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Sales Pitch: Some new results from our paper

@ The exponential integral Ei* (z) = eIS
uniformly convergent series of Lerch ® functions:

e TEit(z) = —B(—1,1, & —e™?" 1,25 2)  for z € C\i(—o0,0]

e 171'
k=1
(1)
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@ The function ¥(z) = 11:,((;”)) satisfies the identity
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Sales Pitch: Some new results from our paper

@ The exponential integral Ei* (z) = eIS
uniformly convergent series of Lerch ® functions:

e "Eit(z) = —®(-1,1, %) + —e™?" 1,25 2)  for z € C\i(—o0,0]
k=1
(1)

@ The function ¥(z) = 11:,((;”)) satisfies the identity

\Il(z+1)=1nxf%i[‘11(2]“1:+1)7\I/(2kx+%)] (2)
k=0

o Given a self-adjoint (bounded or unbounded) operator A defined on a Hilbert
space:

£ o
(A—iX)™ —zZe IAU;—i lim 2 2(—1)j2_ke_j)‘/2kUj27k , for A>0

£—00
®3)
where convergence holds in the strong operator topology.
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Divergent Series

@ When solving a physical problem by say perturbation theory, one is often left
with a series whose radius of convergence is equal to 0.
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Divergent Series

@ When solving a physical problem by say perturbation theory, one is often left
with a series whose radius of convergence is equal to 0.

@ Do these coefficients still carry physical meaning?
@ Yes!

@ In fact in 1952, F. Dyson gave a physical argument that any perturbative
expansion obtained in quantum electrodynamics is necessarily divergent [15] .
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Divergent Series

@ When solving a physical problem by say perturbation theory, one is often left
with a series whose radius of convergence is equal to 0.

@ Do these coefficients still carry physical meaning?
@ Yes!

@ In fact in 1952, F. Dyson gave a physical argument that any perturbative
expansion obtained in quantum electrodynamics is necessarily divergent [15] .

@ What has been realized is that such series do not sum in the ordinary sense of
the word. But rather, sum in the Borel sense and more generally the
Borel-Ecalle sense of summation.
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A Bit About Borel Summation

@ A key ingredient in Borel and Borel-Ecalle summation is the Laplace
transform £ and in fact a whole family of operators Ly where 0 € [0, 27] is
the direction of the contour of integration.
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the direction of the contour of integration.

@ Assume a function F' is analytic in a neighborhood of 0.
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A Bit About Borel Summation

@ A key ingredient in Borel and Borel-Ecalle summation is the Laplace
transform £ and in fact a whole family of operators Ly where 0 € [0, 27] is
the direction of the contour of integration.

@ Assume a function F' is analytic in a neighborhood of 0.

@ Recall the definition of the Borel transform B which (for us) acts on the
space of formal power series in 1/x without constant terms i.e. x71C[x 1]
by the rule

pn—l

(n—1)V"

and term by term application to any formal series.

Bx™" = neN
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@ A key ingredient in Borel and Borel-Ecalle summation is the Laplace
transform £ and in fact a whole family of operators Ly where 0 € [0, 27] is
the direction of the contour of integration.

@ Assume a function F' is analytic in a neighborhood of 0.

@ Recall the definition of the Borel transform B which (for us) acts on the
space of formal power series in 1/x without constant terms i.e. x71C[x 1]
by the rule

pn—l

(n—1)V"
and term by term application to any formal series.

@ B is related to the formal inverse Laplace transform £~!. However, L~ 12"
produces an actual function whereas Bz ™" is still a formal object.

Bx™" = neN
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A Bit About Borel Summation

@ A key ingredient in Borel and Borel-Ecalle summation is the Laplace
transform £ and in fact a whole family of operators Ly where 0 € [0, 27] is
the direction of the contour of integration.

@ Assume a function F' is analytic in a neighborhood of 0.

@ Recall the definition of the Borel transform B which (for us) acts on the
space of formal power series in 1/x without constant terms i.e. x71C[x 1]
by the rule

n—1

- p
Bl'n:m, neN

and term by term application to any formal series.

