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Genesis of Meta-Analysis
• The psychotherapy debate (1952-1977)
• Glass (1976); Smith & Glass (1977)

– “META-ANALYSIS”
• Rosenthal; Rosenthal & Rubin (1978)
• Schmidt & Hunter (1977)
• Precursors:

– Pearson (1904): correlations
– Fisher (1932): P values
– Yates & Cochran (1938, …): Agricultural experiments

• Medical research (1980s-): heart disease, cancer, 
etc. – ubiquitous since the 1990s
– “It is obvious that the new scientific discipline of meta-

analysis is here to stay” -- Chalmers & Lau (1993)

Social 
sciences:
psychology, 
education, 

Employment 
testing, 

personnel 
evaluation, etc,
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Meta-Analysis
• “The statistical analysis of a large collection of analysis results 

from individual studies for the purpose of integrating the findings” -
- Glass (1976)

• “Averaging results across studies” -- Hunter & Schmidt (2004)
• “…the combination of results from multiple independent studies” --

Sutton & Higgins (2008)
• “[combination of the] results of previous research in order to arrive 

at summary conclusions to resolve uncertainty about the 
underlying medical question”-- Mittlbock & Heinzl (2006)

• Our definition (applicable in general):
– Analysis of results from multiple independent studies

• Note: the notion of “independent studies” is debatable  
– Newer studies are often conducted based on the outcome of, and 

experiences from, older studies
– However, Higgins et al. (J. Roy. Stat. Soc. A [2009]) argue that it is 

reasonable to assume that the study effects are independent
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Meta-Analysis
• Basic concept:

– Science is a cumulative process, where individual studies contribute to 
the overall total knowledge base

– Individual studies contribute something, but it is the collection of results 
from many sources that matter in moving science forward

– “…a single study will not resolve a major issue. Indeed, a small sample 
study will not even resolve a minor issue. Thus, the foundation of 
science is the culmination of knowledge from the results of many 
studies.” -- Hunter & Schmidt (2004)

• Meta-analysis has always been controversial
– “an exercise in mega-silliness” -- Eysenck (1978)
– The problem of ‘garbage-in, garbage-out’ : empirical data in certain 

studies may be untrustworthy  
– The problem of ‘mixing apples and oranges’ : studies may differ too 

much from each other (methodology, treatments, measured responses, 
etc.), making synthesis problematic

– Publication bias: only the ‘good ’ results get published  
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Meta-Analysis
• Controversies (continued)

– Concerns about ‘garbage-in, garbage-out’ and ‘mixing apples and oranges’
can be (mostly) nullified by following strict criteria for the selection of 
studies included in the meta-analysis

• Textbooks often commit major space to these issues
– There are many proposed methods to address publication bias (see 

optional slides in part II of presentation)

• Quantitative research synthesis (study selection):
– Is the study replicated, with randomization, and sufficient observations?
– Use only published studies? 
– Appropriate experimental units (e.g., plot size, soil type, tillage) and 

methods for treatment application (timing, formulation) and data collection?
– Appropriate response variable? (continuous vs. ordinal vs discrete)
– Appropriate analysis in primary study? Reported measure of variability in 

the study? (standard error, variance?)
– Many other factors….

• See chapters 4-7 in: The Handbook of Research Synthesis and Meta-
Analysis, 2nd edition. H. Cooper, L.V. Hedges, and J.C. Valentine, editors. 
Sage Foundation, NY.
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Meta-Analysis
• Despite concerns, meta-analysis has become the standard 

for evidence synthesis in many disciplines
• There has been a tremendous growth in the number of papers 

using the method
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Study results vs. individual observations
• As reflected in the definitions, meta-analysis is traditionally thought to be 

based only on the summary results from each study, and not on the 
original observations within each study
– Typically, the original observations (raw data; replications) are not available 

at the time of the meta-analysis
• However, it is now becoming more common to conduct a meta-analysis 

on the original observations from the studies (when data are available)
– Known as Individual Patient Data (IPD) meta-analysis or Individual 

Participant Data (IPD) meta-analysis
– Analysis with IPD can then be (almost) equivalent to multi-trial analyses in 

agriculture and medicine
• Multi-location, multi-location-year, multi-environment variety trials
• Multi-center medical trials
• GxE

• In some disciplines (i.e., medicine), researchers assume that their 
primary studies will become part of a meta-analysis, so they now 
frequently make their observations to the wider community
– See Cochrane Collaboration
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“The Cochrane Collaboration is an independent, non-profit, non-
governmental organization consisting of a group of more than 
31,000 volunteers in more than 120 countries. The collaboration 
was formed to organize medical research information in a 
systematic way to facilitate the choices that health professionals, 
patients, policy makers and others face in health interventions 
according to the principles of evidence-based medicine. The 
group conducts systematic reviews of randomized controlled 
trials of health-care interventions, which it publishes in The 
Cochrane Library.”  --Wikipedia
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Study results vs. individual observations
• Sometimes original observations are available from only some studies 

– One can just use the results from the individual studies (ignoring additional 
information in the original observations) – most common approach

• Piepho et al. (Biom. J. [2012]) has shown that one can recover most 
information from the two-stage approach (where the analysis of the 
summary results is stage two)

– Alternatively, Riley (Stat. Med. [2009]) and others have developed methods 
for combining original observations from some studies with results from 
other studies in a single simultaneous analysis (for continuous data)

• May not be worth the effort
• IPD meta-analysis is most beneficial when

– Individual studies are small, which means that the summary results are 
imprecise (especially the standard errors) 

– When one is focusing on sub-groups (individuals) within studies,  and the 
variables (covariates) associated with the individuals

• IPD meta-analysis cannot be easily done when the experimental and 
treatment designs vary among the studies (a common occurrence)

• Even with the availability of the original (primary) observations, meta-
analysis may still be most practical based on the summary results
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Meta-analysis workshop : Outline
• Basic concepts (with case studies)    

– A little history and the goals of meta-analysis
– The concept of effect size (explained through the case studies)
– Graphical appraisal of the effect sizes
– Models for fixed- vs. random-effect meta-analysis
– Parameter estimation, and interpretation
– Heterogeneity in effect sizes among studies  - interpretation
– Confidence intervals, prediction intervals

• Introduction to some key topics
– Moderator variables in a meta-analysis
– Multiple-treatment meta-analysis 

• Not covered (but program code and slides are given):
– More on graphical appraisals
– Probability of effect size in future new study
– Power of meta-analysis
– Fallacy of counting P values!
– Publication bias, and how to assess

Analyses demonstrated using 
SAS (macros and procedures), 
although use of an R package 
is summarized at end of 
PowerPoint file
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An illustration: an individual study
An investigation of the effect of treatment T on 
severity of crop disease. Example:
– 2+ treatments or factor levels (T, C [=control], …)
– n replications of each treatment
– Response variable: y (e.g., disease severity)
– Conduct appropriate analysis for this study and 

estimate the Effect Size of interest: 
• Estimated parameter, or function of estimated 

parameters, from an individual study. Examples: 
• Difference in mean disease for T and C

• Or, ‘percent control ’, C (relative reduction in disease 
compared to the control; a ratio)

• Or, transformation of the above for statistical reasons 
(e.g., log-response ratio):

TCD  ˆˆ

)ˆ/ˆ1(100ˆ/)ˆˆ(100 CTCTCC 

)ˆ/ˆln( CTL 

L is especially useful 
when the mean in 
the control could be 
small or large --e.g., 
D=3 is large when 
the control mean is 5 
(C = 100·3/5 = 60%), 
but small when the 
control mean is 50 
(C = 100·3/50 = 6%)
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An illustration, continued
• Use z as a generic symbol for the estimated effect size (D, L, …)

– z is an estimate of a parameter  ([true] expected effect size)
• Sometimes simply called the ‘true effect size’

• Record the estimated effect size (z) of interest (e.g., difference of two 
treatment means), and also the estimated variance of z (label this s2; 
known as the sampling or within-study variance) 
– For the subsequent analysis, s2 is considered known and fixed (obviously, 

unrealistic, but standard)
• Meta-analysts often obtain the estimated effect sizes from published 

articles and other reports
– z is easy to obtain, but s2 is often not reported, or a measure of variation is 

reported that is related to s2

– A great deal of effort usually goes into determining s2 from the available 
information

