp '01], [Chhita, Duits '23],

Techniques

Techniques:

- Matrix-valued orthogonal polynomials related to the Aztec diamond as introduced to tiling models in [Duits, Kuijlaars '21] using the Lindström-Gessel-Viennot Lemma
- Iterative Wiener-Hopf factorizations introduced by [Berggren, Duits '19] (see [Borodin, Duits '23], [Berggren, Borodin '23]),
- Domino shuffle algorithm for the Aztec diamond, see, [Propp '01], [Chhita, Duits '23],

Towards the end we will mention the matrix-valued orthogonal polynomials.

Outline of the Talk

1. Background on the Aztec diamond

2. Biased 2×2-periodic Aztec diamond

3. Algebraic properties of arctic curves
4. Matrix-valued orthogonal polynomials

Aztec diamond and Riemann surfaces

- [Kenyon, Okounkov, Sheffield '06]:
\Rightarrow Doubly periodic tiling models are related to Riemann surfaces (denoted by \mathcal{R}).

Aztec diamond and Riemann surfaces

- [Kenyon, Okounkov, Sheffield '06]:
\Rightarrow Doubly periodic tiling models are related to Riemann surfaces (denoted by \mathcal{R}).
- For 2×2-periodic models of the Aztec diamond $\Rightarrow \mathcal{R}$ is of genus 1 .

Aztec diamond and Riemann surfaces

- [Kenyon, Okounkov, Sheffield '06]:
\Rightarrow Doubly periodic tiling models are related to Riemann surfaces (denoted by \mathcal{R}).
- For 2×2-periodic models of the Aztec diamond $\Rightarrow \mathcal{R}$ is of genus 1 .
- Local domino correlations at $\left(\xi_{1}, \xi_{2}\right) \in[-1,1]^{2}$ are determined by the location of zeros of a meromorphic differential $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ on \mathcal{R}.

The meromorphic differential $\mathbf{d} \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

Some facts about d $\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$:

- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}^{\prime} d z$ is a meromorphic differential on \mathcal{R}.

The meromorphic differential $\mathbf{d} \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$
Some facts about $\mathbf{d} \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$:

- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}^{\prime} d z$ is a meromorphic differential on \mathcal{R}.
- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ is linear in ξ_{1}, ξ_{2} :

$$
d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=d \boldsymbol{\Phi}_{0}+\xi_{1} d \boldsymbol{\Phi}_{1}+\xi_{2} d \boldsymbol{\Phi}_{2}
$$

The meromorphic differential $\mathbf{d} \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

Some facts about d $\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$:

- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}^{\prime} d z$ is a meromorphic differential on \mathcal{R}.
- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ is linear in ξ_{1}, ξ_{2} :

$$
d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=d \boldsymbol{\Phi}_{0}+\xi_{1} d \boldsymbol{\Phi}_{1}+\xi_{2} d \boldsymbol{\Phi}_{2}
$$

- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ has four poles at fixed locations with residues

$$
2\left(1+\xi_{1}\right), 2\left(1-\xi_{1}\right),-2\left(1+\xi_{2}\right),-2\left(1-\xi_{2}\right)
$$

$\Rightarrow d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ has four zeros on \mathcal{R}.

The meromorphic differential $\mathbf{d} \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

Some facts about d $\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$:

- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=\boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}^{\prime} d z$ is a meromorphic differential on \mathcal{R}.
- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ is linear in ξ_{1}, ξ_{2} :

$$
d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}=d \boldsymbol{\Phi}_{0}+\xi_{1} d \boldsymbol{\Phi}_{1}+\xi_{2} d \boldsymbol{\Phi}_{2}
$$

- $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ has four poles at fixed locations with residues

$$
2\left(1+\xi_{1}\right), 2\left(1-\xi_{1}\right),-2\left(1+\xi_{2}\right),-2\left(1-\xi_{2}\right)
$$

$\Rightarrow d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ has four zeros on \mathcal{R}.

