Global Rational Approximations of Functions With Factorially Divergent Asymptotic Series

Nick Castillo

Joint work with Professors Ovidiu and Rodica Costin

Contents

- 1 Sales Pitch: Some new results from our paper
- 2 Divergent Series and A Bit About Borel Summation
- 3 Limitations of Classical Factorial Expansions
- New Factorial Expansions and Dyadic Decompositions
- 5 Rational Approximations of Tritronquée solutions to Painlevé's First Equation

Sales Pitch: Some new results from our paper

• The exponential integral $\mathrm{Ei}^+(x) = \mathrm{e}^x \int_0^{\infty e^{x0^-}} \frac{\mathrm{e}^{-px}}{1-p} dp$ can be written as a uniformly convergent series of Lerch Φ functions:

$$e^{-x}Ei^{+}(x) = -\Phi(-1, 1, \frac{x}{i\pi}) + \sum_{k=1}^{\infty} \Phi(-e^{\pi i/2^{k}}, 1, 2^{k} \frac{x}{i\pi})$$
 for $x \in \mathbb{C} \setminus i(-\infty, 0]$ (1)

Sales Pitch: Some new results from our paper

• The exponential integral $\mathrm{Ei}^+(x) = \mathrm{e}^x \int_0^{\infty e^{x0^-}} \frac{\mathrm{e}^{-px}}{1-p} dp$ can be written as a uniformly convergent series of Lerch Φ functions:

$$e^{-x}Ei^{+}(x) = -\Phi(-1, 1, \frac{x}{i\pi}) + \sum_{k=1}^{\infty} \Phi(-e^{\pi i/2^{k}}, 1, 2^{k} \frac{x}{i\pi})$$
 for $x \in \mathbb{C} \setminus i(-\infty, 0]$ (1)

• The function $\Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ satisfies the identity

$$\Psi(x+1) = \ln x - \frac{1}{2} \sum_{k=0}^{\infty} \left[\Psi(2^k x + 1) - \Psi(2^k x + \frac{1}{2}) \right]$$
 (2)

Sales Pitch: Some new results from our paper

• The exponential integral $\mathrm{Ei}^+(x) = \mathrm{e}^x \int_0^{\infty e^{x0^-}} \frac{\mathrm{e}^{-px}}{1-n} dp$ can be written as a uniformly convergent series of Lerch Φ functions:

$$e^{-x}Ei^{+}(x) = -\Phi(-1, 1, \frac{x}{i\pi}) + \sum_{k=1}^{\infty} \Phi(-e^{\pi i/2^{k}}, 1, 2^{k} \frac{x}{i\pi})$$
 for $x \in \mathbb{C} \setminus i(-\infty, 0]$ (1)

• The function $\Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ satisfies the identity

$$\Psi(x+1) = \ln x - \frac{1}{2} \sum_{k=0}^{\infty} \left[\Psi\left(2^k x + 1\right) - \Psi\left(2^k x + \frac{1}{2}\right) \right]$$
 (2)

 Given a self-adjoint (bounded or unbounded) operator A defined on a Hilbert space:

$$(A-i\lambda)^{-1} = i \sum_{j=0}^{\infty} \mathrm{e}^{-j\lambda} U_j - i \lim_{\ell \to \infty} \sum_{k=1}^{\ell} \sum_{j=0}^{\infty} (-1)^j 2^{-k} \mathrm{e}^{-j\lambda/2^k} U_{j2^{-k}} \quad , \text{ for } \lambda > 0$$

• When solving a physical problem by say perturbation theory, one is often left with a series whose radius of convergence is equal to 0.

- When solving a physical problem by say perturbation theory, one is often left with a series whose radius of convergence is equal to 0.
- Do these coefficients still carry physical meaning?

- When solving a physical problem by say perturbation theory, one is often left with a series whose radius of convergence is equal to 0.
- Do these coefficients still carry physical meaning?
- Yes!

- When solving a physical problem by say perturbation theory, one is often left with a series whose radius of convergence is equal to 0.
- Do these coefficients still carry physical meaning?
- Yes!
- In fact in 1952, F. Dyson gave a physical argument that any perturbative expansion obtained in quantum electrodynamics is necessarily divergent [15] .

- When solving a physical problem by say perturbation theory, one is often left with a series whose radius of convergence is equal to 0.
- Do these coefficients still carry physical meaning?
- Yes!
- In fact in 1952, F. Dyson gave a physical argument that any perturbative expansion obtained in quantum electrodynamics is necessarily divergent [15].
- What has been realized is that such series do not sum in the ordinary sense of the word. But rather, sum in the Borel sense and more generally the Borel-Écalle sense of summation.

• A key ingredient in Borel and Borel-Écalle summation is the Laplace transform $\mathcal L$ and in fact a whole family of operators $\mathcal L_\theta$ where $\theta \in [0,2\pi]$ is the direction of the contour of integration.

- A key ingredient in Borel and Borel-Écalle summation is the Laplace transform $\mathcal L$ and in fact a whole family of operators $\mathcal L_\theta$ where $\theta \in [0,2\pi]$ is the direction of the contour of integration.
- ullet Assume a function F is analytic in a neighborhood of 0.

- A key ingredient in Borel and Borel-Écalle summation is the Laplace transform $\mathcal L$ and in fact a whole family of operators $\mathcal L_\theta$ where $\theta \in [0,2\pi]$ is the direction of the contour of integration.
- ullet Assume a function F is analytic in a neighborhood of 0.
- Recall the definition of the Borel transform $\mathcal B$ which (for us) acts on the space of formal power series in 1/x without constant terms i.e. $x^{-1}\mathbb C[\![x^{-1}]\!]$ by the rule

$$\mathcal{B}x^{-n} = \frac{p^{n-1}}{(n-1)!}, \quad n \in \mathbb{N}$$

and term by term application to any formal series.

