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As recounted by Lipsey and Wilson (29), “In 1952, Hans 

Eysenck started a raging debate in clinical psychology by arguing 
that psychotherapy had no beneficial effects on patients” (14). 
Over the next 25 years or so, several hundred studies had been 

conducted, producing a “dizzying array of positive, null, and 
negative results” (29), with no resolution to the debate. Then, in 
1977, Smith and Glass (59) analyzed the results (not the original 
individual observations) of nearly 400 studies and concluded that 
psychotherapy was, indeed, a very effective treatment. Glass 
called their statistical method meta-analysis (19), and the term has 
stuck. At almost the same time that Glass and Smith were assess-
ing the effectiveness of psychotherapy, others were independently 
using the same general statistical methodology for collections of 
studies in the social sciences. Rosenthal and Rubin (52) assessed 
the effects of interpersonal expectations on behavior, and Schmidt 
and Hunter (56) assessed the validity of generalization of em-
ployment tests. Many of the important principles, concepts, and 
protocols underlying the analyses in these social-science research 
syntheses were given in important early books by Glass et al. 
(20), Rosenthal (51), and Hedges and Olkin (24). 

As is usual in statistics, most “new” methods are not entirely 
new, and there were several precursors to the pioneering work of 
Smith, Glass, Rosenthal, Rubin, Schmidt, and Hunter (5). As 
early as 1904, Pearson (45) combined estimated correlation 
coefficients from multiple studies. Fisher (17) and Tibbett (63) 
showed how to combine the achieved significance levels (P 
values) from several independent studies to determine a combined 
significance level for the collection of studies. Importantly, for 
those working in the agricultural sciences, Yates and Cochran (70) 
and Cochran (7) showed how to combine results from several 
experiments to determine overall mean responses and related 
statistics. Despite these and related contributions (literature cita-
tion 5 provides excellent history), combining results from 
multiple studies to form an overall analysis was not common, and 
most investigators did not see the need for such efforts, until the 
work of Glass and others in the late 1970s. 

The early applications of meta-analysis were in the social sci-
ences, but the methodology was eventually adopted in numerous 
disciplines (2,4,5,21,31). In medical research, the upsurge began 
in the 1980s, and by the 1990s, “published meta-analyses were 
ubiquitous” in this field (68,69). Since then, there has been a 
steady rise in the effort given to this type of data analysis. For 
instance, based on the ISI Web of Knowledge (for science and 
social sciences), there were fewer than 60 articles published per 
year from 1980 to 1987 on meta-analysis. A decade later, there 
were about 1,000 new articles published per year, and most 
recently, there have been over 3,000 new articles per year. At the 
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ABSTRACT 

Madden, L. V., and Paul, P. A. 2011. Meta-analysis for evidence 
synthesis in plant pathology: An overview. Phytopathology 101:16-30. 

Meta-analysis is the analysis of the results of multiple studies, 
which is typically performed in order to synthesize evidence from 
many possible sources in a formal probabilistic manner. In a simple 
sense, the outcome of each study becomes a single observation in the 
meta-analysis of all available studies. The methodology was devel-
oped originally in the social sciences by Smith, Glass, Rosenthal, 
Hunter, and Schmidt, based on earlier pioneering contributions in 
statistics by Fisher, Pearson, Yates, and Cochran, but this approach to 
research synthesis has now been embraced within many scientific 
disciplines. However, only a handful of articles have been published 
in plant pathology and related fields utilizing meta-analysis. After 
reviewing basic concepts and approaches, methods for estimating 
parameters and interpreting results are shown. The advantages of 
meta-analysis are presented in terms of prediction and risk analysis, 
and the high statistical power that can be achieved for detecting 
significant effects of treatments or significant relationships between 
variables. Based on power considerations, the fallacy of naïve 
counting of P values in a narrative review is demonstrated. Although 
there are many advantages to meta-analysis, results can be biased if 
the analysis is based on a nonrepresentative sample of study 
outcomes. Therefore, novel approaches for characterizing the upper 
bound on the bias are discussed, in order to show the robustness of 
meta-analysis to possible violation of assumptions. 