@ B is related to the formal inverse Laplace transform £~!. However, L~ 12"
produces an actual function whereas Bz ™" is still a formal object.

@ Furthermore, assume the germ of F' around 0 was obtained by summing
(now in the usual sense of the word) the Borel transform B of a formal
(possibly factorially divergent) series fie F(p) = (SoB) f

Note

The complex p-plane is commonly referred to as the Borel plane l
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A Bit About Borel Summation

o We say F'is Borel summable in the direction RT if the following conditions
hold:
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o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
@ Exponentially bounded at infinity within this sector and hence Laplace
transformable along the contour [0, c0).
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A Bit About Borel Summation

o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
@ Exponentially bounded at infinity within this sector and hence Laplace
transformable along the contour [0, c0).
@ We compute the Laplace transform of F' to obtain a function on the complex
x-plane.
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____ DivergentSeriesand ABit About Borel Symmation ______________________________
A Bit About Borel Summation

o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
@ Exponentially bounded at infinity within this sector and hence Laplace
transformable along the contour [0, c0).
@ We compute the Laplace transform of F' to obtain a function on the complex

x-plane.
0

ﬂm=wwmw:jF@am@ (4)

0
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A Bit About Borel Summation

o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
@ Exponentially bounded at infinity within this sector and hence Laplace
transformable along the contour [0, c0).
@ We compute the Laplace transform of F' to obtain a function on the complex

x-plane.
0

ﬂm=wwmw:jF@am@ (4)

0

o We call f(z) the Borel sum of F along R™ and by Watson's lemma is related
to the original formal series f by f(x) ~ f along rays as |z| — o0 Rz > 0.
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o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
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Nick Castillo Global Rational Approximations of Functions With Fac September 21 2023



____ DivergentSeriesand ABit About Borel Symmation ______________________________
A Bit About Borel Summation

o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
@ Exponentially bounded at infinity within this sector and hence Laplace
transformable along the contour [0, c0).
@ We compute the Laplace transform of F' to obtain a function on the complex

x-plane.
0

£(@) = (£oF) (@) = | Plo)e ™ dp (4)
0
o We call f(z) the Borel sum of F along R™ and by Watson's lemma is related

to the original formal series f by f(z) ~ f along rays as |z| = o0 Rx > 0.
@ We recall a definition of an asymptotic series in 1/z:

o0
ck
f(l‘)’”];ow as |£L'|—>OO Rr >0
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____ DivergentSeriesand ABit About Borel Symmation ______________________________
A Bit About Borel Summation

o We say F'is Borel summable in the direction RT if the following conditions
hold:
@ Admits analytic continuation to an open sector containing R
@ Exponentially bounded at infinity within this sector and hence Laplace
transformable along the contour [0, c0).
@ We compute the Laplace transform of F' to obtain a function on the complex

x-plane.
0

ﬂm=wwmw:jF@am@ (4)

0

o We call f(z) the Borel sum of F along R™ and by Watson's lemma is related
to the original formal series f by f(x) ~ f along rays as |z| — o0 Rz > 0.
@ We recall a definition of an asymptotic series in 1/z:

o0
fla)y~ Y E as o >0 Rz>0

k+1
k=0 S
N C
VNeN, fx)— )] xk’;l —o(@ N as |z| >, Rx>0 (5)

k=0
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A Bit About Borel Summation

@ Reaclling f(z) = LoF(x)
o f will a priori be holomorphic in a half plane of the form {z € C : Rz > v}.
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Divergent Series and A Bit About Borel Summation

A Bit About Borel Summation

@ Reaclling f(z) = LoF(x)

o f will a priori be holomorphic in a half plane of the form {z € C: Rz > v}.

e We may deform the contour of integration from vy = R* to vy = ¢/R+
provided F' is Borel summable along ~,, for all ¢ € (0,6]. This amounts to
analytic continuation of LoF to LyF.
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A Bit About Borel Summation

@ By Watson's lemma [31] or IBP, the asymptotic series of f for large Rz is
related to the Maclaurin series of F' :