- A key ingredient in Borel and Borel-Écalle summation is the Laplace transform $\mathcal L$ and in fact a whole family of operators $\mathcal L_\theta$ where $\theta \in [0,2\pi]$ is the direction of the contour of integration.
- ullet Assume a function F is analytic in a neighborhood of 0.
- Recall the definition of the Borel transform $\mathcal B$ which (for us) acts on the space of formal power series in 1/x without constant terms i.e. $x^{-1}\mathbb C[\![x^{-1}]\!]$ by the rule

$$\mathcal{B}x^{-n} = \frac{p^{n-1}}{(n-1)!}, \quad n \in \mathbb{N}$$

and term by term application to any formal series.

• \mathcal{B} is related to the formal inverse Laplace transform \mathcal{L}^{-1} . However, $\mathcal{L}^{-1}x^{-n}$ produces an actual function whereas $\mathcal{B}x^{-n}$ is still a formal object.

- A key ingredient in Borel and Borel-Écalle summation is the Laplace transform $\mathcal L$ and in fact a whole family of operators $\mathcal L_\theta$ where $\theta \in [0,2\pi]$ is the direction of the contour of integration.
- ullet Assume a function F is analytic in a neighborhood of 0.
- Recall the definition of the Borel transform $\mathcal B$ which (for us) acts on the space of formal power series in 1/x without constant terms i.e. $x^{-1}\mathbb C[\![x^{-1}]\!]$ by the rule

$$\mathcal{B}x^{-n} = \frac{p^{n-1}}{(n-1)!}, \quad n \in \mathbb{N}$$

and term by term application to any formal series.

- \mathcal{B} is related to the formal inverse Laplace transform \mathcal{L}^{-1} . However, $\mathcal{L}^{-1}x^{-n}$ produces an actual function whereas $\mathcal{B}x^{-n}$ is still a formal object.
- Furthermore, assume the germ of F around 0 was obtained by summing (now in the usual sense of the word) the Borel transform \mathcal{B} of a formal (possibly factorially divergent) series \widetilde{f} i.e. $F(p) = (S \circ \mathcal{B}) \widetilde{f}$

Note

The complex p-plane is commonly referred to as the Borel plane

• We say F is *Borel summable* in the direction \mathbb{R}^+ if the following conditions hold:

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - $\textbf{ 4 Mmits analytic continuation to an open sector containing } \mathbb{R}^+$

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - lacktriangle Admits analytic continuation to an open sector containing \mathbb{R}^+
 - ② Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - lacktriangle Admits analytic continuation to an open sector containing \mathbb{R}^+
 - ② Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.
- We compute the Laplace transform of F to obtain a function on the complex x-plane.

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - $\textbf{ 4 Mmits analytic continuation to an open sector containing } \mathbb{R}^+$
 - ② Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.
- We compute the Laplace transform of F to obtain a function on the complex x-plane.

$$f(x) = (\mathcal{L}_0 F)(x) := \int_0^\infty F(p) e^{-px} dp$$
 (4)

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - lacktriangle Admits analytic continuation to an open sector containing \mathbb{R}^+
 - ② Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.
- We compute the Laplace transform of F to obtain a function on the complex x-plane.

$$f(x) = (\mathcal{L}_0 F)(x) := \int_0^\infty F(p) e^{-px} dp$$
 (4)

• We call f(x) the Borel sum of F along \mathbb{R}^+ and by Watson's lemma is related to the original formal series \widetilde{f} by $f(x) \sim \widetilde{f}$ along rays as $|x| \to \infty$ $\Re x > 0$.

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - lacktriangle Admits analytic continuation to an open sector containing \mathbb{R}^+
 - ② Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.
- We compute the Laplace transform of F to obtain a function on the complex x-plane.

$$f(x) = (\mathcal{L}_0 F)(x) := \int_0^\infty F(p) e^{-px} dp$$
 (4)

- We call f(x) the Borel sum of F along \mathbb{R}^+ and by Watson's lemma is related to the original formal series \widetilde{f} by $f(x) \sim \widetilde{f}$ along rays as $|x| \to \infty$ $\Re x > 0$.
- We recall a definition of an asymptotic series in 1/x:

- We say F is Borel summable in the direction \mathbb{R}^+ if the following conditions hold:
 - lacktriangle Admits analytic continuation to an open sector containing \mathbb{R}^+
 - ② Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.
- We compute the Laplace transform of F to obtain a function on the complex x-plane.

$$f(x) = (\mathcal{L}_0 F)(x) := \int_0^\infty F(p) e^{-px} dp$$
 (4)

- We call f(x) the Borel sum of F along \mathbb{R}^+ and by Watson's lemma is related to the original formal series \widetilde{f} by $f(x) \sim \widetilde{f}$ along rays as $|x| \to \infty$ $\Re x > 0$.
- We recall a definition of an asymptotic series in 1/x:

$$f(x) \sim \sum_{k=0}^{\infty} \frac{c_k}{x^{k+1}}$$
 as $|x| \to \infty$ $\Re x > 0$

- We say F is *Borel summable* in the direction \mathbb{R}^+ if the following conditions hold:
 - lacktriangle Admits analytic continuation to an open sector containing \mathbb{R}^+
 - @ Exponentially bounded at infinity within this sector and hence Laplace transformable along the contour $[0,\infty)$.
- We compute the Laplace transform of F to obtain a function on the complex x-plane.

$$f(x) = (\mathcal{L}_0 F)(x) := \int_0^\infty F(p) e^{-px} dp$$
 (4)

- We call f(x) the Borel sum of F along \mathbb{R}^+ and by Watson's lemma is related to the original formal series \widetilde{f} by $f(x) \sim \widetilde{f}$ along rays as $|x| \to \infty$ $\Re x > 0$.
- We recall a definition of an asymptotic series in 1/x:

$$f(x) \sim \sum_{k=0}^{\infty} \frac{c_k}{x^{k+1}}$$
 as $|x| \to \infty$ $\Re x > 0$

$$\forall N \in \mathbb{N}, \quad f(x) - \sum_{k=0}^{N} \frac{c_k}{x^{k+1}} = o(x^{-N-1}) \quad \text{as} \quad |x| \to \infty, \quad \Re x > 0 \tag{5}$$

- Reaclling $f(x) = \mathcal{L}_0 F(x)$
- f will a priori be holomorphic in a half plane of the form $\{x \in \mathbb{C} : \Re x > \nu\}$.

