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Tilings of the Aztec diamond

Goal: Tile the following region with 2× 1 and 1× 2 dominos:
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Types of dominos

West

North

South

East
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Uniform tilings of Aztec diamonds

Random equidistributed tilings of size 10, 100, 1000 [taken from Debin, de Kemmeter, Ruelle ’23]

[Jockusch, Propp, Shor ’98]: Arctic Circle Theorem.
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Tilings as non-intersecting paths

⇒

West

⇒

East

⇒ North

⇒ South

Figure: Line segments on the dominos.

Figure: Non-intersecting paths on a tiled Aztec Diamond.
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Fluctuations of the arctic curve

Figure: Upper path separating the frozen from the mixed region, [taken from Johansson ’05]

9 / 42



Fluctuations of the arctic curve

Theorem (Johansson ’05)

The upper most path, separating the frozen north region from the mixed region, converges to
the Airy process in the sense of convergence of finite-dimensional distributions.

Corollary

The upper most path is distributed according to the Tracy–Widom distribution F2.
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Fluctuations of the arctic curve comt.

Figure: taken from Debin, de Kemmeter, Ruelle ’23

Conjecture

It has been conjectured that the first n upper most paths converge to the Airy line
ensemble, see [Debin, de Kemmeter, Ruelle ’23] for numerical evidence.
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Aztec diamond as a dimer model

Domino tilings of the Aztec diamond are equivalent to dimer configurations on part of the

square lattice.
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Dimer models

• graph: G = (V ,E ),

• edge weights: w : E → R+,

• dimer configurations:

M = {M : M ⊆ E is a perfect matching (dimer configuration) of G}

⇒ Dimer model:

Prob(M) =

∏
e∈M w(e)∑

M′∈M
∏

e′∈M′ w(e ′) •
•

•

•

•

•
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Periodic weightings (unbiased case)

Simplest model with frozen, rough and
smooth phase,
see [Kenyon, Okounkov, Sheffield ’06],

15 / 42



Tiling of a large 2× 2-periodic Aztec diamond

Tilings of large Aztec diamonds under the unbiased 2× 2-periodic weighting exhibit three
phases: frozen, rough, smooth.

Taken from Duits, Kuijlaars ’21

• frozen: dominos are perfectly correlated
(no randomness),

• rough: domino correlations decay
quadratically with distance,

• smooth: domino correlations decay
exponentially with distance.
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Periodic weightings (biased case)

• model introduced by [Borodin,
Duits ’23],

• the bias parameter b > 1 favors
horizontal vs. vertical dominos

• is related to a linear flow on a
genus-1 Riemann surface (see
[Borodin, Duits ’23] and [Chhita,
Duits ’23])
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Tiling of a large biased 2× 2-periodic Aztec diamond

Tilings of large Aztec diamonds under the biased 2× 2-periodic weighting exhibit three
phases: frozen, rough, smooth; but are more ”flattened”:

generated through code provided by Christophe Charlier
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Global coordinates of the Aztec diamond

ξ1

ξ2 •
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Global coordinates of the Aztec diamond cont.

(ξ1, ξ2)•
(ξ1, ξ2)•
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Some interesting questions

The behaviour of random tilings near an arctic curve is of great interest.

• What are the geometric/algebraic properties of the arctic curve?
⇒ singularities, degree, irreducibility . . .

• What are the domino fluctuations/correlations away and near the arctic curve?
⇒ Dominos give rise to a determinantal point process (see [Kenyon, ’97]).
⇒ What is the correlation kernel? (see [Beffara, Chhita, Johansson ’18, ’22])

• What about more general models of the Aztec diamond?
⇒ higher periodicity (see [Berggren, Borodin ’23]), nonperiodic weights (e.g. qvol

weights), general weights . . .