1

flx) = éF(O) + %F’(o) oot x—nF("‘” (0)+ — Jw F("(p)e"* dp (6)

n
" Jo

@ By Cauchy’s theorem, the growing powers of dip lead to factorial divergence of
the asymptotic series of f, unless F' is entire (rarely the case in applications).
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@ By Watson's lemma [31] or IBP, the asymptotic series of f for large Rz is
related to the Maclaurin series of F' :

1

flx) = éF(O) + %F’(o) oot x—nF("‘” (0)+ — Jw F("(p)e"* dp (6)

™ Jy

@ By Cauchy’s theorem, the growing powers of dip lead to factorial divergence of
the asymptotic series of f, unless F' is entire (rarely the case in applications).

@ In fact, the location and type of singularities in the Borel plane carry a lot of

information about the problem, their existence implies the presence of Stokes
phenomena.
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A Bit About Borel Summation

@ By Watson's lemma [31] or IBP, the asymptotic series of f for large Rz is
related to the Maclaurin series of F' :

1

flx) = éF(O) + %F’(o) oot x—nF("‘” (0)+ — Jw F("(p)e"* dp (6)

™ Jy
@ By Cauchy’s theorem, the growing powers of dip lead to factorial divergence of
the asymptotic series of f, unless F' is entire (rarely the case in applications).

@ In fact, the location and type of singularities in the Borel plane carry a lot of
information about the problem, their existence implies the presence of Stokes
phenomena.

@ Each singular point of F' corresponds to a Stokes direction of f.
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A Bit About Borel Summation

@ Norlund noticed that the change of variables ¢(s) = F(—1ns) yields:
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A Bit About Borel Summation

@ Norlund noticed that the change of variables ¢(s) = F(—1ns) yields:

o oy G0
f(z) w(l)x w(l)(x)2+ + . ¥ (1)

L(z+k)
T'(x)

where () i==z(z+1)---(x+k—1) =
symbols.

(x)y are the Pochhammer
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Classical Factorial Expansions

@ Without remainder, we have the factorial series, (a formal series, for now)

o0 k)

k=0 k+1
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Classical Factorial Expansions

@ Without remainder, we have the factorial series, (a formal series, for now)

© (k)
o) = Y (P (©)

@ A classical rising factorial expansion for large x is a series of the form
_ \\© Ck
S =2kt @)x
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Divergent Series and A Bit About Borel Summation

Classical Factorial Expansions

@ Without remainder, we have the factorial series, (a formal series, for now)

o0 k)

k+1

@ A classical rising factorial expansion for large x is a series of the form
_ \\© Ck
S =2kt @)x

Note

Since F is analytic at zero, ¢ is analytic at one. Using Stirling’s formula in (9),
we see that, for large %, the (k + 1)’st term of the expansion (9) behaves like

(k) (1
(1) E g (10)
Due to the 1/k! factor in (10) the series ¢(x) can converge even if the
asymptotic power series obtained from (6) is factorially divergent.

_—— == =
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Limitations of Classical Factorial Expansions

@ Most often, the classical rising factorial expansions used in ODEs and physics
have two major limitations:
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Limitations of Classical Factorial Expansions

@ Most often, the classical rising factorial expansions used in ODEs and physics
have two major limitations:
© Slow convergence, at best power-like
@ Limited domain of convergence (usually unrelated to the function one is trying
to represent): a half plane.
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@ Most often, the classical rising factorial expansions used in ODEs and physics
have two major limitations:
© Slow convergence, at best power-like
@ Limited domain of convergence (usually unrelated to the function one is trying
to represent): a half plane.
@ The boundary of this half plane is separated by a positive angular distance
from the important antistokes rays
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Limitations of Classical Factorial Expansions

Limitations of Classical Factorial Expansions

@ Most often, the classical rising factorial expansions used in ODEs and physics
have two major limitations:
© Slow convergence, at best power-like
@ Limited domain of convergence (usually unrelated to the function one is trying
to represent): a half plane.
@ The boundary of this half plane is separated by a positive angular distance
from the important antistokes rays
@ Our new method of generating factorial expansions developed in [9] remedies
these two issues giving rise to expansions which converge geometrically in a
cut plane.
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What is necessary for geometric convergence?