- location of the four zeros as a function of the coordinates $\left(\xi_{1}, \xi_{2}\right) \in[-1,1]^{2}$ determines the phase of the Aztec diamond!
[Duits, Kuijlaars 21'] via matrix-valued orthogonal polynomials; [Berggren 21'], [Borodin, Duits 23'], [Berggren, Borodin 23'] via Wiener-Hopf factorizations.

Frozen Region

$$
\Phi_{\xi_{1}, \xi_{2}}^{\prime}\left(s_{j}\right) d z=0
$$

Figure: Location of the zeros for the frozen region
In the frozen region domino correlations are deterministic \Rightarrow No randomness!

Rough Region

Figure: Location of the zeros for the rough region

In the rough region domino correlations decay quadratically with the distance.

Smooth Region

Figure: Location of the zeros for the smooth region

In the smooth region domino correlations decay exponentially.

Algebraic form of the arctic curve

The arctic curve separating the different regions corresponds to $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ having a double zero. Theorem (Kuijlaars, P.)
The arctic curve of the biased 2×2-periodic Aztec diamond is an algebraic curve of degree 8 and can be written explicitly in terms of Jacobi theta functions.

This result should generalize to the $k \times \ell$-periodic model recently considered in [Berggren, Borodin 23'].

Algebraic form of the arctic curve

The arctic curve separating the different regions corresponds to $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$ having a double zero.

Theorem (Kuijlaars, P.)

The arctic curve of the biased 2×2-periodic Aztec diamond is an algebraic curve of degree 8 and can be written explicitly in terms of Jacobi theta functions.

This result should generalize to the $k \times \ell$-periodic model recently considered in [Berggren, Borodin 23'].
Jacobi theta function:

$$
\Theta(z \mid \tau):=\sum_{k \in \mathbb{Z}} e^{\left(k^{2} \tau+2 k z\right) \pi i}, \quad z \in \mathbb{C}
$$

Sum converges absolutely as $\operatorname{Im}(\tau)>0$. We have:

$$
\left.\begin{array}{ll}
\text { periodicity } & \Rightarrow \Theta(z+1 \mid \tau)=\Theta(z \mid \tau) \\
\text { quasi-periodicity } & \Rightarrow \Theta(z+\tau \mid \tau)=e^{-\pi i \tau-2 \pi i z} \Theta(z \mid \tau)
\end{array}\right\} \text { multivalued on } \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})
$$

The Abel map

$\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$

Abel map

Algebraic form of the arctic curve

The degree 8 polynomial \mathcal{J} can be written in terms of Jacobi theta functions of the Riemann surface $\mathcal{R} \cong \mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$:

$$
\mathcal{J}\left(\xi_{1}, \xi_{2}\right)=\frac{\prod_{i \neq j} \Theta\left(\zeta_{i}-\zeta_{j}-K \mid \tau\right)}{\left[\prod_{i, \ell} \Theta\left(\zeta_{i}-\nu_{\ell}-K \mid \tau\right)\right]^{2}}\left[\left(1-\xi_{1}^{2}\right)\left(1-\xi_{2}^{2}\right)\right]^{2}
$$

Here

- $\zeta_{i}=\zeta_{i}\left(\xi_{1}, \xi_{2}\right)$ and ν_{ℓ} are the images of the zeros and poles of the meromorphic differential $d \Phi_{\xi_{1}, \xi_{2}}$ under the Abel map,
- Θ satisfies $\Theta(-K \mid \tau)=0$, where $K=\frac{1}{2}+\frac{\tau}{2}$ is the Riemann constant.

We also have an expression in terms of b and α, but it is too long to fit here.