• Multiple chapters in meta-analysis books deal with this issue
• In a sense, working backwards from the reported statistics

– Imputation may also be needed when no information is given on variability
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Determining sampling variance
• Suppose that the estimated effect size is the difference of two means 

(i.e., z = D), then s2 is the square of the standard error of the difference
of means (s2 = SE(D)2 )
– Let V be the residual variance (mean square error) from an ANOVA, and n

represent the number of replicates of each treatment. With independent 
treatments, 

s2 = SE(D)2 = 2·V/n
– Use alternative formula when sample sizes are not equal (nT and nC)

s2 = V (1/nT + 1/nC)
– Use alternative formula for variance heterogeneity
– Alternative formula for correlated means

• It is very common to present Fisher’s least significant difference (LSD) 
in some disciplines (e.g., agricultural sciences)
– If two means are greater than LSD apart, then they are declared 

significantly different
– If t1-0.05/2,df is the critical value for a Student t distribution at the 5% () 

significance level (within a single study), then LSD = t1-0.05/2,dfSE(D)
– So, 

s2 = (LSD/t1-0.05/2,df)2   (LSD/2)2 , if df is large (and =0.05)
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Determining sampling variance, continued
• Suppose one only has multiple comparison “line” (“letter”) display of 

means, and the effect size was the difference between the first and last 
treatment mean 

• Nonsignificant differences (find largest):
20-16 = 4, 16-15 = 1, 10-7 = 3

• Significant differences (find smallest):
20-15 = 5, 20-10=10, 20-7 = 13, 
16-10 = 6, 16-7 = 9, 15-10 = 5, 15-7 = 8

• LSD  (4+5)/2 = 4.5

• s2  (LSD/2)2 = (4.5/2)2 = 5.06

Treat Mean
A 20 a
B 16 ab
C 15  b
D 10   c
E 7     c

The LSD is 
• greater than the largest nonsignificant

difference between the means, and
• smaller than the smallest significant

difference
• as approximation, LSD is half-way 

between these two values

Ngugi, Lehman, 
Madden (2011)
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Meta-analysis
• There are many possible effect sizes

• For a meta-analysis, each study must contribute a pair of 
statistics, (z, s2) 

• From single to multiple studies:
– Suppose there are K studies
– Label the individual studies with i (i = 1, …, K)
– The pair (zi, si

2) becomes a “data point” for a meta-analysis, and the 
unknown (true) expected effect size (a parameter) for study i is i

• i is often called the ‘true effect size’ for study i

• Usually assume that zi has a normal distribution (original 
observations may have many different distributions)
– This distributional assumption can be relaxed

Madden (Ohio State Univ.)



Some effect sizes: Continuous data

iiiD TC ˆˆ 
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i

ii
i S

d )ˆˆ( TC 


deviation standardstudy - within,ii VS 

i̂














 22
2

ˆ
1

ˆ
1

TiCii

i
i n

Vs

• Mean (completely randomized)

• Mean (RCBD)

• Difference in means (Di )
(completely randomized or RCBD 
[Vb i cancels])

• Log ratio (Li ), or percent control…
• Valuable when relative changes matter
• May be useful when the response 

variable is not (quite) the same for all 
studies (different scales)

• Standardized mean difference (di )
• Attributed to Cohen, Hedges
• Very common in social sciences
• Advocated when the response variable 

differs among studies
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Corrections used to reduce the bias in di (and si
2)

ni: number of replicates in each group for study 
i, with generalizations for unequal sample size

i̂ iiibi nVVs /)(  
2 Vi: i-th residual variance

Vb i : i-th block variance
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Effect sizes for relationships or associations
Correlation coefficient (ri) 
or the Fisher 
transformation (Zri).

Sampling variance of Zri is 
si

2 = 1/(ni-3)

Slope (bi) and/or intercept (ai) of model fitted to 
the data for each study (i = 1, …, K). 
Sampling variance (si

2): square of estimated 
standard error of slope or intercept
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Effect Sizes: Discrete (binary) data 
and survival data (not covered)

• Many possible effect sizes, such as:
– Proportion, or its transformation
– Odds or log odds
– Difference of proportions (risk difference)
– Relative risk (ratio of proportions) or log of relative risk
– Odds ratio or log odds ratio

– Hazard ratio or log hazard ratio
• Analysis proceeds in the same manner as with continuous data, 

with the usual assumption that the estimated effect sizes (not the 
original observations) have a normal distribution

• If individual participant data (IPD) are available, can use 
generalized linear mixed models (GLMMs), with binomial, 
Poisson, or other conditional (within-study) distributions
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Case study 1: 
Reduction in toxin 
concentration in 

harvested wheat grain
• Wheat (one of the most economically important crops in the world) is 

often affected by the disease known as Fusarium head blight (FHB)
– A mammalian toxin—DON (deoxynivalenol)—is often produced in 

infected wheat seeds (grain)
– One control practice is to treat the wheat with a fungicide (pesticide) in 

the field at a particular date
• Studies on disease control were conducted for more than a decade at 

multiple U.S. locations, using standardized experimental protocols
• Here, we use results for the effect of the fungicide Folicur

(=tebuconazole) on DON toxin concentration (ppm) in harvested grain
• The studies are analogous to clinical trials in medicine, but typically 

only the results are available
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Case study 1: Reduction in toxin 
concentration in harvested wheat grain

• Details:
– Each study consisted of 4-6 replicates
– Two or more treatments in each study (only two treatments used in the meta-

analysis shown here)
• T: Folicur (applied at a single wheat growth stage [Feekes 10.5.1])
• C: Check (control; “placebo”) 

– T , C : mean DON toxin concentration (ppm) in wheat grain
– Data from individual studies were analyzed with ANOVA or mixed models

• Among other things, estimate treatment means and standard errors, and 
residual variance (V)

• There were K = 101 studies in the meta-analysis
• Primary interest in percent control (C): 100(1 - T/C)

• So, log response ratio used as the estimated effect size (zi; i = 1, … 101)

)ˆ/ˆln( CiTiii Lz  












 22
2

ˆ
1

ˆ
1

TiCii

i
i n
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Paul et al. Phytopathology 97: 211-220 [2007]; Madden & Paul Phytopathology 101: 16-30 [2011].
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i

K=101 studies:
Each study becomes an 

“observation” in the new dataset

Case study 1: 
The meta-analytical data set

Study 
C̂ i T̂ i

Ci )ˆ/ˆln( CiTi  si
2 

1 10.3 4.8 53.4 -0.764 0.029
2 8.0 4.4 45.0 -0.598 0.017
3 3.9 3.8   2.8 -0.029 0.011
4 5.3 2.7 49.1 -0.674 0.036
5 8.2 7.1 13.4 -0.144 0.019
      
 

zi
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Histogram of zi. 
Because of 

unequal “sampling 
variances”, 

histograms may not 
be overly useful

“Forest Plot” 
(very common in 
meta-analysis).

Study ID vs. zi.
Show standard 

errors or 
confidence 
intervals.
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Meta-analytical random-effects model 

iii uz 

),0(~

),0(~
2

2

ii

i

sN

Nu





),(~ 22
ii sNz 

Estimated effect 
size for study i
(often assume 

normal)

Expected effect 
size, across studies

Random effect of study i
on the effect size (an 
among-study effect)

Residual or within-study 
“sampling variation” term

Distributional assumptions:
 2 : among-study variance 

(many authors use 2)

si
2: sampling variance (separate 

for each study; treat as a known 
parameter for each study).

Assume u and  are independent.