@ Recall that we have:

fa) = 3 () (11)
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Limitations of Classical Factorial Expansions

What is necessary for geometric convergence?

@ Recall that we have:

: )
= L )

@ In order for (11) to converge, we can show that ¢ needs to be analytic in
D1 (1), the disk of radius one centered at s = 1.
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Limitations of Classical Factorial Expansions

What is necessary for geometric convergence?

@ Recall that we have:

-2 W (11)

k+1

@ In order for (11) to converge, we can show that ¢ needs to be analytic in
D1 (1), the disk of radius one centered at s = 1.

@ For geometric convergence, it is necessary for ¢ to be analytic in a domain
containing the closed disk Dy (1).
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What is necessary for geometric convergence?

@ Recall that we have:

-2 W (11)

k+1

@ In order for (11) to converge, we can show that ¢ needs to be analytic in
D1 (1), the disk of radius one centered at s = 1.

@ For geometric convergence, it is necessary for ¢ to be analytic in a domain
containing the closed disk Dy (1).

@ In applications ¢ is often singular at s = 0.
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Building geometric convergence into factorial expansions

@ We draw on a classical function of three complex variables; the Lerch
transcendent.

D(z,8,2) = dp, Rs >0, RNzr>0, zeC\[1,00)

(12)

1 0 ps—le—zp
I'(s) L 1—zeP
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New Factorial Expansions and Dyadic Decompositions

Building geometric convergence into factorial expansions

@ We draw on a classical function of three complex variables; the Lerch
transcendent.

o L (e R0, Re>0 C\[1
(z,s,at:)—l_‘(s)f0 gy s> 0, x>0, zeC\[l,00)
(12)

@ For our purposes we are interested in fixing the second parameter s = 1 and
use the change of variables u = e™P to obtain

1 w1

D(z,1,z) = J du (13)

o 1—zu
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New Factorial Expansions and Dyadic Decompositions

Building geometric convergence into factorial expansions

@ We use the notation Z_ to denote the non-positive integers.

Lemma

For |z| < 1 and x € C\Z_ we have

@(Zil,l,x)—(l—z)sz J! (14)

>0 (@)j+1

Moreover, the series converges absolutely and geometrically in x.
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New Factorial Expansions and Dyadic Decompositions

Building geometric convergence into factorial expansions

@ We use the notation Z_ to denote the non-positive integers.

Lemma

For |z| < 1 and x € C\Z_ we have

@(Zil,l,x)—(l—z)sz ' (14)

>0 (@)j+1

Moreover, the series converges absolutely and geometrically in x.

@ It is (14) which provides a prototype for geometrically convergent factorial
series.
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New Factorial Expansions and Dyadic Decompositions

Building geometric convergence into factorial expansions

@ We use the notation Z_ to denote the non-positive integers.
Lemma

For |z| <1 and x € C\Z_ we have

@(Zzl,m)_u_z)zzﬂ' ' (14)

- >0 (@)j+1

Moreover, the series converges absolutely and geometrically in x.

@ It is (14) which provides a prototype for geometrically convergent factorial
series.

@ The Lerch transcendent will be the building block for our factorial
expansions; its presence almost appears native to these problems.
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Dyadic Decomposition

Lemma (Dyadic identity)

The following identity holds in C:

1 1 & 2k
p(l—e—P21+e—P/Qk>:O (15)

k=1

as the left hand side in (15) has only removable singularities.
We have

r_ 1 Zn: L + (p) (16)
p Loer Higewrr Pl
where . . .
Pn+1(P) = 27 (p/Qn - 1_ e_p/2n> (17)

as an equality of meromorphic functions.
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New Factorial Expansions and Dyadic Decompositions

Sketch of the dyadic decomposition proof

Note

The set of poles within the summation seen in (15) is equal to 2miZ\{0} which
corresponds to the set of poles of (1 —e~P)~! with the exception of p = 0. The
pole at the origin is removed by the 1/p term.