Gallery of arctic curves (increasing periodicity)

bias: $b=2$; periodicity: $\alpha=1.1$

bias: $b=2$; periodicity: $\alpha=2$

bias: $b=2$; periodicity: $\alpha=10$

Gallery of arctic curves (increasing bias)

bias: $b=1$; periodicity: $\alpha=1.2$

bias: $b=4$; periodicity: $\alpha=1.2$

bias: $b=20$; periodicity: $\alpha=1.2$

Outline of the Talk

1. Background on the Aztec diamond

2. Biased 2×2-periodic Aztec diamond
3. Algebraic properties of arctic curves
4. Matrix-valued orthogonal polynomials

Matrix-valued orthogonal polynomials

Theorem (Duits, Kuijlaars 21'; informal version)

The domino-domino correlations of periodic dimer models (including the Aztec diamond) can be expressed via the reproducing kernel $R_{N}(w, z)$ of certain matrix-valued orthogonal polynomials.

Matrix-valued orthogonal polynomials

Theorem (Duits, Kuijlaars 21'; informal version)

The domino-domino correlations of periodic dimer models (including the Aztec diamond) can be expressed via the reproducing kernel $R_{N}(w, z)$ of certain matrix-valued orthogonal polynomials.

Double integral formula for the correlation kernel in the doubly periodic setting:

$$
\begin{aligned}
{\left[K_{2 N}((j, 2 x+\varepsilon),\right.} & \left.\left.\left(j^{\prime}, 2 y+\varepsilon^{\prime}\right)\right)\right]_{\varepsilon, \varepsilon^{\prime} \in\{0,1\}}=-\frac{\chi_{j>j^{\prime}}}{2 \pi i} \oint_{\gamma_{0,1}} A_{j^{\prime}, j}(z) z^{y-x} \frac{d z}{z} \\
& +\frac{1}{(2 \pi i)^{2}} \oint_{\gamma_{0,1}} \oint_{\gamma_{0,1}} A_{j^{\prime}, 4 N}(w) \mathbf{R}_{\mathbf{N}}(\mathbf{w}, \mathbf{z}) A_{0, j}(z) \frac{w^{y}}{z^{x+1} w^{N}} d z d w .
\end{aligned}
$$

Non-Hermitian orthogonality

[Duits, Kuijlaars '21]: doubly periodic tiling models \Rightarrow contour orthogonality

Non-Hermitian orthogonality

[Duits, Kuijlaars '21]: doubly periodic tiling models \Rightarrow contour orthogonality
Biased 2×2-periodic Aztec diamond:

$$
W(z)=\frac{1}{(z-1)^{2}}\left(\begin{array}{cc}
\left(z+b^{2}\right)^{2}+\alpha^{2}\left(b^{2}+1\right)^{2} z & \left(b^{2}+1\right)\left(\alpha^{2}+1\right)\left(z+b^{2}\right) \\
\left(b^{2}+1\right)\left(\alpha^{-2}+1\right) z\left(z+b^{2}\right) & \left(z+b^{2}\right)^{2}+\alpha^{-2}\left(b^{2}+1\right)^{2} z
\end{array}\right)
$$

with the non-Hermitian scalar product between matrix-valued polynomials F, G :

$$
\langle F, G\rangle=\frac{1}{2 \pi i} \oint_{\gamma} F(z) W^{N}(z) G^{t}(z) d z, \quad \gamma \text { a simple curve going around } z=+1 .
$$

Here N is the size of the Aztec diamond.

Non-Hermitian orthogonality

[Duits, Kuijlaars '21]: doubly periodic tiling models \Rightarrow contour orthogonality

Biased 2×2-periodic Aztec diamond:

$$
W(z)=\frac{1}{(z-1)^{2}}\left(\begin{array}{cc}
\left(z+b^{2}\right)^{2}+\alpha^{2}\left(b^{2}+1\right)^{2} z & \left(b^{2}+1\right)\left(\alpha^{2}+1\right)\left(z+b^{2}\right) \\
\left(b^{2}+1\right)\left(\alpha^{-2}+1\right) z\left(z+b^{2}\right) & \left(z+b^{2}\right)^{2}+\alpha^{-2}\left(b^{2}+1\right)^{2} z
\end{array}\right)
$$

with the non-Hermitian scalar product between matrix-valued polynomials F, G :

$$
\langle F, G\rangle=\frac{1}{2 \pi i} \oint_{\gamma} F(z) W^{N}(z) G^{t}(z) d z, \quad \gamma \text { a simple curve going around } z=+1 \text {. }
$$

Here N is the size of the Aztec diamond.
Disclaimer: As weight matrix is non-Hermitian existence of the MVOP is not guaranteed!