One estimates  and 2
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Meta-analytical random-effects model 

iii uz 
),0(~

),0(~
2

2

ii

i

sN

Nu





),(~ 22
ii sNz 

),(~  ),,(~| 22  NsNz iiiii

Equivalent model formulation (emphasizing the hierarchy):

ii u
iiiz 

Generalizations:
One can relax distributional assumptions (although most do not consider 
the latter). 

i is the ‘true effect size’ 
for study i, assumed to 

vary among studies
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Meta-analysis models
• Random-effects model (explicit 

consideration of among-study variability in 
effect size)

• σ2 > 0    
A positive σ2 indicates heterogeneity 
in (true) effect sizes

• Fixed-effects model (assume that there 
is no random variation in the effect size 
per study) – “old-fashioned” approach

• i.e., ui = 0 (i=1,…,K), or σ2 = 0
• In this case, think of  as a common

(not expected) effect for all the studies
– Some call this the common-effect 

model
– Estimate only a single parameter
– Homogeneity in effect sizes

• Note that meta-analysts use ‘fixed 
effects’ differently from others

iii uz 

),0(~

),0(~
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ii
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


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ii sN
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Meta-Analysis: Model Fitting
• Parameter estimation for  and 2 (most common approaches):

– Method of moments (the classic meta-analytical approach, but may
not be the most general) 

• Several approaches, but one method is most common (“DL”)
– Maximum likelihood (ML) and restricted (residual) maximum 

likelihood (REML)  
• Iterative and more computer-intensive

– Bayesian analysis 
• In general, an investigator uses one estimation method (but we 

demonstrate several here, for instructional purposes)
• Meta-analysis: a method of obtaining weighted averages of estimated 

effect sizes

, 1   ,  ˆ
22
i

i
i

ii

s
w

w
zw





   2/1)ˆ(SE  iw

One substitutes 
the estimate of 2

in the formulae
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“Method of Moments”
• Meta-analysts use the term “Method of moments” in a specific way
• One first fits the fixed-effects model (no ui term [2=0], which means that 

wi = si
-2)

• Calculate Cochran’s Q statistic, which has a chi-squared distribution with 
K-1 df when 2 = 0

    2)(2 ˆ FIX
ii zsQ

• Many use Q to formally test for non-zero among-
study variability, but the test has very low power

• But one can equate Q to its expected value for 
nonzero 2, and solve for 2. This is known as 
the DerSimonian and Laird (1986) method 
(DL); a non-iterative approach.
– With the estimate of 2, estimate wi and then 

estimate the random-effects expected value, 
– Probably still the most common meta-analytical 

method performed (although it is not implemented in 
standard general-purpose statistical software)
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“Method of Moments”
• The DerSimonian and Laird (DL) approach is the basis for several 

specialized computer programs or specialized macros and packages
– e.g., COMPREHENSIVE META-ANALYSIS (CMA)  (Biostat, Inc.)

• Programs may be quite expensive, but they often are window-driven and 
customized for this type of analysis, providing many of the specialized 
features that meta-analysts expect (especially for graphs)—ideal for non-
statisticians

– Macros have been written for commercial software (e.g., in SAS and STATA)
– R packages and functions are also available (e.g., metafor); these will have 

a steeper learning curve for the non-statistician, but are very powerful
• Some modern textbooks in meta-analysis are primarily based on the DL 

approach (e.g., Borenstein et al. [2009], an excellent introductory text).
• There are several variations of this method of moments not discussed here
• Several advantages, including:

– Method does not explicitly depend on normality
– May be much faster than iterative approaches for large and complex data sets
– Performs reasonably well in terms of confidence interval coverage, efficiency, 

bias, power, for the expected effect size (may perform less well for the among-
study variance)
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ML and REML
• It is straightforward to fit the random-effects meta-analytical model using 

maximum likelihood (ML) or restricted (residual) maximum likelihood (REML)
– In fact, DerSimonian and Laird (1986) also proposed both of these approaches in 

addition to their namesake “method of moments”
– Because likelihood-based mixed-model software was not generally available in the 

1980s, the DL moment-method became entrenched with meta-analysts
– The simplicity argument for the moment method is much less compelling today, 

given the speed of personal computers and the sophisticated general-purpose 
software available for ML and REML estimation of mixed models

• Arguments in favor of ML (or REML) include: 
– Many good statistical properties of the parameter estimates, and the direct ability 

to formally compare nested models
– Calculation of EBLUPs for random study effects
– Generality of the approach for a wide range of possible random and mixed-

effects models, including many expansions of the model presented here
– Availability of commercial (SAS, STATA) and free (R) software for fitting models

• The iterative ML and REML methodology is standard (not described here)
– Care is required in using mixed-model software because of the fixed 

sampling variances (si
2; a known parameter [constant] for each study); 

“tricks” may be needed to prevent the estimation of a residual variance
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 ̂  SE(  ̂ ) 95% CI for  ̂  t = 
 ̂ / SE(  ̂ ) 

 
p value 

Control 
% (C) 

95% CI for C 

0.24 0.028 0.30 - 0.19 8.85 <0.001 21.6% 17.2%  - 25.8%

H0:  = 0 (i.e., expected log response ratio (L) = 0)
Ha:   0

Case Study 1: ML Estimation (K =101)

))ˆexp(1(100ˆ CMedian Percent Control:

  
)ˆ(ˆ

ˆ





ES

t

Typical statistics from a meta-analysis:

• Significance determined with Wald statistic (with an 
assumed Student t distribution under H0)

• The choice of degrees of freedom (df) is not resolved (not 
relevant in this example with large K)

• Confidence intervals based on assumed distribution (normal 
or t) of estimated 
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Estimation methods

Noninformative priors were used. Bayesian 
results show the mean and standard 

deviation of the posterior distribution, and 
the 95% credible interval (equal tails 

version).
Bayesian approach accounts for the 

uncertainty of the variance parameters

Fixed-effect estimates 
(assumes σ2=0).

Common historicially; should 
not be used, in general. 

ML and REML give very 
similar results here 
because of large K

Moment Method of 
DerSimonian and Laird 

(DL)

Method
(SE)

Confidence 
Interval (95%)

ML -0.244 (.0276) -0.299  -0.189
REML -0.244 (.0278) -0.299  -0.189
Moment -0.245 (.0285) -0.301  -0.188
Fixed -0.223 (.0163) -0.255   -0.192
Bayesian -0.242 (.0281) -0.298   -0.184

ζ̂
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Forest plot, with 
addition of estimated 
, together with 
confidence interval 
(red diamond), and 
prediction interval 
(open black diamond)

One could also show 
the fixed-effects results 
(2 = 0). Here, one 
cannot see any 
confidence interval (too 
narrow).  
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Diagnostics
• Model assessment (criticism) in meta-analysis has unique issues
• The usual residual plots (residual versus predicted values) may not be of 

much value for the simple random effects model, because of the unequal 
sampling variances
– The unique si

2 for each zi makes interpretation difficult
– For the simplest model, the “predicted” value is a single number () (thus, no 

range of the x-axis for a graph)
• Meta-analysts have developed some specialized graphs that are not typically 

seen in other applications
– In addition to the Forest plot, so-called funnel and radial plots

• These can help assess the need for a random-effects or a fixed-effects model, and 
explore the possibility of publication bias

• Moreover, versions of diagnostic plots from the broader field of mixed-model 
analysis have value (but are much less reported). Not covered here.
– Studentized deleted residual versus study ID, PRESS statistics versus study ID,…
– Cook’s Distance for the fixed effect () and the variance (2) versus study ID

• Measures the influence of observations (studies) on parameter estimates
– A scaled measure of the squared distance between parameter estimates based on 

the full dataset and the estimates when each observation (study) is deleted (with 
mixed models, the model is refitted with each observation deleted)
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Special graphical views of effect sizes
• These graphs can simultaneously be used to determine: if a fixed-effects 

(common-effects) analysis is warranted; and if there is bias due to missing 
studies (publication bias)
– Requires moderate-to-large K

• Funnel plot (Light and Pillemer 1984; Egger et al. 1997): Graph of “precision” 
(1/si ) vs. zi , fixed-effects estimated effect size, and pseudo-confidence interval 

If among-study 
variance is 0 
(justifying 
fixed-effects), 
almost all 
points should 
be inside the 
dashed lines).
Evidence here 
is for random 
effects

If not upside-down 
funnel, and not 
symmetrical, then 
selective reporting 
of results may be 
occurring.
(No obvious bias 
here).