The proof is elementary:

—1 .
1 2 1 4 2 1 2" "Z 27
-2 1—-22 2+1 1—-2% 2241 2+1 ~~ 1-—22° j701+x2j
(18)
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New Factorial Expansions and Dyadic Decompositions

Sketch of the dyadic decomposition proof

Note

The set of poles within the summation seen in (15) is equal to 2miZ\{0} which
corresponds to the set of poles of (1 —e~P)~! with the exception of p = 0. The
pole at the origin is removed by the 1/p term.

The proof is elementary:

12 1_421__2"”2‘:123’
l—z 1-2? z+1 1-2 22+1 z+1 7" 1-a¥ Zl4a¥

(18)
which implies, with z = e 7/2",
2—71»

1 S 2
1_6_2%=lfe,p—];_T (19)

—
@
N
=
+
—_

which implies (17).

Nick Castillo
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Dyadic Decomposition of the Cauchy Kernel

@ Let 8 # 0. The linear affine transformation p — Bp — Bs gives the following
generalization of Lemma 2 for the Cauchy kernel.
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Dyadic Decomposition of the Cauchy Kernel

@ Let 8 # 0. The linear affine transformation p — Bp — Bs gives the following
generalization of Lemma 2 for the Cauchy kernel.

Corollary (Dyadic decomposition of the Cauchy kernel)
Assume 3 # 0, then the following identity holds

1 —Bs © 2—k —Bs/2"
T —fe -8 + Z — kﬁe _ 7| =0 (20)
s—0p e~Ps —e=PP e—Bs/2¥ 4 o—Bp/2

k=1

as the left hand side in (20) has only removable singularities.
We have

1 ﬁe—ﬁs n 2—kﬁe—ﬂs/2k
=5 = e e P L e g g T onae) (1)

v

o Notice that the set poles within the summation for this case is equal to
%Z\{O}; a rotated version of the pole lattice from the expansion of 1/p.
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Exponential Integral Decomposition

i0— . )
o Consider the exponential integral Ei* (z) = e” {° %dp, Lemma 3 with
B = mi and s = 1 we integrate term by term.
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L New Fectoral Expansions and Dyadic Decompositions
Exponential Integral Decomposition

i0— . )
o Consider the exponential integral Ei* (z) = e” {° %dp, Lemma 3 with
B = mi and s = 1 we integrate term by term.

w8i07 e_pz
e "Eit(z) = —Wif dp

0 1— e*ﬂ'i(Pfl)

0 w0et0™ —k,—px
) 27%e™P
tnid [ e @
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___ NewFactorial Bxpansions and Dyacic Decompositons ____________________________________
Exponential Integral Decomposition

00—  _a .
o Consider the exponential integral Eit (z) = e® Sgoe %dp, Lemma 3 with
B = mi and s = 1 we integrate term by term.

0e'0™ =P

dp

¢~TEit (2) — —mi J

0 1— e*ﬂ'i(Pfl)

0 w0et0™ —k,—px
) 27%e™P
tnid [ e @

o The change of variable u = e~P™ for the first integral and u = e~?™/2" for
the second results in
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Exponential Integral Decomposition

e Consider the exponential integral Ei't = exs el%p;dp, Lemma 3 with
B = mi and s = 1 we integrate term by term

0e'0™ =P

e_IEi+($) = —Wif mdp

0
0 w0et0™ —k,—px
. 27 Fe™P
+ i kzlfo Q) +efm/2k(p71)dp (22)

o The change of variable u = e~P™ for the first integral and u = e~?™/2" for
the second results in

1 x

U ’LLTr'L
— 23
LlJru kZlJ 1+ emi/2Fy, du (23)

@ We recognize each of these as Lerch ® functions

7(1) 1,1, m— Z 71'1/2 Qk T ) (24)
k=1
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Exponential Integral Decomposition