Matrix-valued orthogonal polynomials

We are looking for a polynomial P_{N} satisfying

- $P_{N}=z^{N} I_{2}+O\left(z^{N-1}\right), \quad$ as $z \rightarrow \infty$,
- $\frac{1}{2 \pi i} \oint_{\gamma} P_{N}(z) W^{N}(z) z^{k} d z=0, \quad k=0, \ldots, N-1$.
and a polynomial Q_{N-1} satisfying
- Q_{N-1} is of degree $\leq N-1$,
- $\frac{1}{2 \pi i} \oint_{\gamma} Q_{N-1}(z) W^{N}(z) z^{k} d z= \begin{cases}0 & \text { for } k=0, \ldots, N-2 \\ -I_{2} & \text { for } k=N-1\end{cases}$

Matrix-valued orthogonal polynomials

We are looking for a polynomial P_{N} satisfying

- $P_{N}=z^{N} I_{2}+O\left(z^{N-1}\right), \quad$ as $z \rightarrow \infty$,
- $\frac{1}{2 \pi i} \oint_{\gamma} P_{N}(z) W^{N}(z) z^{k} d z=0, \quad k=0, \ldots, N-1$.
and a polynomial Q_{N-1} satisfying
- Q_{N-1} is of degree $\leq N-1$,
- $\frac{1}{2 \pi i} \oint_{\gamma} Q_{N-1}(z) W^{N}(z) z^{k} d z= \begin{cases}0 & \text { for } k=0, \ldots, N-2 \\ -I_{2} & \text { for } k=N-1\end{cases}$

Existence and Uniqueness (Duits, Kuijlaars '21)

Relation to the meromorphic differential $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

- Polynomials $P_{N}(z), Q_{N-1}(z) \xrightarrow{\text { Christoffel-Darboux }}$ Reproducing kernel $R_{N}(w, z)$

Relation to the meromorphic differential $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

- Polynomials $P_{N}(z), Q_{N-1}(z) \xrightarrow{\text { Christoffel-Darboux }}$ Reproducing kernel $R_{N}(w, z)$
- Reproducing kernel $R_{N}(w, z) \xrightarrow{\text { Duits, Kuijlaars '21 }}$ Integral formula for $K_{N}(\cdot, \cdot)$

Relation to the meromorphic differential $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

- Polynomials $P_{N}(z), Q_{N-1}(z) \xrightarrow{\text { Christoffel-Darboux }}$ Reproducing kernel $R_{N}(w, z)$
- Reproducing kernel $R_{N}(w, z) \xrightarrow{\text { Duits, Kuijlaars '21 }}$ Integral formula for $K_{N}(\cdot, \cdot)$
- Integral formula for $K_{N}(\cdot, \cdot) \xrightarrow{\text { steepest descent }}$ mermomorphic differential $d \boldsymbol{\Phi}_{\xi_{1}, \xi_{2}}$

We analyzed the orthogonal polynomials can be analyzed via the Riemann-Hilbert problem of Fokas-Its-Kitaev.

Riemann-Hilbert problem for MVOP

Fokas-Its-Kitaev R-H problem for MVOP

Find a 4×4 matrix-valued function $Y=Y^{(N)}: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}^{4 \times 4}$ satisfying the following properties:
(i) Analyticity: $Y(z)$ is analytic for $z \in \mathbb{C} \backslash \gamma$,
(ii) Jump condition: Y satisfies

$$
Y_{+}(s)=Y_{-}(s)\left(\begin{array}{cc}
l_{2} & W^{N}(s) \\
0 & I_{2}
\end{array}\right), \quad s \in \gamma
$$

(iii) Normalization: Y satisfies

$$
Y(z)=\left(I_{4}+O\left(z^{-1}\right)\right)\left(\begin{array}{cc}
z^{N} l_{2} & 0_{2} \\
0_{2} & z^{-N} l_{2}
\end{array}\right) \quad \text { as } z \rightarrow \infty .
$$

Riemann-Hilbert problem for MVOP

Fokas-Its-Kitaev R-H problem for MVOP cont.