Sterne et al. (BMJ 
[2011]) questions 
tests of asymmetry 
and interpretations 
of funnel plots.

i
FIX s 2ˆ )(

i
FIX s 2ˆ )(
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If among-study 
variance is 0 

(justifying 
fixed-effects), 

almost all 
points should 
be inside the 

dashed lines).
Evidence here 
is for random 

effects

If no bias, there should 
be a random scatter 
around the line (no 

gaps at certain 
precisions or at certain 

effect sizes)

Use as a guide only 
(especially with small 
K) . I think the graph 
can be hard to 
interpret.

– In addition to funnel plot, a so-called “Radial plot” or “Galbraith plot” 
(1988) may be useful
– Radial plot: Graph of “standardized estimated effect size” versus 

“precision” (1/si)

• zi /si vs. 1/si
• Slope of the zero-intercept (fixed effects) regression line is            (when 

residual variance is fixed at 1)

)(ˆ FIX

2
ˆ )(




i

FIX

s
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If no bias, there should be a random scatter around the line (no gaps at certain 
precisions or at certain effect sizes) – a (rough) guide only (especially with small K)

Publication bias: Plots may help
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Case study 2: Slope of a linear 
relation for yield loss of maize (corn) in 

relation to disease
• One often wants to know the relationship between symptoms 

of a crop disease (“disease severity”—degree of infection) 
and the reduction in yield (yield or crop loss)

• Shah & Dillard (Plant Disease 90: 1413-1418 [2006]) described 
yield loss in sweet corn (y) in relation to the severity of rust 
disease at a single growth stage (x) in K = 20 studies
– A zero-intercept linear regression model was used for each study 

(when disease is not present, there is no reduction in yield)

• Effect size: slope of the regression model (i.e., zi = bi, where 
bi is the estimated slope for the i-th study (i = 1, …, 20) 

File: meta-analysis Shah slope example.sas

iiii ubz  ),0(~  , ),0(~ 22
iii sNNu 
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Obs study slope SE sampvar wgt State Variety Year MeanD

1 1 2.13607 2.18587 4.77803 0.21 NY Zenith 1999 0.39

2 2 0.47288 0.18572 0.03449 28.99 NY Zenith 1998 3.05

3 8 1.17716 0.14263 0.02034 49.16 NY Squeen 2000 6.58

4 11 0.33829 0.05394 0.00291 343.70 NY Bold 2001 45.91

5 22a 0.78559 0.24789 0.06145 16.27 NY Zenith 1997 8.10

6 22b -0.50102 0.42602 0.18149 5.51 NY Rival 1997 3.73

7 31 0.31888 0.01484 0.00022 4540.80 MI HMX83865 1993 18.73

8 35 0.14559 0.12224 0.01494 66.92 MI YBelle 1992 22.96

9 50 -0.79923 0.31152 0.09704 10.30 NY Jubilee 1984 11.73

10 59 0.63267 0.02300 0.00053 1890.36 IL FSSweet 1984 38.07

11 60 1.08843 0.06339 0.00402 248.86 IL FSSweet 1985 26.51

12 61 0.66299 0.25871 0.06693 14.94 IL FSSweet 1986 9.54

13 62 0.85302 0.04194 0.00176 568.52 IL Gcup 1984 39.79

14 63 0.55555 0.03612 0.00130 766.49 IL Gcup 1985 27.63

15 64 0.15786 0.28335 0.08029 12.46 IL Gcup 1986 6.22

16 65 0.62416 0.01996 0.00040 2510.03 IL Stylepak 1984 38.94

17 66 0.37280 0.02808 0.00079 1268.25 IL Stylepak 1985 25.70

18 67 0.78146 0.14652 0.02147 46.58 IL Stylepak 1986 6.72

19 70 0.59867 0.01999 0.00040 2502.50 IL SnowWhit 2001 36.95

20 71 0.40333 0.01810 0.00033 3052.41 IL Sterling 2001 35.81

Data set for 
Shah &
Dillard (2006)

File: meta-analysis Shah slope example.sas Go to SAS file…
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Heterogeneity of effect sizes
• The among-study variance (σ2) is of value for:

– Estimating the expected effect size and its standard error
– Assessing the magnitude of effect-size heterogeneity (i.e., “Is there 

heterogeneity of (true) effect sizes?”, How much heterogeneity?) and 
possibly the impact of the heterogeneity

• If σ2 = 0:
One could use fixed-effect analysis, but there is really no reason to do so 
(random-effect analysis is just as easy, which automatically takes care of the 
among-study variability [if present])

– Specialized post-model fitting analyses (alternative to confidence interval):
• Prediction interval: interval in which a randomly selected future (true) 

effect size will fall (new), with associated probability (e.g., 0.95)
• The probability that the effect size in a randomly selected future study will be 

less than (greater than) a constant () of interest, e.g., Prob(new < )
» See Madden & Paul (2011), or later material (if there is time)

• One can test for significance of σ2 in several ways, including with a 
likelihood ratio test (for MLE and REML), or with Cochran’s Q statistic

• Confidence intervals based on profile likelihoods (MLE and REML) or 
based on properties of the Q statistic (moment method -- specialized)
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Heterogeneity of effect sizes, continued
• Often, one wants to know the relative magnitude of among-study 

heterogeneity of the effect sizes (eliminates units of the Effect Size)
– Higgins & Thompson (Stat. Med. [2002]) proposed three (interrelated) relative 

indices, primarily to ascertain the impact of heterogeneity on the results
• H 2 = Q/(K-1), total variability relative to variability under homogeneity
• “R2”: Square of ratio of the width of the confidence interval (or SE) for 

estimated effect size () for a random-effect and fixed-effect analysis 
(loosely analogous to a design effect in survey sampling)

– Larger then ~ 2 means that among-study variation is having a substantial 
impact on the results
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• I 2 : Percentage of total variability that is due to among-study 
heterogeneity, defined directly from Q and related statistics 
(loosely analogous to an intra-class correlation):

I 2 = 100(H 2 - 1)/H 2 = 100[Q - (K-1)]/Q
– Heavily reported by those using the method of moments (an 

extremely popular statistic)
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Heterogeneity of effect sizes, continued
• I 2 : Percentage of total variability that is due to among-study 

heterogeneity (defined directly from Q and related statistics):

22

2

2

2
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ˆ

100)1(1001100
sQ

KQ
H

HI




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




• The last term only applies with non-varying sampling variances
• That is, if si

2 = s2 for all i (identical known sampling variances across all 
studies), then I 2 can be written directly in terms of within- and among-
study variances

• Some authors incorrectly substitute a simple average of the si
2 values

• There are ways of estimating a “weighted average” of the si
2 values 

(“typical within-study variance”), so that the last term holds as an 
approximation 

• With Case Study 1:
• DL est.: Q = 250.4,  K-1 = 100,  H 2 = 2.5,    R 2 = 3.0,  I 2 = 60%
• REML:                                          H 2 = 2.3,    R 2 = 2.9,  I 2 = 57%
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iii If ML or REML is used (no Q statistic)
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2̂  95% CI for 2̂  p value “R2” 

0.036 0.020 - 0.063 <0.001 2.9 

H0: 2 = 0 (i.e., no heterogeneity in the [true] effect size 
among studies; i varies among studies)

Ha: 2 > 0 (i.e., heterogeneity in the [true] effect size)

Meta-analysis: Among-study variability 
(case study 1)

ML estimation for log 
response ratio data (Case 

Study 1);
Profile likelihood CI method

p value based on likelihood-ratio 
statistic (LRS) (difference of log-

likelihoods between the random and 
fixed effects models)

Relative impact of 
heterogeneity (> 2 

is high)

Higgins and Thompson 
metric: 9.2

0163.
0276.
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 ̂  SE(  ̂ ) 95% CI  t = 
 ̂ / SE(  ̂ ) 

 
P value 

Control 
% (C%)

95% CI for C% 

0.24 0.028 0.30   0.19 8.85 <0.001 21.6% 17.2%  25.8% 

Confidence Interval (for expected value), case study 1:

))ˆexp(1(100ˆ:Median C

 ̂  SE(  ̂ ) 95% Pred. 
Int.  

t = 
 ̂ / SE(  ̂ ) 

 
P value 

Control 
% (C%)

95% Pred. Int. 
for C% 

0.24 0.028 0.62  0.13 8.85 <0.001 21.6% -14.3%  46.3% 

Prediction Interval (for new-individual-study effect size):

)ˆ(SEˆ
20501  ,df/.-t

  5.022
,2/05.01 ˆ)ˆ(SEˆ   dft





ˆ193.0ˆ)ˆ(

191.0ˆ  ,0365.0ˆ,0276.0)ˆ(
22

2

SE

SE See Madden & Paul (2011) for 
estimating Prob(new < )
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Case study 2, continued

meta-analysis Shah slope example.sas
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Case study 2, continued

meta-analysis Shah slope example.sas
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Case study 2, continued

Observed Outcome
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Optional funnel plot using 
metafor R package (note the 
inverse and reversed y-axis)
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Estimates (Fixed effects model, or random effects model: DL method of 
moments or REML)

Mean SE

Among 
study
Variance

-95%CI +95%CI t p value

Fixed 0.493 0.0075 0 0.478 0.508 66.012 <0.0001
Moment 
(DL)

0.547 0.0496 0.033 0.450 0.644 11.015 <0.0001

REML 0.516 0.0856 0.118
(se=0.046)

0.337 0.696 6.03 <0.0001

Q2 = 523.1, df=19, 

H2(DL) = 27.5, I2(DL) = 96.4%, R2(DL) = 44.1 (= (.0496/.007465)2), 

H2(REML) = 95.6, I2(REML) = 98.95%, R2(REML) = 131.5 (= (.0856/.007465)2)
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Study heterogeneity (σ2 > 0), continued
• Causes include:

– Differences in study conditions (experimental methods, data collection 
approaches, etc.)

– Environment (broad sense)
• Study conditions/environment can be accounted for in the meta-

analysis through the incorporation of moderator variables in the 
model
– Moderator variable: study-level characteristics (continuous or 

categorical variables) that can affect the magnitude of the effect size 
• Examples for case study 1: wheat variety, local weather, baseline 

disease incidence, measurement methods for the toxin, etc.
– Moderator variables are fixed effects in the model. Thus, moderator-

variable analysis involves a mixed model
– Accounting for moderator variables can increase our understanding of 

the phenomenon under investigation, and possibly lower the estimated 
among-study variance and the standard error of the estimated effect 
sizes
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Meta-Analysis

iiii uz  βX0

),0(~

),0(~
2

2

ii

i

sN

Nu





),(~ 22
0 ii sNz  Xβ

Effect size for 
study i

Intercept constant

Random effect of study i on 
the effect size.

Within-study 
random effect 

term; residual or 
“sampling 
variation”.

2: among-study variance

si
2: sampling (residual) variance 

(separate for each study; 
assume known)

Effect of moderator variable(s) for the i-th study.
Xi: a row vector of l different continuous moderator   
variables, or “dummy variables” to indicate 
categories or class levels (1  l)
Can put in form of categorical effects (with extra 
subscript)
: vector of effects of the moderator variables on the 
effect size (l  1)

Expected value:
E(zi) =  = 0 + X
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Moderator variables
iiii uz  βX0

),(~ 22
0 ii sNz  Xβ

iiii Xuz  0 ),(~ 22
0 ii sXNz 

ijiij Muz  0 ),(~ 22
0 ijij sMNz 

Specific cases:
One continuous moderator (e.g., mean disease severity [Xi] for case study 2)

4680.0003305.0104350.0ˆ
003305.04350.0ˆˆˆ

%10

0




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ii XX

5587.005587.0ˆˆ
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M

M
Mj: Effect of “base disease severity”
1: low (max.  severity < 50%)
2: high (max. severity > 50%)
(case study 2)

Xj: Mean disease severity in 
study (case study 2)

One categorical (factor) moderator variable (case study 2) – the two-subscript syntax 
(same as using Xi = 0,1 dummy variable)
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Meta-analysis with moderator variables
• Analysis proceeds in the same fashion as with the simpler analysis
• One can visualize results with expanded Forest plots (different 

symbols for different levels of a factor) or with x-y bubble graphs for 
continuous variables (with bubble size proportional to 1/si

2or to si
2)

• Funnel and radial plots should be based on the residuals from a fixed-
effect model with moderator variables

• One can use moment (DL) or likelihood (ML or REML) based model-
fitting methods
– metareg, metaf SAS macros; PROC GLIMMIX/MIXED; metafor R package

• Tests of the effects of moderator variables can be based on Wald 
statistics (chi-squared or F ), likelihood ratios, or more specialized 
(robust) statistics (Wald test is more common)
– With large K (number of studies), choices will not matter too much
– With small-to-moderate K, and high variation in the si

2 values, there is no 
consensus on the best testing approach (see Hartung et al. [2008] book)

• Adjustments to the usual F or chi-squared distributions (or 
corresponding df ) to account for the variation in si

2 and estimated 2

• I recommend Kenward-Roger (KR) adjustment with GLIMMIX or MIXED
Madden (Ohio State Univ.)



Forest plot with different 
symbols for two levels of 
factor “wheat type”: 
Spring (blue, solid); and 
Winter (black, open)

Case Study 1, continued
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Wheat 
type  ̂  SE(  ̂ ) 95% CI for  ̂  t = 

 ̂ / SE(  ̂ ) 
 
p value 

Control 
% (C) 

95% CI for C 

W 0.17 0.035 0.24  0.11 4.9 <0.001 16% 10%   21% 
S -0.33 0.041 0.42  0.25 8.2 <0.001 28% 22%   34% 

Moderator Variable Example (Case study 1): 
Wheat Type (Winter [W] or Spring [S])

F test indicated a highly significant effect of wheat type. 
The estimated among-study variance, however, was only 

slightly decreased (from 0.036 to 0.032)

Effect df F P

Wheat
type

1,99 8.77 .0038

Effect df F P

Wheat
type

1,73.2 8.72 .0042

Kenward-Roger df methodBetween-within df method
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Case study 2, continued

File: meta-analysis Shah slope example.sas

Moderator:
baseD

Mean 
estimate

high 0.5587 a
low 0.4465 a

4680.0003305.0104350.0ˆ
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Case study 3: Yield of corn in 
relation to fungicide treatment 
(even in absence of disease)

• Strobilurin fungicides are being marketed for “plant health” benefits, such 
as increased yield, even when plant disease is not present

• Paul and colleagues investigated the yield response of corn (maize) 
hybrids when treated once with a strobilurin fungicide between growth 
stages VT (tassel emergence) and R1 (silk emergence)
– Paul, Madden, Bradley, et al. (2011). Phytopathology 101: 1122-1132. 

• See paper for study selection criteria and how the literature was searched

• Four different fungicides were evaluated in separate meta-analyses; 
results for Quilt (azoxystrobin + propiconazole) are used here.