Additional keywords: Fusarium head blight, Gibberella zeae, wheat 
scab. 
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end of 2008, more than 25,000 articles had been published 
dealing with meta-analysis. As Chalmers and Lau (6) wrote more 
than 15 years ago, “It is obvious that the new scientific discipline 
of meta-analysis is here to stay.” 

Rosenberg et al. (49) were the first to strongly promote the 
value of meta-analysis in plant pathology, and since then, several 
articles have been published utilizing this method (37,39–44,57). 
The remainder of this article presents an overview of meta-
analysis and shows how the methodology can be applied in plant 
disease management (or epidemiology) for evidence synthesis. In 
particular, after defining the term and discussing some of the con-
troversies concerning the meta-analytic methodology, we present 
statistical models for performing a meta-analysis, and show how 
to fit the models and interpret results. Through the presented 
model and an example analysis, we show the high statistical 
power (4) that can be achieved by using this method, but also 
point out the dangers of the publication bias (53) that can occur 
when using meta-analysis. Through the consideration of statistical 
power, we also show the inherent fallacy of the main competitor 
to meta-analysis: the narrative review and “vote counting” 
(4,23,27). We finally discuss, very briefly, some extensions to the 
basic meta-analytical model (1,2,31,32,46–48). 

META-ANALYSIS—GENERAL COMMENTS 

Definitions and concepts. There are many similar definitions 
of meta-analysis (19,27,36,62). In essence, the method involves 
“the combination of results from multiple independent studies” 
(62). In standard usage, meta-analysis deals only with the results 
from different studies, and not with the original observations. 
However, it is also possible to perform a meta-analysis using all 
the observations from the studies (called individual participant 
data [IPD]), although these observations are typically not 
available (4,62). 

The result from an individual study that becomes part of a 
meta-analysis is often called the estimated effect size. We defer 
formal definition of an effect size until later, but, as an example, a 
typical result being analyzed from each study involves the 
difference of two means (or a function of two means). Sometimes 
a meta-analysis is performed to test a particular hypothesis about 
an effect size (is it 0 or not?), and sometimes the analysis is 
performed to characterize the variation (distribution) of effect 
sizes across all studies, or to determine what factors may be 
influencing the magnitude of the effect sizes (4,49). 

Meta-analysis is built on the principle that science is meant to 
be a cumulative process, where individual studies, surveys, and 
observations contribute to the overall total knowledge base 
(4,8,27). Results of individual studies can contribute something 
to the total, but it is the collection of results from many sources 
that matter in moving science forward or in informing our 
decision-making process. Hunter and Schmidt (27) put it 
elegantly and also a bit bluntly, in stating: “…a single study will 
not resolve a major issue. Indeed, a small sample study will not 
even resolve a minor issue. Thus, the foundation of science is 
the culmination of knowledge from the results of many studies.” 
From the perspective of Chalmers et al. (5) and others (4,29,68), 
meta-analysis is the methodology that allows investigators to 
cumulate evidence scientifically, with the hope of improving 
interpretation of phenomena, developing coherent theories, or 
testing hypotheses. 

It should be noted that meta-analysis has been considered 
controversial in the past (15,16,59). Chapter 43 in Borenstein et 
al. (4) provides an excellent review and critique of the various 
criticisms of this methodology, and shows that most of the criti-
cisms are of little relevance to properly performed meta-analysis. 
We touch on some of the relevant issues in Boxes 1 and 2. 