- Reaclling $f(x) = \mathcal{L}_0 F(x)$
- f will a priori be holomorphic in a half plane of the form $\{x \in \mathbb{C} : \Re x > \nu\}$.
- We may deform the contour of integration from $\gamma_0 = \mathbb{R}^+$ to $\gamma_\theta = \mathrm{e}^{i\theta}\mathbb{R}^+$ provided F is Borel summable along γ_φ for all $\varphi \in (0,\theta]$. This amounts to analytic continuation of $\mathcal{L}_0 F$ to $\mathcal{L}_\theta F$.

ullet By Watson's lemma [31] or IBP, the asymptotic series of f for large $\Re x$ is related to the Maclaurin series of F:

$$f(x) = \frac{1}{x}F(0) + \frac{1}{x^2}F'(0) + \dots + \frac{1}{x^n}F^{(n-1)}(0) + \frac{1}{x^n}\int_0^\infty F^{(n)}(p)e^{-px} dp$$
 (6)

• By Cauchy's theorem, the growing powers of $\frac{d}{dp}$ lead to factorial divergence of the asymptotic series of f, unless F is entire (rarely the case in applications).

 \bullet By Watson's lemma [31] or IBP, the asymptotic series of f for large $\Re x$ is related to the Maclaurin series of F :

$$f(x) = \frac{1}{x}F(0) + \frac{1}{x^2}F'(0) + \dots + \frac{1}{x^n}F^{(n-1)}(0) + \frac{1}{x^n} \int_0^\infty F^{(n)}(p)e^{-px} dp$$
 (6)

- By Cauchy's theorem, the growing powers of $\frac{d}{dp}$ lead to factorial divergence of the asymptotic series of f, unless F is entire (rarely the case in applications).
- In fact, the location and type of singularities in the Borel plane carry a lot of information about the problem, their existence implies the presence of Stokes phenomena.

 \bullet By Watson's lemma [31] or IBP, the asymptotic series of f for large $\Re x$ is related to the Maclaurin series of F :

$$f(x) = \frac{1}{x}F(0) + \frac{1}{x^2}F'(0) + \dots + \frac{1}{x^n}F^{(n-1)}(0) + \frac{1}{x^n} \int_0^\infty F^{(n)}(p)e^{-px} dp$$
 (6)

- By Cauchy's theorem, the growing powers of $\frac{d}{dp}$ lead to factorial divergence of the asymptotic series of f, unless F is entire (rarely the case in applications).
- In fact, the location and type of singularities in the Borel plane carry a lot of information about the problem, their existence implies the presence of Stokes phenomena.
- ullet Each singular point of F corresponds to a Stokes direction of f.

• Nörlund noticed that the change of variables $\varphi(s) = F(-\ln s)$ yields:

$$f(x) = \int_0^1 s^{x-1} \varphi(s) ds \tag{7}$$

• Nörlund noticed that the change of variables $\varphi(s) = F(-\ln s)$ yields:

$$f(x) = \int_0^1 s^{x-1} \varphi(s) ds \tag{7}$$

Integration by parts gives the factorial expansion

$$f(x) = \varphi(1) \frac{1}{x} - \varphi'(1) \frac{1}{(x)_2} + \dots + \frac{(-1)^{n-1}}{(x)_n} \varphi^{(n-1)}(1) + \frac{(-1)^n}{(x)_n} \int_0^1 s^{x+n-1} \varphi^{(n)}(s) ds \quad (8)$$

where $(x)_k := x(x+1)\cdots(x+k-1) = \frac{\Gamma(x+k)}{\Gamma(x)}$, $(x)_k$ are the Pochhammer symbols.

Classical Factorial Expansions

• Without remainder, we have the factorial series, (a formal series, for now)

$$\tilde{\varphi}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(9)

Classical Factorial Expansions

Without remainder, we have the factorial series, (a formal series, for now)

$$\tilde{\varphi}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(9)

• A classical rising factorial expansion for large x is a series of the form $S = \sum_{k=1}^{\infty} \frac{c_k}{(x)_k}$

Classical Factorial Expansions

• Without remainder, we have the factorial series, (a formal series, for now)

$$\tilde{\varphi}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(9)

• A classical rising factorial expansion for large x is a series of the form $S = \sum_{k=1}^{\infty} \frac{c_k}{(x)_k}$

Note

Since F is analytic at zero, φ is analytic at one. Using Stirling's formula in (9), we see that, for large k, the (k+1)'st term of the expansion (9) behaves like

$$(-1)^k \Gamma(x) \frac{\varphi^{(k)}(1)}{k!} k^{-x}$$
 (10)

Due to the 1/k! factor in (10) the series $\tilde{\varphi}(x)$ can converge even if the asymptotic power series obtained from (6) is factorially divergent.

Limitations of Classical Factorial Expansions

 Most often, the classical rising factorial expansions used in ODEs and physics have two major limitations:

Limitations of Classical Factorial Expansions

- Most often, the classical rising factorial expansions used in ODEs and physics have two major limitations:
 - Slow convergence, at best power-like

Limitations of Classical Factorial Expansions

- Most often, the classical rising factorial expansions used in ODEs and physics have two major limitations:
 - Slow convergence, at best power-like
 - ② Limited domain of convergence (usually unrelated to the function one is trying to represent): a half plane.

Limitations of Classical Factorial Expansions

- Most often, the classical rising factorial expansions used in ODEs and physics have two major limitations:
 - Slow convergence, at best power-like
 - ② Limited domain of convergence (usually unrelated to the function one is trying to represent): a half plane.
- The boundary of this half plane is separated by a positive angular distance from the important antistokes rays

Limitations of Classical Factorial Expansions

- Most often, the classical rising factorial expansions used in ODEs and physics have two major limitations:
 - Slow convergence, at best power-like
 - ② Limited domain of convergence (usually unrelated to the function one is trying to represent): a half plane.
- The boundary of this half plane is separated by a positive angular distance from the important antistokes rays
- Our new method of generating factorial expansions developed in [9] remedies these two issues giving rise to expansions which converge geometrically in a cut plane.