• K = 61 studies
• We will work through this example directly in SAS (no output summaries 

in PowerPoint)

File: meta_quilt.sas
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Multiple effect sizes
• There may be more than one estimated effect size in each study

– Multiple (q) endpoints (i.e., response variables), repeated measures, 
or possibly estimated parameter estimates for relationships between 
variables (e.g., intercept and slope) for each trial

– Multiple treatments for each study, where an individual study could 
have between 1 and q treatments 

– Multiple treatments and endpoints
• Many data analysts ignore the multiple effect-size nature of the 

studies and carry out several univariate analyses
– Often, only one effect size is of interest from each study
– With multiple effect sizes, the univariate approaches ignore the 

correlations within and among studies, and can therefore be misleading
• The meta-analytical fixed or random-effects models can be 

expanded for q random variables per study 
– All studies do not have to contain all q effect sizes [q(i)]
– We focus on the multiple treatment (multi-treatment) problem
– We consider only normal distributions (for estimated effect sizes)
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Multiple treatments (groups) per study
• There are many approaches to meta-analysis with q > 2 treatments  

– For demonstration purposes, assume there are three treatments

– If j = 3 is the control (for example), then one may be interested in the mean 
difference (contrast) as the effect size

• Separate meta-analysis for each contrast:
– Methods described previously are applied to each effect size
– This approach ignores the correlations of the estimated effect sizes due to 

the presence of a common treatment mean in each contrast
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 Estimated expected values (means) for the three 

treatments (j = 1, 2, 3) for the i-th study (y is a mean 
across all reps or blocks within a study, not an 
individual observation)
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Multiple treatments (groups) per study
• A more elaborate approach is to conduct a multivariate multi-treatment 

meta-analysis based on the vector of contrasts (zi) for each study

– A study does not have to include all treatments to be used in the analysis
• In contrast, with the univariate approach, one can only use a study if treatments 

1 and 3 (zi1) were included; or treatments 2 and 3 were included (zi2)
– Because each effect size includes a common (control) mean, the effect 

sizes must be correlated within studies
– Effect sizes may also be correlated between studies

• This is the general (multivariate) approach of Gleser and Olkin (2009) –
available in metafor R package

• The basis for so-called network meta-analysis (Mixed Treatment 
Comparisons [MTC], multi-treatment) approach of Lu and Ades (J. 
Am. Stat. Assoc. 101:447-459 [2006]; Stat. Med. 23:3105-3124 [2004])

• The Lu and Ades methodology is actually more complex (not covered here)
• Lu and Ades take a Bayesian approach, but a frequentist analysis is also 

possible (Piepho, Williams, Madden, Biometrics 68: 1269-1277 [2012])
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Multiple treatments (groups), continued
• The Lu & Ades approach has been used heavily in medical statistics, 

especially with IPD analyses. It is quite effective. 
• This is a “non-standard” model for mixed-model analysis, requiring much 

more of the analyst (especially with IPD). Because all treatments do not 
occur in all studies, great care must be taken in:
– Constructing the fixed-effects portion of the meta-analytical model
– Constructing the within-study covariance matrix for each study to account for 

the correlation of the different contrasts
– Constructing the among-study covariance matrix

• Instead of analyzing contrasts ( zi ) of the means, one can conduct the 
analysis directly on treatment means ( yi ) for each study, and calculate 
contrasts post-model fitting based on expected values 
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Multiple treatments (groups), continued

• For a certain class of (variance component) models, analysis of yi gives 
identical results to an analysis of zi for each study (Piepho, Williams, 
Madden, Biometrics [2012]), when REML is used for model fitting

• See Piepho (BMC Med. Res. Meth. 14:61- [2014]) for more on the 
equivalence of the two approaches (and lots of hints on the analysis)

• Thus, one can readily use standard mixed-model software without too 
many additional steps (always some extra work with meta-analysis!)

• For both approaches, direct and indirect information is utilized
– Suppose one is interested in the expected difference in means for 

treatments 1 and 2
– Direct evidence (from studies with treatments 1 and 2): 1-2

– Indirect evidence (from studies with 1 or 2): (1-3) – (2-3) = 1-2

• So, studies without 1 (or 2) still provide information on the expected 
difference of treatments 1 and 2
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Multi-treatment meta-analysis
There are several possible models based on estimated means for each study 
(only a few examples are given) – start with univariate representation:

yij is the estimated mean for treatment j in the i-th study (yij ൌ (௜௝ߤ̂
(uij, 2, , sij

2 are all defined now in terms of the means, not the differences)

ijijjiij uy 

Response 
variable 

(estimated 
mean)

Fixed or
random effect 

of study i

Fixed effect 
of treatment j

Random effect of 
study on the 

treatment effect
(interaction of 

study and 
treatment) 

Residual (error in 
estimating means within 

the study, held fixed);
sampling variance 

jjjiij yyE   )(
Interest is in the difference in treatment effects: 

31 e.g., 
j - j  plays 

the role of  in 
the univariate 

analysis
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Study effects in model
• Many meta-analysts favor fixed rather than random study main effects 

(i), although either approach can be justified
• Fixed study main effects:

– Analogous to an incomplete block design with fixed block effects
– Fixed treatment effects are based on intra-study information only

• May be important because no randomization is involved in the selection or 
design  or locations of studies, even though there may be (or will be) 
randomization within each study

• There is still a random effect of study on the treatment effect (interaction: uij)
– For q = 2 treatments, the multi-treatment model with fixed effect of study 

is equivalent to the “univariate” contrast model (zi = yi1 – yi2 =  + ui + i)
• Within-study sampling variances and the among-study variance for zi

differences are double the values in the multi-treatment model for yij means 
(for independent groups within studies), but one obtains identical
estimates of the difference of expected values ( or 1-2, and 
corresponding SE)

– The case of q > 2 is straightforward
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Study effects in model, continued
• Random study main effects:

– Analogous to an incomplete block design with random block effects
– Treatment effects are based on intra- and inter-trial information

• One recovers some information on treatment effects from the “other” 
studies, not just from within each study

• Proponents include van Houwelingen, Arends, and others (e.g., 2002)
– Although Senn (Biom. J. 2010) and some others (Riley et al. 2008) argue 

against a random main effect for study, Senn also believes the results 
often will be similar for fixed or random study effects (I agree!)

– It is common in agriculture to consider the study main effect as random
• Model:

ijijjiij uy  ),0(~  ),,0(~  ),,0(~ 222
ijijiji sNNuN  

Effect of 
study i

Effect of 
treatment j

Effect of study 
i on 

treatment 
effect j

Residual; within-study 
error. Held fixed in 

analysis.

 )( jijyE  2121 )(  ii yyE
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Within-study sampling variance (sij
2)?

• With many experimental designs, e.g., randomized complete block (RCBD), the 
within-study means (and not just the differences of means) are correlated
– One needs to account for the correlation in the meta-analysis

• One can specify a within-study variance-covariance matrix based on residual 
and block variances
– This is tricky, and very tedious to set up (but achievable with a lot of work!)
– One may not know the block variance

• If one used the actual within-study sampling variance of the mean as sij
2, and 

ignored the correlation, one would obtain incorrect mean effect sizes (e.g., 
estimated  1-3) and SE of mean effect sizes in meta-analysis

• However, still “ignoring” correlation, if one used one-half of the variance of the 
difference of means (½ of the square of the within-study SED) as sij

2, then one 
obtains the correct estimated mean effect sizes (e.g., estimated 1-3) and SE of 
the estimated mean effect sizes in the meta-analysis! (SED  LSD/2 often given)

Residual variance: Vi Block variance: Vbi Number of blocks: ni

Variance of mean: (Vbi + Vi )/ni

Covariance of two means: Vbi / ni

Variance of difference: 2Vi / ni (block variance cancels out)

Use:
sij

2 = Vi / ni

See Möhring & 
Piepho (2009 Crop 
Sci.) for more on 

this concept
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Multivariate meta-analysis: model fitting
• Parameter estimation:

– Method of moments (expansion of DL method)
• Requires specialized software, but is faster and less computer intensive 

than the alternatives (STATA and R code are available)
– ML and REML

• Iterative and more computer-intensive, but can be performed using 
standard linear mixed model software (if the within-study variance-
covariance matrix can be fixed)

– Allows for missing at random
– Straightforward in SAS (MIXED or GLIMMIX)

– Bayesian analysis
• The big issues of importance with univariate meta-analysis are 

important with multivariate analysis
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Case study 3: Yield of corn,  
continued

• Effects of Quilt (azoxystrobin + propiconazole) fungicide
– Treatments: Quilt and control (q = 2)

• Previously, analyzed zi = yi1 – yi2 = yiT – yiC
• Now analyze as a multi-treatment (network or mixed 

treatment comparisons [MTC]) meta-analysis
– Fixed and random main effect of study