In this talk we will focus on algebraic properties of the arctic curve.
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Techniques

Techniques:

• Matrix-valued orthogonal polynomials related to the Aztec diamond as introduced to
tiling models in [Duits, Kuijlaars ’21] using the Lindström–Gessel–Viennot Lemma

• Iterative Wiener–Hopf factorizations introduced by [Berggren, Duits ’19] (see
[Borodin, Duits ’23], [Berggren, Borodin ’23]),

• Domino shuffle algorithm for the Aztec diamond, see, [Propp ’01], [Chhita, Duits ’23],

Towards the end we will mention the matrix-valued orthogonal polynomials.
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Aztec diamond and Riemann surfaces

• [Kenyon, Okounkov, Sheffield ’06]:
⇒ Doubly periodic tiling models are related to Riemann surfaces (denoted by R).

• For 2× 2-periodic models of the Aztec diamond ⇒ R is of genus 1.

• Local domino correlations at (ξ1, ξ2) ∈ [−1, 1]2 are determined by the location of zeros
of a meromorphic differential dΦξ1,ξ2 on R.
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The meromorphic differential dΦξ1,ξ2

Some facts about dΦξ1,ξ2 :

• dΦξ1,ξ2 = Φ′
ξ1,ξ2

dz is a meromorphic differential on R.

• dΦξ1,ξ2 is linear in ξ1, ξ2:

dΦξ1,ξ2 = dΦ0 + ξ1dΦ1 + ξ2dΦ2

• dΦξ1,ξ2 has four poles at fixed locations with residues

2(1 + ξ1), 2(1− ξ1), −2(1 + ξ2), −2(1− ξ2)

⇒ dΦξ1,ξ2 has four zeros on R.

• location of the four zeros as a function of the coordinates (ξ1, ξ2) ∈ [−1, 1]2 determines
the phase of the Aztec diamond!
[Duits, Kuijlaars 21’] via matrix-valued orthogonal polynomials;
[Berggren 21’], [Borodin, Duits 23’], [Berggren, Borodin 23’] via Wiener–Hopf
factorizations.
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Frozen Region

Figure: Location of the zeros for the frozen region

R
Φ′

ξ1,ξ2
(sj)dz = 0

(ξ1, ξ2)

In the frozen region domino correlations are deterministic ⇒ No randomness!
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Rough Region

Figure: Location of the zeros for the rough region

R
Φ′

ξ1,ξ2
(sj)dz = 0

In the rough region domino correlations decay quadratically with the distance.
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Smooth Region

Figure: Location of the zeros for the smooth region

R
Φ′

ξ1,ξ2
(sj)dz = 0

In the smooth region domino correlations decay exponentially.
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Algebraic form of the arctic curve

The arctic curve separating the different regions corresponds to dΦξ1,ξ2 having a double zero.

Theorem (Kuijlaars, P.)

The arctic curve of the biased 2× 2-periodic Aztec diamond is an algebraic curve of degree 8
and can be written explicitly in terms of Jacobi theta functions.

This result should generalize to the k × ℓ-periodic model recently considered in [Berggren,
Borodin 23’].

Jacobi theta function:

Θ(z |τ) :=
∑
k∈Z

e(k
2τ+2kz)πi , z ∈ C

Sum converges absolutely as Im(τ) > 0. We have:

periodicity ⇒ Θ(z + 1|τ) = Θ(z |τ)
quasi-periodicity ⇒ Θ(z + τ |τ) = e−πiτ−2πizΘ(z |τ)

}
multivalued on C/(Z + τZ)
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The Abel map

Abel map−−−−−→

C/(Z + τZ)

ζ3
•

ζ4
•

ζ1•

ζ2
•
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Algebraic form of the arctic curve

The degree 8 polynomial J can be written in terms of Jacobi theta functions of the Riemann
surface R ∼= C/(Z + τZ):

J (ξ1, ξ2) =

∏
i ̸=j Θ(ζi − ζj − K | τ)[∏
i ,ℓΘ(ζi − νℓ − K | τ)

]2 [(1− ξ21)(1− ξ22)]
2.