@ Using the factorial expansion of ® from Lemma 1 we obtain
B 77,7r/2 1 )
El Z Z Z 1 + P 171'/2’“ (2ky)m (y = —Zx/ﬂ')

m=1 m k=1m= 1
(25)

which is valid in the cut z-plane C\i(—c0, 0]
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New Factorial Expansions and Dyadic Decompositions

Exponential Integral Decomposition

@ Using the factorial expansion of ® from Lemma 1 we obtain

77,7r/2
e—7Ei* Z SLEN o s " (y= —ia/n)

=, i 1+e N (@)

(25)
which is valid in the cut z-plane C\i(—c0, 0]

Note

We have expansions similar to (25) for the Airy function in [9] and the method
easily extends to Bessel functions J,,,Y,
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New Factorial Expansions and Dyadic Decompositions

Exponential Integral Approximation Errors

terms at x=20 on Stokes line

-10
-20
= 30 — k=0
=l — k=1
£ w —
4
= — k=3
= — k=4
g -60 _tzé
o0 — k=7
-70
= — k=8
_80 — k=9
— k=10
-90
-100
5 1015 20 25 30

term number: m

Figure: Size of terms in the successive series on the Stokes ray R™ with the formula (25).
This plot can be used to determine the number of terms to be kept for a given accuracy.
To get 10~° accuracy, 10 terms of the first series plus 5 from thesecond (with k& = 1).

Nick Castillo Global Rational Approximations of Functions With Fac September 21 2023




New Factorial Expansions and Dyadic Decompositions

Stokes Transition of the Exponential Integral
Approximation

I

o

3
>

I

<

Figure: The classical Stokes transition of Eit from asymptotically decaying to oscillatory.

@ These plots were generated from the rational approximation on either side of
the cut i(—o0,0]. It is quite remarkable that the Stokes phenomenon can be
observed through the lens of rational functions!
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New Factorial Expansions and Dyadic Decompositions

Dyadic Series For Function Elements

Definition
A function F'is called a function element if it is analytic at the origin and in a

domain of the form 2 = C\l,, where [, is a half-line originating at w € C\{0} i.e.
a cut plane. Furthermore, F is assumed to decay in 2 as |p| — 0.
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New Factorial Expansions and Dyadic Decompositions

Dyadic Series For Function Elements

Definition
A function F'is called a function element if it is analytic at the origin and in a

domain of the form 2 = C\l,, where [, is a half-line originating at w € C\{0} i.e.
a cut plane. Furthermore, F is assumed to decay in 2 as |p| — 0.

Hypotheses of our main theorem:
o Let B # 0so that B = |Ble” with be [Z, 3], and 6§ the angle in the right
half plane so that b + 6 = 7(mod 2).
@ F' a function satisfying:
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Dyadic Series For Function Elements

Definition
A function F'is called a function element if it is analytic at the origin and in a

domain of the form 2 = C\l,, where [, is a half-line originating at w € C\{0} i.e.
a cut plane. Furthermore, F is assumed to decay in 2 as |p| — 0.

Hypotheses of our main theorem:
o Let B # 0so that B = |Ble” with be [Z, 3], and 6§ the angle in the right
half plane so that b + 6 = 7(mod 2).
@ F' a function satisfying:
@ F has exactly one singularity: an integrable branch point placed
conventionally at p = 1.

Nick Castillo Global Rational Approximations of Functions With Fac September 21 2023



New Factorial Expansions and Dyadic Decompositions

Dyadic Series For Function Elements

Definition

A function F'is called a function element if it is analytic at the origin and in a
domain of the form 2 = C\l,, where [, is a half-line originating at w € C\{0} i.e.
a cut plane. Furthermore, F is assumed to decay in 2 as |p| — 0.

Hypotheses of our main theorem:
o Let B # 0so that B = |Ble” with be [Z, 3], and 6§ the angle in the right
half plane so that b + 6 = 7(mod 2).
@ F' a function satisfying:

@ F has exactly one singularity: an integrable branch point placed
conventionally at p = 1.