EFFECT SIZES AND INDIVIDUAL STUDIES 

An individual study. Consider this illustration for an indi-
vidual study. A researcher is interested in the effect of a fungicide 
on severity of a crop disease. A study is conducted consisting of at 
least two treatments, with label T for the treatment of interest 
here, and C for the control. There are four replications of both T 
and C. Disease severity (y) is assessed at a single time during the 
growing season, and a mixed model (30) or analysis of variance 
(ANOVA, a special case of a linear mixed model) is used to 
determine if treatment affects y. We assume that disease is 
measured in such a way that y is normally distributed. The mean y 
is determined for each group, Ty  and Cy ; these means are 
estimates of the expected values for the respective populations, 

Tμ̂  and Cμ̂ . One summary of the effectiveness of the fungicide is 
the difference in mean disease severity (D): 

TCTC yyD μ−μ=−= ˆˆ  (1) 

This difference is known as an estimated treatment effect in an 
ANOVA. In meta-analysis, it is referred to as an estimated effect 
size, effect size statistic, or effect size index (4,29); an estimated 
effect size is an estimated parameter, combination of estimated 
parameters (such as a difference), or a function of estimated 
parameters, for an individual study. Estimated effect sizes are 
random variables. 

There are several possible effect sizes that can be used, depend-
ing on the type of response variable (y) being used and the 
objectives of the investigator (4,21,29,40–42). We use z as the 

BOX 1 

Controversy 1: “Garbage-in, garbage-out.” Most criti-
cisms of meta-analysis concern the selection (and interpre-
tation) of the individual studies that comprise the data set for 
the meta-analysis. The “garbage-in, garbage-out” problem is 
frequently identified with published meta-analyses, going 
back to Eysenck (15). That is, just because a study was 
conducted (or even published) does not mean that it was 
correctly done or that the results are accurate or meaningful. 
Most individuals who are reading this article probably have 
conducted experiments that failed for various reasons (such 
as the failure of a growth chamber at a critical time), and are 
simply discarded. One would not want to be forced to 
analyze the data from such a study (and present the results 
in some form) just because it was carried out. By the same 
token, we all know from careful reviewing of the literature 
that some published studies were, in fact, poorly (or 
inadequately) performed or analyzed, or that the reported 
findings were not described well. Therefore, blindly including 
the results from these studies together with the results from 
properly conducted studies would be misleading and not 
advised. 

Handling the above problem is relatively straight-forward, 
for the most part. This is done by defining strict criteria for 
the selection of studies in the research synthesis before the 
study results are actually accumulated for analysis (9,29). It is 
also important that the criteria for study selection are well 
described in the reported meta-analysis; that way, readers 
can make decisions about whether the criteria are reason-
able or appropriate. Lipsey and Wilson (29), Cooper et al. (9), 
and Borenstein et al. (4) have extensive coverage of this 
topic. 
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generic symbol for any chosen estimated effect size (e.g., z = D if 
the mean difference is used). Note that z is an estimate of a 
parameter ζ, the true effect size. For instance, equation 1 provides 
an estimate of the true mean difference, TC μ−μ . 

Significance of a treatment effect in a single study requires an 
estimate of the precision of the estimated effect. For a mean 
difference, the precision is represented by the standard error of 
the difference [SE(D)], or its square, the (estimated) variance of 
the mean difference [SE2(D) = (SE(D))2 = VD]. The ratio of D to 
SE(D) has a Student’s t distribution under the null hypothesis of 
no treatment effect, and this ratio serves as the basis for statistical 

inference. SE(D) is routinely calculated and displayed in output of 
ANOVA programs, and SE(D) or VD can easily be determined 
from other statistics by hand (4,29). For instance, if V is the 
residual or mean square error from a one-way ANOVA, and each 
treatment group has the same number of replications (n), then 

nVVDSE D /2))(( 2 ==  (2) 

Also, the least significant difference (LSD) is equal to SED multi-
plied by the critical t value at a specified significance level 
( *

,2/1 dft α− ), so that SE(D) = LSD/ *
,2/1 dft α− . 