File: meta_quilt.sas











2

1

i

i

y
y

iy

Label Estimate Standard 
Error

DF t Value Pr > |t| Alpha Lower Upper

mean diff 5.2909 1.4720 60 3.59 0.0007 0.05 2.3464 8.2353

Cov
Parm (

2)
Estimate Standard 

Error
trial 71.9081 24.5434

Go to SAS file
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Concluding comments
• With over 80,000 journal articles in print, and numerous 

textbooks, meta-analysis is here to stay
– In many disciplines, it is the standard approach to quantitative 

research synthesis
– For some regulatory government agencies, meta-analysis is 

virtually mandatory (e.g., approval of new drugs or treatments)
• After a slow start, meta-analysis is now gaining greater 

acceptance in the agricultural sciences
– More agricultural scientists will need to become proficient in this 

area in order to review and understand the literature
• Meta-analysts continue to make advances with the statistical 

methodology, especially for network (multi-treatment) 
analysis, non-normal data, and for rare events
– Advances with mixed models will play a large role in meta-analysis
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Part II
ADDITIONAL MATERIAL 

(not covered in workshop)

The SAS code performs all the 
analyses described in this 

additional material 
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Diagnostics, continued (part 2)
• Model assessment (criticism) in meta-analysis has unique issues
• The usual residual plot (residual, Studentized residual, Pearson residual, 

deleted Studentized residual, etc., versus predicted values) may not be of 
much value for the simple random effects model, because of the unequal 
sampling variances (patterns in the residual plot may not be a problem)
– The unique si

2 for each zi makes interpretation difficult
• Meta-analysts have developed some specialized graphs that are not 

typically seen in other applications
– In addition to the Forest plot, so-called funnel and radial plots

• These can help assess the need for a random-effects or a fixed-effects model, 
and explore the possibility of publication bias

• Moreover, versions of diagnostic plots from the broader field of mixed-model 
analysis have value (but are much less reported). These include:
– Studentized deleted residual versus study ID, PRESS statistics versus study 

ID,…
– Cook’s Distance for the fixed effect () and the variance (2) versus study ID

• Measures the influence of observations (studies) on parameter estimates
– A scaled measure of the squared distance between parameter estimates based 

on the full dataset and the estimates when each observation (study) is deleted 
(with mixed models, the model is refitted with each observation deleted)
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Diagnostic graphs for mixed models
As a general guide, values of Cook’s Distance greater than F0.5,1,df ( 0.45 here) may be 

considered large. No large values in this example. Can plot horizontally, also.

Case study 1, 
continued
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Diagnostic graphs for mixed models:
Studentized deleted residual

Case study 1, 
continued

Madden (Ohio State Univ.)



F0.5,1,19 = 0.47

Case study 2, 
continued
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Heterogeneity and risk probabilities
• The mean effect size and its confidence interval are of interest for 

determining the expected outcome in the long run (over many studies or 
over many fields [as in the case study]) 

• A prediction interval gives a sense of the variation (uncertainty) in 
individual (future) estimated effect sizes

• More directly, one can estimate the probability that the effect size in a 
randomly selected future study will be less than (or greater than) any 
constant of interest  () (see van Houwelingen et al., 2007)
– For instance, with DON control for Fusarium head blight (case study), a 

grower might be most interested in knowing the probability that new < 0
(percent control > 0%), Pr(i < 0), or maybe probability that new < -0.69
(percent control > 50%)

– Assuming that the standard error of the expected effect size is small, 
one can (approximately) estimate p, assuming a normal distribution

)ˆ/)ˆ(( p
() is the cumulative normal 

distribution, use to obtain probability 
that effect size is less than 
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)ˆ/)ˆ(( p
Risk probability for DON control:
Determined for log ratio and than 
converted back to median percent 

control

19.0036.0ˆ,244.0ˆ 

> C < L p
0 0 0.90
25% -0.288 0.41
50% -0.693 0.01
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Statistical power 
• Individual studies in many disciplines are often under-powered for 

testing various hypotheses
• However, it is easy to show that meta-analysis of multiple studies can 

have very high power 
– It is possible that p > 0.05 for each individual study, and p < 0.05 for the meta-

analysis (although H0 involves i with the former and  with the latter)
• Power could be the most compelling argument in favor of meta-analysis
• Assume Ha (  0) is true (treatment is truly effective)
• Statistical power: 

– Probability of rejecting H0 when H0 is false
• Estimation of power can be done using:

– Classical methods, such as using the non-centrality parameter and a shifted 
t or F distribution (although there are complications)

– Simulation
• Fixed (and unequal) sampling variances (si

2) complicate the analyses. 
Thus, simulation approaches are probably best. See Madden & Paul (2011).

• To justify the use of meta-analysis, we can first estimate the power for 
each study (assuming Ha is true for every study (i  0)

• Hypothetical and unrealistic here, but useful for demonstration 
purposes – consider Case Study #1
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Ha:
i ≠ 0

Mean
power
0.34

24.0ˆ 

Power is low for the individual studies (in terms of treatment effect on 
DON). Note that we do not believe that the alternative hypothesis would be 

true for each study (this is an exercise to demonstrate concept)

We can estimate the power for a meta-analysis of a 101 new 
studies (we do not need to assume that Ha is true for every 

study, just that   0): Power > 0.999

In reality, this exercise works for another 101 
(new) studies with the same statistical results 
as found with the actual studies (we do not 
determine power for studies already 
conducted)
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Power in meta-analysis
• One can determine power for 

any number (2K) of randomly-
selected (new) studies

• Details are in Madden & Paul 
(2011)

• Reminder:
– Mean individual power 

(assuming that Folicur always 
has an effect) is 0.34

– Meta-analysis Power > 0.999
with 101 studies (no assumption 
about individual studies)

• Even a Power of 0.8 could be 
reached with < 20 studies

• SAS macros are provided to 
conduct power analysis based 
on classical methods
– Methods not given in workshop

Blue: theoretical
Red: simulation

See Madden & Paul (2011) for details
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 = -0.244, 2 = 0.0365
 = -0.244, 2 = 0.072
 = -0.122, 2 = 0.0365

Case study 1: Power for three scenarios

Separate simulations for each value of K
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The fallacy of counting P values
(instead of doing a meta-analysis)

• Suppose K independent studies were conducted, and that 
there is truly a significant treatment effect (say, i < 0) in every
study (i.e., Ha is always true) -- returning to our hypothetical 
scenario

• But also suppose that individual-study power is 0.40 (not a very 
high chance of detecting the true effect) 

• A typical “qualitative” (“narrative”) summary is to count the 
number of significant results (studies where P < 0.05): vote 
counting
– Conclude that the treatment is effective if at least half the 

studies are significant
• With a large number of studies (say, K = 150), ~ 40% will have 

significant results (on average) with this power
– Thus, one would falsely conclude here that treatment was not

effective, even though it was (truly) effective in every study.
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Fallacy of counting P values
• As the number of studies increases, it becomes less and 

less likely to every find 50+% of the studies with significant 
results (when individual power < 0.5).
– In fact, there is a higher chance of finding 50+% of the 

studies with significant results if fewer studies are 
considered (a major violation of good statistical practice)

• Demonstration:
– Chance of at least half the studies being significant (P < 0.05) when 

Ha is always true and individual-study power is 0.40 (low, but higher 
than in example)

With a small number 
of studies, one 

actually has a better 
chance of finding 

half (or more) of the 
studies being 

significant

Studies Prob 
10 0.17 
20 0.13 
30 0.10 
50 0.06 
100 0.02 

There are valid ways 
to combine P values 
to determine overall 
significance (going 

back to work by 
Fisher), but these 
are not discussed 
here. SAS macro 

written for this.
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Publication bias
• Most meta-analyses make the tacit assumption that the studies 

under review are a random sample from a hypothetical population 
of possible studies, or that the study effects comprise a random 
sample from a hypothetical population of effects (Higgins et al. 2009) 
(i.e., that the studies are exchangeable)
– Unlikely to be true, of course
– It is likely that studies with significant results, or studies that support 

current dogma, or studies from famous laboratories, or studies from 
scientists trying to get tenure, have a higher probability of being 
published or being made available

– The “nightmare” of meta-analysis (van Houwelingen, 1997).
• If inclusion of a study in the dataset depends on the realized effect 

size or p value, then the meta-analytical results (fixed effect 
parameters and variance-covariance parameters will be biased) 

• Not of concern, for the most part, with Fusarium head blight case 
studies. The U.S. national initiative encouraged the ‘publication’ of 
all studies in proceedings and reports
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If no bias, there should be a random scatter around the line (no gaps at certain 
precisions or at certain effect sizes) – a (rough) guide only (especially with small K)

Publication bias: Plots may help

Madden (Ohio State Univ.)