Recall that we have:

$$\tilde{f}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(11)

Recall that we have:

$$\tilde{f}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(11)

• In order for (11) to converge, we can show that φ needs to be analytic in $\mathbb{D}_1(1)$, the disk of radius one centered at s=1.

Recall that we have:

$$\tilde{f}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(11)

- In order for (11) to converge, we can show that φ needs to be analytic in $\mathbb{D}_1(1)$, the disk of radius one centered at s=1.
- For geometric convergence, it is necessary for φ to be analytic in a domain containing the closed disk $\overline{\mathbb{D}_1(1)}$.

Recall that we have:

$$\tilde{f}(x) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{(k)}(1)}{(x)_{k+1}}$$
(11)

- In order for (11) to converge, we can show that φ needs to be analytic in $\mathbb{D}_1(1)$, the disk of radius one centered at s=1.
- For geometric convergence, it is necessary for φ to be analytic in a domain containing the closed disk $\overline{\mathbb{D}_1(1)}$.
- In applications φ is often singular at s=0.

 We draw on a classical function of three complex variables; the Lerch transcendent.

$$\Phi(z,s,x) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{p^{s-1}e^{-xp}}{1 - ze^{-p}} dp, \qquad \Re s > 0, \quad \Re x > 0, \quad z \in \mathbb{C} \setminus [1,\infty)$$
(12)

 We draw on a classical function of three complex variables; the Lerch transcendent.

$$\Phi(z,s,x) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{p^{s-1}e^{-xp}}{1 - ze^{-p}} dp, \qquad \Re s > 0, \quad \Re x > 0, \quad z \in \mathbb{C} \setminus [1,\infty)$$
(12)

• For our purposes we are interested in fixing the second parameter s=1 and use the change of variables $u=\mathrm{e}^{-p}$ to obtain

$$\Phi(z,1,x) = \int_0^1 \frac{u^{x-1}}{1-zu} du \tag{13}$$

• We use the notation \mathbb{Z}_{-} to denote the non-positive integers.

Lemma

For |z| < 1 and $x \in \mathbb{C} \backslash \mathbb{Z}_{-}$ we have

$$\Phi\left(\frac{z}{z-1}, 1, x\right) = (1-z) \sum_{j \ge 0} z^j \frac{j!}{(x)_{j+1}}$$
 (14)

Moreover, the series converges absolutely and geometrically in x.

ullet We use the notation \mathbb{Z}_{-} to denote the non-positive integers.

Lemma

For |z| < 1 and $x \in \mathbb{C} \setminus \mathbb{Z}_-$ we have

$$\Phi\left(\frac{z}{z-1}, 1, x\right) = (1-z) \sum_{j \ge 0} z^j \frac{j!}{(x)_{j+1}}$$
(14)

Moreover, the series converges absolutely and geometrically in x.

 It is (14) which provides a prototype for geometrically convergent factorial series.

ullet We use the notation \mathbb{Z}_{-} to denote the non-positive integers.

Lemma

For |z| < 1 and $x \in \mathbb{C} \setminus \mathbb{Z}_-$ we have

$$\Phi\left(\frac{z}{z-1}, 1, x\right) = (1-z) \sum_{j \ge 0} z^j \frac{j!}{(x)_{j+1}}$$
(14)

Moreover, the series converges absolutely and geometrically in x.

- It is (14) which provides a prototype for geometrically convergent factorial series.
- The Lerch transcendent will be the building block for our factorial expansions; its presence almost appears native to these problems.

Dyadic Decomposition

Lemma (Dyadic identity)

The following identity holds in \mathbb{C} :

$$\frac{1}{p} - \left(\frac{1}{1 - e^{-p}} - \sum_{k=1}^{\infty} \frac{2^{-k}}{1 + e^{-p/2^k}}\right) = 0$$
 (15)

as the left hand side in (15) has only removable singularities. We have

$$\frac{1}{p} = \frac{1}{1 - e^{-p}} - \sum_{k=1}^{n} \frac{2^{-k}}{1 + e^{-p/2^{k}}} + \rho_{n+1}(p)$$
 (16)

where

$$\rho_{n+1}(p) = \frac{1}{2^n} \left(\frac{1}{p/2^n} - \frac{1}{1 - e^{-p/2^n}} \right) \tag{17}$$

Global Rational Approximations of Functions With Fac

as an equality of meromorphic functions.

Sketch of the dyadic decomposition proof

Note

The set of poles within the summation seen in (15) is equal to $2\pi i \mathbb{Z} \setminus \{0\}$ which corresponds to the set of poles of $(1-e^{-p})^{-1}$ with the exception of p=0. The pole at the origin is removed by the 1/p term.

The proof is elementary:

$$\frac{1}{1-x} = \frac{2}{1-x^2} - \frac{1}{x+1} = \frac{4}{1-x^4} - \frac{2}{x^2+1} - \frac{1}{x+1} = \dots = \frac{2^n}{1-x^{2^n}} - \sum_{j=0}^{n-1} \frac{2^j}{1+x^{2^j}}$$
(18)

Sketch of the dyadic decomposition proof

Note

The set of poles within the summation seen in (15) is equal to $2\pi i \mathbb{Z} \setminus \{0\}$ which corresponds to the set of poles of $(1 - e^{-p})^{-1}$ with the exception of p = 0. The pole at the origin is removed by the 1/p term.

The proof is elementary:

$$\frac{1}{1-x} = \frac{2}{1-x^2} - \frac{1}{x+1} = \frac{4}{1-x^4} - \frac{2}{x^2+1} - \frac{1}{x+1} = \dots = \frac{2^n}{1-x^{2^n}} - \sum_{j=0}^{n-1} \frac{2^j}{1+x^{2^j}}$$
(18)

which implies, with $x = e^{-p/2^n}$,

$$\frac{2^{-n}}{1 - e^{-\frac{p}{2^n}}} = \frac{1}{1 - e^{-p}} - \sum_{k=1}^n \frac{2^{-k}}{e^{-\frac{p}{2^k}} + 1}$$
(19)

which implies (17).

Dyadic Decomposition of the Cauchy Kernel

• Let $\beta \neq 0$. The linear affine transformation $p \to \beta p - \beta s$ gives the following generalization of Lemma 2 for the Cauchy kernel.