Different estimated effect sizes have different variances (and 
different means of calculating them) (4,9). We use s2 as the 
generic symbol for the variance of the estimated effect size (e.g., 
s2 = VD; or s = √VD = SE(D)]. Often, s2 is known as the sampling 
variance for the study. 

In a meta-analysis, one analyzes the estimated effect sizes from 
a collection of K studies. From each study, an estimated effect 
size and its sampling variance are required to carry out the 
analysis. We use an i subscript to index the individual studies (i = 
1, …, K). In a standard meta-analysis, the ith study is represented 
by the pair of values (zi, si

2), the estimated effect size and its 
(estimated) variance. 

Effect sizes for treatment effects. A mean difference (equation 
1) is certainly an intuitive summary of the effect of a treatment on 
a response variable, but there are many other possibilities (4,29). 
When the magnitude of the response variable (e.g., disease sever-
ity) in the control varies greatly from study-to-study, measure-
ment of treatment effect on an absolute scale may not be the most 
informative. For instance, if Cy = 5, then D = 3 ( Ty = 2) could be 
considered a large treatment effect. However, if Cy = 50, then D = 
3 (i.e., Ty = 47) may not be considered that substantial of a 
treatment effect. It is thus often informative to quantify the effect 
of a treatment through the so-called percent control (C), the 
percentage reduction in treatment mean relative to the control 
mean: 
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As seen by equation 3, C provides a scaled version of the mean 
difference. If Cy = 50 and Ty = 20, then D = 30 and C = 60% (i.e., 
use of the fungicide results in a 60% reduction in disease, on 
average). However, if Cy = 5 and Ty = 2, then D = 3, but C is still 
equal to 60% (the relative reduction is unchanged). Both D and C 
are 0 when the means are the same for both groups (although C is 
undefined if the control mean is 0). 

The ratio of the means in the treatment and control is known as 
the estimated response ratio (R = CT yy / ) (22). Thus, the percent 
control can be written simply as C = 100(1 − R). R (or C) could 
be directly used as the effect size statistic in a meta-analysis, but, 
as clearly explained by Hedges et al. (22), this random variable 
has some undesirable statistical properties. However, the log of R 
[L = ln(R)] is much better behaved statistically, and is a useful 
estimated effect size when performing a meta-analysis (4,22,41, 
42). The estimated variance (sampling variance) of L is given by 
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where, as before, V is the residual variance from the study (when 
y is being analyzed directly) and n is the number of replications. 
One can also write the variance of the log response ratio in terms 
of the variance of the difference: 
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BOX 2 

Controversy 2: “Mixing apples and oranges.” Typi-
cally, the population of studies being included in a research 
synthesis is diverse. The individual studies are performed by 
many different individuals at many different locations and at 
many different times. Specific methods used in individual 
studies, and the response variables being measured, are 
chosen for different reasons by different investigators. Thus, 
one could ask whether or not the studies being considered 
are too different from each other to conduct an overall single 
meta-analysis. 

A hypothetical example is helpful. Consider a research 
synthesis of the effect of the fungicide captan on apple scab. 
Given that this fungicide has been used for many decades 
around the world, it would be quite an undertaking to find all 
the papers and reports, but we assume that this can be done 
(or that we can obtain a random sample of the population of 
studies). Many factors could contribute to the diversity of 
studies, some of which we list here. Captan is produced by 
several manufacturers, is available in multiple formulations 
(e.g., 80 WG, 50 WP), and can be applied at different rates 
(a.i./ha) and with different spraying equipment. Studies can 
also vary in terms of the timing of the applications, the 
number of sprays, and whether or not captan is mixed with 
other fungicides. The apple variety (varieties) will vary across 
studies, as well as the horticultural practices used for 
production. The other diseases and pests of concern also will 
vary among studies. Moreover, the form of disease 
assessment, and the timing of assessment(s), will not be the 
same for the different studies. Readers can probably think of 
other types of diversity. 