Here

• ζi = ζi (ξ1, ξ2) and νℓ are the images of the zeros and poles of the meromorphic
differential dΦξ1,ξ2 under the Abel map,

• Θ satisfies Θ(−K | τ) = 0, where K = 1
2 + τ

2 is the Riemann constant.

We also have an expression in terms of b and α, but it is too long to fit here.
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Gallery of arctic curves (increasing periodicity)

bias: b = 2; periodicity: α = 1.1 bias: b = 2; periodicity: α = 2 bias: b = 2; periodicity: α = 10
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Gallery of arctic curves (increasing bias)

bias: b = 1; periodicity: α = 1.2 bias: b = 4; periodicity: α = 1.2 bias: b = 20; periodicity: α = 1.2
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Matrix-valued orthogonal polynomials

Theorem (Duits, Kuijlaars 21’; informal version)

The domino-domino correlations of periodic dimer models (including the Aztec diamond) can
be expressed via the reproducing kernel RN(w , z) of certain matrix-valued orthogonal
polynomials.

Double integral formula for the correlation kernel in the doubly periodic setting:[
K2N

(
(j , 2x + ε), (j ′, 2y + ε′)

)]
ε,ε′∈{0,1} = −

χj>j ′

2πi

∮
γ0,1

Aj ′,j(z)z
y−x dz

z

+
1

(2πi)2

∮
γ0,1

∮
γ0,1

Aj ′,4N(w)RN(w, z)A0,j(z)
w y

zx+1wN
dzdw .
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Non-Hermitian orthogonality

[Duits, Kuijlaars ’21]: doubly periodic tiling models ⇒ contour orthogonality

Biased 2× 2-periodic Aztec diamond:

W (z) =
1

(z − 1)2

(
(z + b2)2 + α2(b2 + 1)2z (b2 + 1)(α2 + 1)(z + b2)

(b2 + 1)(α−2 + 1)z(z + b2) (z + b2)2 + α−2(b2 + 1)2z

)
with the non-Hermitian scalar product between matrix-valued polynomials F , G :

⟨F ,G ⟩ = 1

2πi

∮
γ
F (z)WN(z)G t(z)dz , γ a simple curve going around z = +1.

Here N is the size of the Aztec diamond.

Disclaimer: As weight matrix is non-Hermitian existence of the MVOP is not guaranteed!
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Matrix-valued orthogonal polynomials

We are looking for a polynomial PN satisfying

• PN = zN I2 + O(zN−1), as z → ∞,

• 1

2πi

∮
γ
PN(z)W

N(z)zkdz = 0, k = 0, . . . ,N − 1.

and a polynomial QN−1 satisfying

• QN−1 is of degree ≤ N − 1,

• 1

2πi

∮
γ
QN−1(z)W

N(z)zkdz =

{
0 for k = 0, . . . ,N − 2

−I2 for k = N − 1
.

Existence and Uniqueness (Duits, Kuijlaars ’21)
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Relation to the meromorphic differential dΦξ1,ξ2

• Polynomials PN(z),QN−1(z)
Christoffel–Darboux−−−−−−−−−−−−→ Reproducing kernel RN(w , z)

• Reproducing kernel RN(w , z)
Duits, Kuijlaars ’21−−−−−−−−−−−−→ Integral formula for KN(· , ·)

• Integral formula for KN(· , ·)
steepest descent−−−−−−−−−−→ mermomorphic differential dΦξ1,ξ2

We analyzed the orthogonal polynomials can be analyzed via the Riemann–Hilbert problem
of Fokas–Its–Kitaev.
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Riemann–Hilbert problem for MVOP

Fokas–Its–Kitaev R-H problem for MVOP

Find a 4× 4 matrix-valued function Y = Y (N) : C \ γ → C4×4 satisfying the following
properties:

(i) Analyticity: Y (z) is analytic for z ∈ C \ γ,
(ii) Jump condition: Y satisfies

Y+(s) = Y−(s)

(
I2 WN(s)
0 I2

)
, s ∈ γ,

(iii) Normalization: Y satisfies

Y (z) = (I4 + O(z−1))

(
zN I2 02
02 z−N I2

)
as z → ∞.
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Riemann–Hilbert problem for MVOP

Fokas–Its–Kitaev R-H problem for MVOP cont.