Publication bias: Solutions
• Ignore the “selection bias” of studies (usual “solution”)
• Use various analytical methods (including weighting of effect 

sizes and/or studies), based on various assumptions regarding 
the study selection process
– Conduct sensitivity analysis to see consequences of different 

selection choices, which can lead to a bias adjustment
– Many publications in this area (e.g., Sutton et al. 2000)

• However, it is impossible to determine the study-selection 
mechanism from the available studies

• A very interesting fairly new alternative is to determine the 
upper bound on the bias for any number of unpublished 
studies (i.e., for any study-selection probability)
– Copas & Jackson (Biometrics [2004]) show that the absolute value of 

the bound for bias (for any selection mechanism) is straight-forward to 
calculate

– Only assume that, on average, lower precision studies cannot have a 
greater chance of selection than higher precision studies
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Copas and Jackson (2004): 
Bounds for publication bias
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mKboundbias

m Index for the unobserved study (m = 1, …, M)
(possibly choose M to be 2K)

K+m The hypothetical total number of studies (with K being observed)
K/(K+m) Study selection probability* 
-1(.) Inverse standard normal cumulative distribution function
{.} Standard normal density function

* One does not know the selection probability, but one determines the upper bound for 
bias for a range of possible selection probabilities: K/(K+1), K/(K+2), … K/(K+M)

See several articles by Copas and colleagues for extensions of this approach
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Upper bound for bias: Case Study 1 

• Fusarium head blight 
example (log response ratio)
– K = 101 studies
– Effect size: log ratio

• Mean = -0.24
• Among-study 

variance = 0.0365

Compare |Bias| to |mean| from the 
published studies, or |mean|-(2SE)

Example, if there are 20 unpublished studies, the total 
number of studies is 121 (not 101), with a selection 

probability of  101/121 = 0.84. 
The mean effect size could be as large as -0.24+0.077

(-0.163) or as small as -0.24-0.077 (-0.317)

Madden (Ohio State Univ.)



Upper bound for bias: Case Study 2 

• Yield loss in relation to 
disease severity
– K = 20 studies
– Effect size: slope

• Mean = 0.52
• Among-study 

variance = 0.118
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Several R packages, but metafor
may be the most comprehensive.
Actively supported, with updates and 
new features added periodically.

Will also calculate estimated effect 
sizes from original observations (for 
some situations).
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> RustData<-read.table("C:/.../SweetCornRust.txt", header=TRUE)

> forest(rev(RustData$slope), ci.lb=rev(RustData$lowerlimit), ci.ub=rev(RustData$upperlimit),   
annotate=FALSE, xlab="Slope for yield loss", font=2, slab=rev(RustData$Study), alim=c(-3, 4), 
cex.lab=1.5, pch=15, step=17, psize=2, cex=1.25, cex.axis=1.25,xlim=c(-3,4))

> title("Yield loss in sweet corn from common rust (Shah&Dillard)", sub = "Forest Plot with Upper and  
Lower Limits of 95% CI", cex.main = 2, font.main= 2, col.main= "blue",cex.sub = 1.75, font.sub = 2, 
col.sub = "blue")

Most code is 
for annotation 
and labeling

-3.00 -2.12 -1.25 -0.38 0.50 1.38 2.25 3.12 4.00
Slope for yield loss

1
2
8
11
22a
22b
31
35
50
59
60
61
62
63
64
65
66
67
70
71

Yield loss in sweet corn from common rust (Shah&Dillard)

Forest Plot with Upper and Lower Limits of 95% CI
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Observed Outcome
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>  CornRust_Fixed<- rma(slope, SE^2, method="FE", data=RustData)
>  funnel(CornRust_Fixed,yaxis="seinv",xlim=c(-1,2.5))
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>  CornRust_Fixed<- rma(slope, SE^2, method="FE", data=RustData)
>  funnel(CornRust_Fixed,yaxis=“sei",xlim=c(-1,2.5))
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> CornRust_Random_reml<- rma(slope, SE^2, method="REML", data=RustData)
> CornRust_Random_reml

Random-Effects Model (k = 20; tau^2 estimator: REML)
tau^2 (estimate of total amount of heterogeneity): 0.1181 SE = 0.0456)
tau (sqrt of the estimate of total heterogeneity): 0.3436
I^2 (% of total variability due to heterogeneity): 98.95%
H^2 (total variability / sampling variability):    95.63

Test for Heterogeneity: 
Q(df = 19) = 523.0911, p-val < .0001

Model Results:
estimate       se     zval pval ci.lb    ci.ub
0.5164   0.0856   6.0327   <.0001   0.3486   0.6842      *** 

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

2 is 2

(our notation)

Q determined after a 
fixed-effects analysis 

(has no role in the 
REML analysis)

I 2 and H 2 not
determined from Q 

(be careful)

Several methods available, 
including “ML”, “DL”, others

Many diagnostic plots (residuals, etc.) can also be produced. Also, EBLUPs.
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rma(slope,SE^2, method="REML", data=RustData,mods=MeanD)

Mixed-Effects Model (k = 20; tau^2 estimator: REML)

tau^2 (estimated amount of residual heterogeneity):     0.1297 (SE = 0.0511)
tau (square root of estimated tau^2 value):             0.3602
I^2 (residual heterogeneity / unaccounted variability): 98.87%
H^2 (unaccounted variability / sampling variability):   88.55
R^2 (amount of heterogeneity accounted for):            0.00%

Test for Residual Heterogeneity: 
QE(df = 18) = 363.9921, p-val < .0001

Test of Moderators (coefficient(s) 2): 
QM(df = 1) = 0.2639, p-val = 0.6074

Model Results:

estimate      se    zval pval ci.lb       ci.ub
intrcpt 0.4350  0.1778  2.4468  0.0144   0.0865  0.7834  *
mods       0.0033  0.0064  0.5137  0.6074  -0.0093  0.0159   

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R2 here is the traditional 
statistic for explained 

variability (not the ratio of 
squared SEs)

Moderator variable analysis
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Functions in metafor package
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Among-study 
variance-covariance 
matrix (generalization 
of 2 )

Within-study variance-
covariance matrix 
(generalization of si

2 )

Treatment effects
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Within-study variance-covariance matrix
• It is computationally useful to use a diagonal Ri matrix (i.e., 0s for the 

covariances [off-diagonal elements])
– Computationally, one can just use weights for each treatment within a study, 

while holding the residual variance fixed at 1
• With many experimental designs, means are correlated. For RCBD:
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Residual variance: Vi Block variance: Vbi Number of blocks: ni

Variance of mean: (Vbi + Vi )/ni

Covariance of two means: Vbi / ni

Variance of difference: 2Vi / ni (block variance cancels out)

Actual within-
study var.-cov. 
matrix. Can be 
used, but 
tedious to fit. 
May not know 
block variance!

Using just 
variances of 
means is easier, 
but one ends up 
with incorrect 
variances of 
differences.   

Resulting incorrect var. of diff.:  2(Vbi + Vi )/ni
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Within-study variance-covariance matrix
• Alternative: use ½ of the variance of the difference as the diagonal 

elements of the diagonal matrix
• Variance of difference (balanced case):  2Vi / ni

Produces correct variance of difference within study:  
2Vi / ni

Results in correct estimated mean effect size 
(treatment difference) and SE of the estimated mean 
effect size in the meta-analysis (e.g., estimated 1-3)
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• See Möhring & Piepho (2009 Crop Sci.) for other choices for a diagonal R matrix 
(including for unequal sampling variances) 

– Approach advocated here is most convenient for meta-analysis because the variance of the 
difference (derived from LSD, etc.) is often available

– Their motivation was for two-stage analysis of variety trials, but work applies to meta-analysis

SE of the treatment 
mean would be 
incorrect, but interest is 
in the pairwise 
differences of means
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