...The R-H problem has a unique solution if and only if the MVOPs P_{N} and Q_{N-1} exist and are unique, in which case the solution can be written as

$$
Y(z)=\left(\begin{array}{cc}
P_{N}(z) & \frac{1}{2 \pi i} \oint_{\gamma} \frac{P_{N}(s) W^{N}(s)}{s-z} d s \\
Q_{N-1}(z) & \frac{1}{2 \pi i} \oint_{\gamma} \frac{Q_{N-1}(s) W^{N}(s)}{s-z} d s
\end{array}\right) \quad z \in \mathbb{C} \backslash \gamma
$$

Remark

The reproducing kernel can be expressed as

$$
R_{N}(w, z)=\frac{1}{w-z}\left(\begin{array}{ll}
0_{2} & I_{2}
\end{array}\right) Y(w)^{-1} Y(z)\binom{I_{2}}{0_{2}}
$$

Deift-Zhou analysis

- R-H problems can be solved asymptotically $(N \rightarrow \infty)$ via the Deift-Zhou nonlinear steepest descent analysis
- Our analysis however leads to exact expressions for P_{N}, Q_{N-1} for finite size N in terms of Jacobi theta functions, cf. [Duits, Kuijlaars '21]
- For the general $k \times \ell$-periodic P_{N}, Q_{N-1} can be computed using the domino shuffle algorithm, see [Chhita, Duits '23]

Deift-Zhou analysis

- R-H problems can be solved asymptotically $(N \rightarrow \infty)$ via the Deift-Zhou nonlinear steepest descent analysis
- Our analysis however leads to exact expressions for P_{N}, Q_{N-1} for finite size N in terms of Jacobi theta functions, cf. [Duits, Kuijlaars '21]
- For the general $k \times \ell$-periodic P_{N}, Q_{N-1} can be computed using the domino shuffle algorithm, see [Chhita, Duits '23]
Corollary \Rightarrow domino shuffle for the biased 2×2-periodic model can be linearized via Jacobi theta functions, c.f. [Borodin, Duits '23] \& KdV finite gap solutions

References

星
T．Berggren and A．Borodin，Geometry of the doubly periodic Aztec dimer model， arXiv：2306．07482
囦 A．Borodin and M．Duits，Biased 2×2 periodic Aztec diamond and an elliptic curve， Probab．Theory Related Fields，（2023）．

R．Chhita and M．Duits，On the domino shuffle and matrix refactorizations，Comm．Math． Phys．，401（2），1417－1467，（2023）．

M．Duits and A．B．J．Kuijlaars，The two－periodic Aztec diamond and matrix valued orthogonal polynomials，J．Eur．Math．Soc．23（4），1075－1131（2021）．

囯 R．Kenyon，A．Okounkov，and S．Sheffield，Dimers and amoebae，Ann．of Math．163， 1019－1056（2006）．

References

星
T. Berggren and A. Borodin, Geometry of the doubly periodic Aztec dimer model, arXiv:2306.07482
A. Borodin and M. Duits, Biased 2×2 periodic Aztec diamond and an elliptic curve, Probab. Theory Related Fields, (2023).
R. Chhita and M. Duits, On the domino shuffle and matrix refactorizations, Comm. Math. Phys., 401(2), 1417-1467, (2023).
D. Duits and A. B. J. Kuijlaars, The two-periodic Aztec diamond and matrix valued orthogonal polynomials, J. Eur. Math. Soc. 23(4), 1075-1131 (2021).
R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, Ann. of Math. 163, 1019-1056 (2006).

Thank You for your Attention!