...The R-H problem has a unique solution if and only if the MVOPs PN and QN−1 exist and
are unique, in which case the solution can be written as

Y (z) =


PN(z)

1

2πi

∮
γ

PN(s)W
N(s)

s − z
ds

QN−1(z)
1

2πi

∮
γ

QN−1(s)W
N(s)

s − z
ds

 z ∈ C \ γ.

Remark

The reproducing kernel can be expressed as

RN(w , z) =
1

w − z

(
02 I2

)
Y (w)−1Y (z)

(
I2
02

)
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Deift–Zhou analysis

• R-H problems can be solved asymptotically (N → ∞) via the Deift–Zhou nonlinear
steepest descent analysis

• Our analysis however leads to exact expressions for PN , QN−1 for finite size N in terms of
Jacobi theta functions, cf. [Duits, Kuijlaars ’21]

• For the general k × ℓ-periodic PN , QN−1 can be computed using the domino shuffle
algorithm, see [Chhita, Duits ’23]

Corollary ⇒ domino shuffle for the biased 2× 2-periodic model can be linearized via
Jacobi theta functions, c.f. [Borodin, Duits ’23] & KdV finite gap solutions

41 / 42



Deift–Zhou analysis

• R-H problems can be solved asymptotically (N → ∞) via the Deift–Zhou nonlinear
steepest descent analysis

• Our analysis however leads to exact expressions for PN , QN−1 for finite size N in terms of
Jacobi theta functions, cf. [Duits, Kuijlaars ’21]

• For the general k × ℓ-periodic PN , QN−1 can be computed using the domino shuffle
algorithm, see [Chhita, Duits ’23]

Corollary ⇒ domino shuffle for the biased 2× 2-periodic model can be linearized via
Jacobi theta functions, c.f. [Borodin, Duits ’23] & KdV finite gap solutions

41 / 42



References

T. Berggren and A. Borodin, Geometry of the doubly periodic Aztec dimer model,
arXiv:2306.07482

A. Borodin and M. Duits, Biased 2× 2 periodic Aztec diamond and an elliptic curve,
Probab. Theory Related Fields, (2023).

S. Chhita and M. Duits, On the domino shuffle and matrix refactorizations, Comm. Math.
Phys., 401(2), 1417–1467, (2023).

M. Duits and A. B. J. Kuijlaars, The two-periodic Aztec diamond and matrix valued
orthogonal polynomials, J. Eur. Math. Soc. 23(4), 1075–1131 (2021).

R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, Ann. of Math. 163,
1019–1056 (2006).

Thank You for your Attention!

42 / 42

https://arxiv.org/abs/2306.07482


References

T. Berggren and A. Borodin, Geometry of the doubly periodic Aztec dimer model,
arXiv:2306.07482

A. Borodin and M. Duits, Biased 2× 2 periodic Aztec diamond and an elliptic curve,
Probab. Theory Related Fields, (2023).

S. Chhita and M. Duits, On the domino shuffle and matrix refactorizations, Comm. Math.
Phys., 401(2), 1417–1467, (2023).

M. Duits and A. B. J. Kuijlaars, The two-periodic Aztec diamond and matrix valued
orthogonal polynomials, J. Eur. Math. Soc. 23(4), 1075–1131 (2021).

R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, Ann. of Math. 163,
1019–1056 (2006).

Thank You for your Attention!

42 / 42

https://arxiv.org/abs/2306.07482

	Background on the Aztec diamond
	Biased 22-periodic Aztec diamond
	Algebraic properties of arctic curves
	Matrix-valued orthogonal polynomials