@ F decays at «0: |F(p)| < C|p|~® (with o > 1) for large |p|, and F'is L}

loc*
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New Factorial Expansions and Dyadic Decompositions

Dyadic Series For Function Elements

Definition

A function F'is called a function element if it is analytic at the origin and in a

domain of the form 2 = C\l,, where [, is a half-line originating at w € C\{0} i.e.
a cut plane. Furthermore, F is assumed to decay in 2 as |p| — 0.

Hypotheses of our main theorem:
o Let B # 0so that B = |Ble” with be [Z, 3], and 6§ the angle in the right
half plane so that b + 6 = 7(mod 2).
@ F' a function satisfying:
@ F has exactly one singularity: an integrable branch point placed
conventionally at p = 1.
@ F decays at «0: |F(p)| < C|p|~® (with o > 1) for large |p|, and F'is L}

. loc*
© [ is analytic in the cut plane C\{1 + ¢’?R*}, and can be analytically
continued through both sides of the cut.
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New Factorial Expansions and Dyadic Decompositions

Dyadic Series For Function Elements

Definition

A function F'is called a function element if it is analytic at the origin and in a
domain of the form 2 = C\l,, where [, is a half-line originating at w € C\{0} i.e.
a cut plane. Furthermore, F is assumed to decay in 2 as |p| — 0.

Hypotheses of our main theorem:
o Let B # 0so that B = |Ble” with be [Z, 3], and 6§ the angle in the right
half plane so that b+ 6 = w(mod 27).
@ F' a function satisfying:
@ F has exactly one singularity: an integrable branch point placed
conventionally at p = 1.
@ F decays at co: |F(p)| < C|p|~* (with a > 1) for large |p|, and Fis L{. ..
© [ is analytic in the cut plane C\{1 + ¢’?R*}, and can be analytically
continued through both sides of the cut.
Let f be the Laplace transform of F' given by
ib

flz) = J:oe e "PF(p)dp for argx € (b - E,b + z) (26)
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Borel plane conditions

P~ plane

>
[]

— : Contour of integration for Laplace transform
~ Branchcut : 1+ ¢ &
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Dyadic Series For Function Elements

Theorem

@ Then f(x) has the dyadic expansion, for all x € C\e®®(—o0, 0]

—1

- N —1)!
1= e 5, X G e+ Rande) @

k=1 m=1
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Dyadic Series For Function Elements

Theorem

@ Then f(x) has the dyadic expansion, for all z € C\e®*(—a0,0],
- N-1 ¢
(m—1)!
m, + dm,k + Rn,N,@ X 27
2: T o 2 2 @), () 1)

e Denoting by AF (1 + te®) the branch jump of F, F(1 +te'®" ) — F(1 +te'")
and s = 1 + te'?, the coefficients of the series have the expressions

d oy e 28

0= g ) =y (28)
J 6Bs(m71)/2k p

e 29

m, 27T’L ) (eﬂS/Qk + l)m ( )
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New Factorial Expansions and Dyadic Decompositions

Dyadic Series For Function Elements

Theorem(continued)

The remainder term has the following closed form:

Rn,N,@( )

2772

N—
) ( pno(z,t) + Z (z,t) + Ry (z, t)> dt

(30)
The quantities py, o(x,t), poi(z,t) and Ry (x,t) admit geometric decay estimates
in various asymptotic regimes of n, N, {. (The precise asymptotics can be found in
our paper). Moreover, convergence of (27) is uniform and geometric in

C\e*(—00,0].
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Dyadic Resolvent Identities

@ Dyadic decompositions translate into representations of the resolvent of a
self-adjoint operator in a series involving the unitary evolution operator at
specific discrete times:
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Dyadic Resolvent Identities

@ Dyadic decompositions translate into representations of the resolvent of a
self-adjoint operator in a series involving the unitary evolution operator at
specific discrete times:

Proposition

(i) Let H be a Hilbert space, and A a bounded or unbounded self-adjoint

operator. Let U, be the unitary evolution operator generated by A, U; = e~ 4. If
A e RT, then
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Dyadic Resolvent Identities