Dyadic Decomposition of the Cauchy Kernel

• Let $\beta \neq 0$. The linear affine transformation $p \to \beta p - \beta s$ gives the following generalization of Lemma 2 for the Cauchy kernel.

Corollary (Dyadic decomposition of the Cauchy kernel)

Assume $\beta \neq 0$, then the following identity holds

$$\frac{1}{s-p} - \left(-\frac{\beta e^{-\beta s}}{e^{-\beta s} - e^{-\beta p}} + \sum_{k=1}^{\infty} \frac{2^{-k} \beta e^{-\beta s/2^k}}{e^{-\beta s/2^k} + e^{-\beta p/2^k}} \right) = 0$$
 (20)

as the left hand side in (20) has only removable singularities. We have

$$\frac{1}{s-p} = -\frac{\beta e^{-\beta s}}{e^{-\beta s} - e^{-\beta p}} + \sum_{k=1}^{n} \frac{2^{-k} \beta e^{-\beta s/2^{k}}}{e^{-\beta s/2^{k}} + e^{-\beta p/2^{k}}} + \rho_{n+1,\beta}(p,s)$$
(21)

• Notice that the set poles within the summation for this case is equal to $\frac{2\pi i}{\beta}\mathbb{Z}\backslash\{0\}$; a rotated version of the pole lattice from the expansion of 1/p.

• Consider the exponential integral $\mathrm{Ei}^+(x)=\mathrm{e}^x\int_0^{\infty e^{i0^-}}\frac{\mathrm{e}^{-px}}{1-p}dp$, Lemma 3 with $\beta=\pi i$ and s=1 we integrate term by term.

• Consider the exponential integral $\mathrm{Ei}^+(x) = \mathrm{e}^x \int_0^{\infty e^{i0^-}} \frac{\mathrm{e}^{-px}}{1-p} dp$, Lemma 3 with $\beta = \pi i$ and s = 1 we integrate term by term.

$$e^{-x}Ei^{+}(x) = -\pi i \int_{0}^{\infty e^{i0^{-}}} \frac{e^{-px}}{1 - e^{-\pi i(p-1)}} dp + \pi i \sum_{k=1}^{\infty} \int_{0}^{\infty e^{i0^{-}}} \frac{2^{-k}e^{-px}}{1 + e^{-\pi i/2^{k}(p-1)}} dp$$
 (22)

• Consider the exponential integral $\mathrm{Ei}^+(x) = \mathrm{e}^x \int_0^{\infty e^{i v -}} \frac{\mathrm{e}^{-p x}}{1-p} dp$, Lemma 3 with $\beta = \pi i$ and s = 1 we integrate term by term.

$$e^{-x}Ei^{+}(x) = -\pi i \int_{0}^{\infty e^{i0^{-}}} \frac{e^{-px}}{1 - e^{-\pi i(p-1)}} dp + \pi i \sum_{k=1}^{\infty} \int_{0}^{\infty e^{i0^{-}}} \frac{2^{-k}e^{-px}}{1 + e^{-\pi i/2^{k}(p-1)}} dp$$
 (22)

• The change of variable $u = e^{-p\pi i}$ for the first integral and $u = e^{-p\pi i/2^k}$ for the second results in

• Consider the exponential integral $\mathrm{Ei}^+(x) = \mathrm{e}^x \int_0^{\infty} e^{iv^-} \frac{\mathrm{e}^{-px}}{1-p} dp$, Lemma 3 with $\beta = \pi i$ and s = 1 we integrate term by term.

$$e^{-x}Ei^{+}(x) = -\pi i \int_{0}^{\infty e^{i0^{-}}} \frac{e^{-px}}{1 - e^{-\pi i(p-1)}} dp + \pi i \sum_{k=1}^{\infty} \int_{0}^{\infty e^{i0^{-}}} \frac{2^{-k}e^{-px}}{1 + e^{-\pi i/2^{k}(p-1)}} dp$$
 (22)

• The change of variable $u={\rm e}^{-p\pi i}$ for the first integral and $u={\rm e}^{-p\pi i/2^k}$ for the second results in

$$-\int_0^1 \frac{u^{\frac{x}{\pi i}-1}}{1+u} du + \sum_{k=1}^\infty \int_0^1 \frac{u^{\frac{x2^k}{\pi i}-1}}{1+e^{\pi i/2^k} u} du$$
 (23)

ullet We recognize each of these as Lerch Φ functions

$$-\Phi(-1,1,\frac{x}{i\pi}) + \sum_{k=1}^{\infty} \Phi(-e^{\pi i/2^k},1,2^k \frac{x}{i\pi})$$
 (24)

September 21 2023

• Using the factorial expansion of Φ from Lemma 1 we obtain

$$e^{-x}Ei^{+}(x) = -\sum_{m=1}^{\infty} \frac{\Gamma(m)}{2^{m}} \frac{1}{(y)_{m}} + \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{\Gamma(m)e^{-i\pi/2^{k}}}{(1 + e^{-i\pi/2^{k}})^{m}} \frac{1}{(2^{k}y)_{m}} \qquad (y = -ix/\pi)$$
(25)

which is valid in the cut x-plane $\mathbb{C}\setminus i(-\infty,0]$

• Using the factorial expansion of Φ from Lemma 1 we obtain

$$e^{-x}Ei^{+}(x) = -\sum_{m=1}^{\infty} \frac{\Gamma(m)}{2^{m}} \frac{1}{(y)_{m}} + \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{\Gamma(m)e^{-i\pi/2^{k}}}{(1 + e^{-i\pi/2^{k}})^{m}} \frac{1}{(2^{k}y)_{m}} \qquad (y = -ix/\pi)$$
(25)

which is valid in the cut x-plane $\mathbb{C}\backslash i(-\infty,0]$

Note

We have expansions similar to (25) for the Airy function in [9] and the method easily extends to Bessel functions J_{ν}, Y_{ν} .

Exponential Integral Approximation Errors

Figure: Size of terms in the successive series on the Stokes ray \mathbb{R}^+ with the formula (25). This plot can be used to determine the number of terms to be kept for a given accuracy. To get 10^{-5} accuracy, 10 terms of the first series plus 5 from the second (with k=1). September 21 2023

Stokes Transition of the Exponential Integral Approximation

Figure: The classical Stokes transition of Ei⁺ from asymptotically decaying to oscillatory.

• These plots were generated from the rational approximation on either side of the cut $i(-\infty,0]$. It is quite remarkable that the Stokes phenomenon can be observed through the lens of rational functions!

Definition

A function F is called a *function element* if it is analytic at the origin and in a domain of the form $\mathscr{D}=\mathbb{C}\backslash l_{\omega}$ where l_{ω} is a half-line originating at $\omega\in\mathbb{C}\backslash\{0\}$ i.e. a cut plane. Furthermore, F is assumed to decay in \mathscr{D} as $|p|\to\infty$.

Definition

A function F is called a *function element* if it is analytic at the origin and in a domain of the form $\mathscr{D}=\mathbb{C}\backslash l_{\omega}$ where l_{ω} is a half-line originating at $\omega\in\mathbb{C}\backslash\{0\}$ i.e. a cut plane. Furthermore, F is assumed to decay in \mathscr{D} as $|p|\to\infty$.

- Let $\beta \neq 0$ so that $\beta = |\beta|e^{ib}$ with $b \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, and θ the angle in the right half plane so that $b + \theta = \pi \pmod{2\pi}$.
- \bullet F a function satisfying:

Definition

A function F is called a *function element* if it is analytic at the origin and in a domain of the form $\mathscr{D}=\mathbb{C}\backslash l_{\omega}$ where l_{ω} is a half-line originating at $\omega\in\mathbb{C}\backslash\{0\}$ i.e. a cut plane. Furthermore, F is assumed to decay in \mathscr{D} as $|p|\to\infty$.

- Let $\beta \neq 0$ so that $\beta = |\beta|e^{ib}$ with $b \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, and θ the angle in the right half plane so that $b + \theta = \pi \pmod{2\pi}$.
- F a function satisfying:
 - F has exactly one singularity: an integrable branch point placed conventionally at p=1.

Definition

A function F is called a *function element* if it is analytic at the origin and in a domain of the form $\mathscr{D}=\mathbb{C}\backslash l_{\omega}$ where l_{ω} is a half-line originating at $\omega\in\mathbb{C}\backslash\{0\}$ i.e. a cut plane. Furthermore, F is assumed to decay in \mathscr{D} as $|p|\to\infty$.

- Let $\beta \neq 0$ so that $\beta = |\beta|e^{ib}$ with $b \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, and θ the angle in the right half plane so that $b + \theta = \pi \pmod{2\pi}$.
- F a function satisfying:
 - F has exactly one singularity: an integrable branch point placed conventionally at p=1.
 - ullet F decays at ∞ : $|F(p)| \leqslant C|p|^{-\alpha}$ (with $\alpha > 1$) for large |p|, and F is L^1_{loc} .

Definition

A function F is called a *function element* if it is analytic at the origin and in a domain of the form $\mathscr{D}=\mathbb{C}\backslash l_{\omega}$ where l_{ω} is a half-line originating at $\omega\in\mathbb{C}\backslash\{0\}$ i.e. a cut plane. Furthermore, F is assumed to decay in \mathscr{D} as $|p|\to\infty$.

- Let $\beta \neq 0$ so that $\beta = |\beta|e^{ib}$ with $b \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, and θ the angle in the right half plane so that $b + \theta = \pi \pmod{2\pi}$.
- \bullet F a function satisfying:
 - $oldsymbol{\bullet}$ F has exactly one singularity: an integrable branch point placed conventionally at p=1.
 - F decays at ∞ : $|F(p)| \leq C|p|^{-\alpha}$ (with $\alpha > 1$) for large |p|, and F is L^1_{loc} .
 - lackloseppi F is analytic in the cut plane $\mathbb{C}\setminus\{1+e^{i\theta}\mathbb{R}^+\}$, and can be analytically continued through both sides of the cut.

Definition

A function F is called a *function element* if it is analytic at the origin and in a domain of the form $\mathscr{D}=\mathbb{C}\backslash l_{\omega}$ where l_{ω} is a half-line originating at $\omega\in\mathbb{C}\backslash\{0\}$ i.e. a cut plane. Furthermore, F is assumed to decay in \mathscr{D} as $|p|\to\infty$.

Hypotheses of our main theorem:

- Let $\beta \neq 0$ so that $\beta = |\beta|e^{ib}$ with $b \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$, and θ the angle in the right half plane so that $b + \theta = \pi \pmod{2\pi}$.
- \bullet F a function satisfying:
 - F has exactly one singularity: an integrable branch point placed conventionally at p=1.
 - \bullet F decays at ∞ : $|F(p)| \leqslant C|p|^{-\alpha}$ (with $\alpha > 1$) for large |p|, and F is L^1_{loc} .
 - $lackbox{0}{F}$ is analytic in the cut plane $\mathbb{C}\backslash\{1+e^{i\theta}\mathbb{R}^+\}$, and can be analytically continued through both sides of the cut.

Let f be the Laplace transform of F given by

$$f(x) = \int_0^{\infty e^{-ib}} e^{-xp} F(p) dp \qquad \text{for } \arg x \in \left(b - \frac{\pi}{2}, b + \frac{\pi}{2}\right) \tag{26}$$

Borel plane conditions

- : Contour of integration for Laplace transform
- :Branch cut : 1+ eil Rt

Theorem

• Then f(x) has the dyadic expansion, for all $x \in \mathbb{C} \setminus e^{ib}(-\infty, 0]$,

$$f(x) = \sum_{m=1}^{n-1} \frac{(m-1)!}{(x/\beta)_m} d_{m,0} + \sum_{k=1}^{N-1} \sum_{m=1}^{\ell} \frac{(m-1)!}{(2^k x/\beta)_m} d_{m,k} + \mathcal{R}_{n,N,\ell}(x)$$
 (27)