@ Dyadic decompositions translate into representations of the resolvent of a
self-adjoint operator in a series involving the unitary evolution operator at
specific discrete times:

Proposition

(i) Let H be a Hilbert space, and A a bounded or unbounded self-adjoint
operator. Let U, be the unitary evolution operator generated by A, U; = e~ 4. If
A e RT, then

o0
(A—iN) ' =i(l—eU) " =i ). (1 + e M2 Uy i) (31)

and (3) follows.
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Dyadic Resolvent Identities

@ Dyadic decompositions translate into representations of the resolvent of a
self-adjoint operator in a series involving the unitary evolution operator at
specific discrete times:

Proposition

(i) Let H be a Hilbert space, and A a bounded or unbounded self-adjoint
operator. Let U, be the unitary evolution operator generated by A, U; = e~ 4. If
A e RT, then

o0
1
(A—iN) "t =i(1—eUy)™ Z o1+ e M2 Uy i) (31)

and (3) follows. Convergence holds in the strong operator topology. For A < 0
one simply complex conjugates (31).

Nick Castillo Global Rational Approximations of Functions With Fac September 21 2023



Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ In the present work, we use the normalization in which P, takes the form

Y’ =6y° — 2 (32)
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ In the present work, we use the normalization in which P, takes the form

Y’ =6y° — 2 (32)

@ From here, we use coordinates which were inspired by Boutroux's original
work on Py [7]

)5/4 >
s 20 @) (33)
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ In the present work, we use the normalization in which P, takes the form
y" =6y — 2 (32)

@ From here, we use coordinates which were inspired by Boutroux's original
work on Py [7]

)5/4 >
s 20 @) (33)

@ and (32) now reads

o4 4
e +-h? - h=0 (34)
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ In the present work, we use the normalization in which P, takes the form
y" =6y — 2 (32)

@ From here, we use coordinates which were inspired by Boutroux's original
work on Py [7]

)5/4 >
s 20 @) (33)

@ and (32) now reads

o4 o1, 4

z 3 Tl T opEh =0 (34)

h +

o A reader familiar with resurgence will recognize (33) as the Ecalle critical
time associated with (32) which ensures the equation takes a form suitable
for Borel-Ecalle summation.
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ From (34) we compute the first several terms of the asymptotic expansion
about infinity.
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ From (34) we compute the first several terms of the asymptotic expansion
about infinity.

@ Using this series we have developed a method that uses Borel summation
coupled with Padé approximants that generates approximate solutions to P,
and other equations like it as a finite sum of exponential integrals.

Nick Castillo Global Rational Approximations of Functions With Fac September 21 2023



Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ From (34) we compute the first several terms of the asymptotic expansion
about infinity.

@ Using this series we have developed a method that uses Borel summation
coupled with Padé approximants that generates approximate solutions to P,
and other equations like it as a finite sum of exponential integrals.

@ Each Ei has a rational approximation as previously discussed.
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Rational Approximations of Tritronquée solutions to
Painlevé's First Equation

@ From (34) we compute the first several terms of the asymptotic expansion
about infinity.

@ Using this series we have developed a method that uses Borel summation
coupled with Padé approximants that generates approximate solutions to P,
and other equations like it as a finite sum of exponential integrals.

@ Each Ei has a rational approximation as previously discussed.

@ On the following slides we show plots of the pointwise error of the
approximation and a plot of the first 100 pole locations for a tritronquée.
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Rational Approximations of Tritronquée solutions to Painlevé's First Equation

Error of Ei Approximation of P;

20

40

imaginary directions respectively starting at 1 — 3.

60 80
Figure: Modulus of error log-plot generated from a fifty exponential integral
approximation. The x,y axes are the number of steps of size % in the real and
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Rational Approximations of Tritronquée solutions to Painlevé’s First Equation

Pole locations of a tritronquée solution to P.

. 15
.. : T . 10
~20 :-15 -1:0 -5
: : : .. .' . -10
’ -15

Figure: Pole locations of a tritronquée solution to P).
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