Theorem

• Then f(x) has the dyadic expansion, for all $x \in \mathbb{C} \backslash e^{ib}(-\infty, 0]$,

$$f(x) = \sum_{m=1}^{n-1} \frac{(m-1)!}{(x/\beta)_m} d_{m,0} + \sum_{k=1}^{N-1} \sum_{m=1}^{\ell} \frac{(m-1)!}{(2^k x/\beta)_m} d_{m,k} + \mathcal{R}_{n,N,\ell}(x)$$
 (27)

• Denoting by $\Delta F(1+te^{i\theta})$ the branch jump of F, $F(1+te^{i\theta^+})-F(1+te^{i\theta^-})$ and $s=1+te^{i\theta}$, the coefficients of the series have the expressions

Global Rational Approximations of Functions With Fac

$$d_{m,0} = \frac{e^{i\theta}}{2\pi i} \int_0^\infty \Delta F(1 + te^{i\theta}) \frac{e^{\beta s(m-1)}}{(e^{\beta s} - 1)^m} dt$$
 (28)

$$d_{m,k} = \frac{e^{i\theta}}{2\pi i} \int_0^\infty \Delta F(1 + te^{i\theta}) \frac{e^{\beta s(m-1)/2^k}}{(e^{\beta s/2^k} + 1)^m} dt$$
 (29)

Theorem(continued)

The remainder term has the following closed form:

$$\mathcal{R}_{n,N,\ell}(x) = \frac{e^{i\theta}}{2\pi i} \int_0^\infty \Delta F(1 + te^{i\theta}) \left(-\rho_{n,0}(x,t) + \sum_{k=1}^{N-1} \rho_{\ell,k}(x,t) + R_N(x,t) \right) dt$$
(30)

The quantities $\rho_{n,0}(x,t)$, $\rho_{\ell,k}(x,t)$ and $R_N(x,t)$ admit geometric decay estimates in various asymptotic regimes of n,N,ℓ . (The precise asymptotics can be found in our paper). Moreover, convergence of (27) is uniform and geometric in $\mathbb{C}\backslash e^{ib}(-\infty,0]$.

Dyadic Resolvent Identities

 Dyadic decompositions translate into representations of the resolvent of a self-adjoint operator in a series involving the unitary evolution operator at specific discrete times:

Dyadic Resolvent Identities

 Dyadic decompositions translate into representations of the resolvent of a self-adjoint operator in a series involving the unitary evolution operator at specific discrete times:

Proposition

(i) Let $\mathcal H$ be a Hilbert space, and A a bounded or unbounded self-adjoint operator. Let U_t be the unitary evolution operator generated by A, $U_t=\mathrm{e}^{-itA}$. If $\lambda\in\mathbb R^+$, then

Dyadic Resolvent Identities

 Dyadic decompositions translate into representations of the resolvent of a self-adjoint operator in a series involving the unitary evolution operator at specific discrete times:

Proposition

(i) Let $\mathcal H$ be a Hilbert space, and A a bounded or unbounded self-adjoint operator. Let U_t be the unitary evolution operator generated by A, $U_t=\mathrm{e}^{-itA}$. If $\lambda\in\mathbb R^+$, then

$$(A - i\lambda)^{-1} = i(1 - e^{-\lambda}U_1)^{-1} - i\sum_{k=1}^{\infty} \frac{1}{2^k} (1 + e^{-\lambda/2^k}U_{2^{-k}})^{-1}$$
 (31)

and (3) follows.

Dyadic Resolvent Identities

 Dyadic decompositions translate into representations of the resolvent of a self-adjoint operator in a series involving the unitary evolution operator at specific discrete times:

Proposition

(i) Let $\mathcal H$ be a Hilbert space, and A a bounded or unbounded self-adjoint operator. Let U_t be the unitary evolution operator generated by A, $U_t=\mathrm{e}^{-itA}$. If $\lambda\in\mathbb R^+$, then

$$(A - i\lambda)^{-1} = i(1 - e^{-\lambda}U_1)^{-1} - i\sum_{k=1}^{\infty} \frac{1}{2^k} (1 + e^{-\lambda/2^k}U_{2^{-k}})^{-1}$$
 (31)

and (3) follows. Convergence holds in the strong operator topology. For $\lambda < 0$ one simply complex conjugates (31).

• In the present work, we use the normalization in which P_I takes the form

$$y'' = 6y^2 - z \tag{32}$$

• In the present work, we use the normalization in which P_I takes the form

$$y'' = 6y^2 - z (32)$$

• From here, we use coordinates which were inspired by Boutroux's original work on P₁ [7]

$$x = \frac{(24z)^{5/4}}{30}$$
 , $y = -\sqrt{\frac{z}{6}} (1 + h(x))$ (33)

• In the present work, we use the normalization in which P_I takes the form

$$y'' = 6y^2 - z (32)$$

• From here, we use coordinates which were inspired by Boutroux's original work on P_I [7]

$$x = \frac{(24z)^{5/4}}{30}$$
 , $y = -\sqrt{\frac{z}{6}} (1 + h(x))$ (33)

and (32) now reads

$$h'' + \frac{h'}{x} - \frac{4}{25x^2} + \frac{1}{2}h^2 - \frac{4}{25x^2}h = 0$$
 (34)

ullet In the present work, we use the normalization in which P_I takes the form

$$y'' = 6y^2 - z \tag{32}$$

• From here, we use coordinates which were inspired by Boutroux's original work on P_I [7]

$$x = \frac{(24z)^{5/4}}{30}$$
 , $y = -\sqrt{\frac{z}{6}} (1 + h(x))$ (33)

and (32) now reads

$$h'' + \frac{h'}{x} - \frac{4}{25x^2} + \frac{1}{2}h^2 - \frac{4}{25x^2}h = 0$$
 (34)

• A reader familiar with resurgence will recognize (33) as the Écalle critical time associated with (32) which ensures the equation takes a form suitable for Borel-Écalle summation

• From (34) we compute the first several terms of the asymptotic expansion about infinity.

- From (34) we compute the first several terms of the asymptotic expansion about infinity.
- Using this series we have developed a method that uses Borel summation coupled with Padé approximants that generates approximate solutions to P_I and other equations like it as a finite sum of exponential integrals.

- From (34) we compute the first several terms of the asymptotic expansion about infinity.
- Using this series we have developed a method that uses Borel summation coupled with Padé approximants that generates approximate solutions to P_I and other equations like it as a finite sum of exponential integrals.
- Each Ei has a rational approximation as previously discussed.

- From (34) we compute the first several terms of the asymptotic expansion about infinity.
- Using this series we have developed a method that uses Borel summation coupled with Padé approximants that generates approximate solutions to P_I and other equations like it as a finite sum of exponential integrals.
- \bullet Each Ei has a rational approximation as previously discussed.
- On the following slides we show plots of the pointwise error of the approximation and a plot of the first 100 pole locations for a tritronquée.

Error of Ei Approximation of P_I

Figure: Modulus of error log-plot generated from a fifty exponential integral approximation. The x,y axes are the number of steps of size $\frac{1}{10}$ in the real and imaginary directions respectively starting at 1-i.

Pole locations of a tritronquée solution to P_I.

Figure: Pole locations of a tritronquée solution to P_I.

Thank you!

Nick Castillo castillo.221@osu.edu

- [1] M. Abramowitz, and I. Stegun. *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*Dover, New York, ninth Dover printing, tenth GPO printing edition, (1964) [Original source: https://studycrumb.com/alphabetizer]
- [2] L. Ahlfors, *Complex Analysis*, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, 1978.
- [3] M.V. Berry and C. Howls, Hyperasymptotics, Proc. Roy. Soc. London Ser. A 430 (1990), no. 1880, 653–668.
- [4] J. P. Boyd, The devil's invention: asymptotic, superasymptotic and hyperasymptotic series. Acta Appl. Math. 56 (1999), no. 1, 1–98.
- [5] R. Borghi, Asymptotic and factorial expansions of Euler series truncation errors via exponential polynomials, Applied Numerical Mathematics 60 (2010) 1242–1250
- [6] R. Borghi, E.J. Weniger, Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation, Appl. Numer. Math. 94, 149 - 178 (2015)
- [7] Boutroux, P. Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre. Annales scientifiques de l'École Normale Supérieure, Serie 3, Volume 30 (1913), pp. 255-375. doi : 10.24033/asens.661.

http://www.numdam.org/articles/10.24033/asens.661

- [8] B. L. J. Braaksma, *Transseries for a class of nonlinear difference equations*, J. Differ. Equations Appl. 7 (2001), no. 5, 717-750
- [9] N. Castillo, O. Costin and R.d. Costin, Global Rational Approximations of Functions With Factorially Divergent Asymptotic Series, [Manuscript submitted for publication] (2022)
- [10] O. Costin, On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations, Duke Math. J. 93, 2 (1998), 289-344
- [11] O. Costin Asymptotics and Borel Summability (CRC Press (2008)).
- [12] A.B. Olde Daalhuis, Inverse Factorial-Series Solutions of Difference Equations, Proceedings of the Edinburgh Mathematical Society, 47, pp. 421–448 (2004).
- [13] Digital Library of Mathematical Functions, http://dlmf.nist.gov
- [14] T.M. Dunster and D.A. Lutz, Convergent Factorial Series Expansions for Bessel Functions, SIAM J. Math. Anal. Vol. 22, No. 4, pp. 1156–1172 (1991).
- [15] T.M. Dunster, Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (2001), no. 3, 293-323.
- [16] Dyson, D. J. (1952). Divergence of perturbation theory in quantum electrodynamics. Physics Review, 85, 32–33.

- [17] J. Écalle, Les fonctions résurgentes, Vol.1-3, Publ. Math. Orsay 81.05 (1981), (1985)
- [18] J. Horn, Laplacesche Integrale, Binomialkoeffizientenreihen und Gammaquotientenreihen in der Theorie der linearen Differentialgleichungen, Math. Zeitschr.,t.XXI,1924, p.82-95
- [19] J. L. W. V. Jensen, Sur un expression simple du reste dans une formule d'interpolation, Bull. Acad. Copenhague, 1894, p.246-252
- [20] U.D. Jentschura, Resummation of nonalternating divergent perturbative expansions, Phys. Rev. D 62 (2000)
- [21] U.D. Jentschura E.J. Weniger and G. Soff, Asymptotic improvement of resummations and perturbative predictions in quantum field theory, J. Phys. G: Nucl. Part. Phys. 26 1545 (2000).
- [22] E. Landau, *Ueber die Grundlagender Theorie der Fakultätenreihen*, Stzgsber. Akad. München, t.XXXVI, 1905, p.151-218
- [23] L. Lewin, *Polylogarithms and Associated Functions*. North Holland (1981)
- [24] E. Masina, Useful review on the Exponential-Integral special function, arXiv:1907.12373
- [25] R. B. Paris, D. Kaminski, *Asymptotics and Mellin-Barnes Integrals*, Cambridge University Press (2001)

- [26] M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis. Second edition. Academic Press, Inc., New York, 1980
- [27] W. Rudin (1991). Functional Analysis, International Series in Pure and Applied Mathematics. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277
- [28] E. B. Saff, Logarithmic Potential Theory with Applications to Approximation Theory, arXiv:1010.3760 (2010)
- [29] H. Stahl, The Convergence of Padé Approximants to Functions with Branch Points, Journal of Approximation Theory, Volume 91, Issue 2, 1997, Pages 139-204, ISSN 0021-9045,
- [30] J. Stirling, Methodus differentialis sive tractatus de summamatione et interpolatione serierum infinitarum, London, 1730
- [31] H. S. Wall, *Analytic theory of continued fractions*, New York : D. Van Nostrand, 1948.
- [32] W. Wasow, Asymptotic Expansions of Ordinary Differential equations, Dover Publications, 1965
- [33] E.J. Weniger, Summation of divergent power series by means of factorial series, Applied Numerical Mathematics 60, pp. 1429–1441 (2010).
- [34] E.J. Weniger, Construction of the Strong Coupling Expansion for the Ground State Energy of the Quartic, Sextic, and Octic Anharmonic Oscillator via a saccount.

- Renormalized Strong Coupling Expansion, Phys. Rev. Lett. 77, 14, p/. 2859, (1996).
- [35] E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10, 189 371 (1989)