Clearly, studies can be quite different from each other. 
The important thing to keep in mind, however, is that meta-
analysis involves the analysis of related (or similar) studies, 
not identical studies. In a technical sense, a random-effects 
meta-analysis (4,68) can be used to account for the hetero-
geneity of results (effect sizes) that may be found with 
diverse studies. Characteristic features of the individual 
studies (e.g., a.i./ha of captan) can be recorded (as so-called 
moderator variables) and formally assessed in the meta-
analysis to see if they significantly affect the effect size of 
interest (e.g., is one fungicide formulation more effective 
than another?) (4,41,43). However, it is also possible that the 
meta-analyst will need to be more specific in the research 
questions being addressed. For instance, one could ask: 
What is the effect of captan on apple scab when applied no 
later than a certain growth stage (e.g., “green tip”) and not 
used in combination with other fungicides? This will narrow 
down the list of possible studies to consider for inclusion in 
the analysis, and potentially reduce the variability. 
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Formulae for unequal n for each group, or separate variances for 
each group, are also available (4,22). It is instructive to note that 
VL depends on the variability of y in a study and also, in an 
inverse manner, on the magnitude of the means for the two 
groups. 

Use of the log response ratio is also valuable when the form of 
the response variable, or conditions related to how the response 
variable is measured, is not the same in every individual study 
that makes up the K studies. For instance, if y represents counts of 
lesions per leaf in one study, but y is the proportion of diseased 
leaves per plant in another study (a form of disease incidence), 
then there is no common scale to determine D for each study (Di). 
However, use of L (or R or C) reduces the impact of the scale 
differences so that the direct comparisons of treatment effects can 
be more readily made across all studies, at least as an approxi-
mation. 

The standardized mean difference (Cohen’s d), or its adjust-
ment (Hedges’ g), is especially common as an effect size in the 
social sciences and other fields when the measurement scale 
varies among studies. For binary data (e.g., diseased or not), the 
log of the risk ratio, log of the odds ratio, and the risk difference 
are all popular measures (4). Details on the estimation of each 
effect size and its sampling variance are given in Borenstein et al. 
(4) and most other meta-analysis textbooks. 

Effect sizes when treatments are not evaluated. An effect 
size could characterize the relationship between two variables 
(27,43,44,49,57), in the form of an estimated correlation coeffici-
ent (r) or an estimated slope of a regression model (b). Most 
statistical programs automatically calculate and display the 
standard error of the estimated slope, SE(b), when fitting a linear 
model to data in a study; the square of this standard error is the 
sampling variance for b (Vb) that is utilized together with b in a 
meta-analysis. 

The strength of the relationship between two variables is repre-
sented by r. Most meta-analysts prefer (for statistical reasons) to 
work with a transformation of r, known as the Fisher Zr trans-
formation, as the estimated effect size (4,43). This transformation 
is given by 

⎟
⎠

⎞
⎜
⎝

⎛
−
+

=
r

r
Zr 1

1
ln

2

1
 (5) 

Interestingly, the variance of this r transformation is very simple: 
VZr = 1/(n − 3), where n here is the number of pairs of obser-
vations in a study used to determine the correlation coefficient. 
Thus, because the variance only involves n, if the correlation 
coefficient is reported in a study, one can easily determine the 
sampling variance (a critical part of a meta-analysis) if the sample 
size is reported. 

MODELS AND PARAMETER ESTIMATION—AN 
EXAMPLE ANALYSIS 

As part of the U.S. Wheat and Barley Scab Initiative, Uniform 
Fungicide Trials have been conducted for over a decade on the 
use of various fungicides for the control of Fusarium head blight 
(FHB) of wheat. An expert panel has developed standardized 
protocols for the experiments, so that all studies were conducted 
in a similar manner across multiple states and years. Usually, four 
to seven fungicide treatments were evaluated in a study (including 
a control), but sometimes a higher number of treatments were 
considered (34,42). Because there was a proactive effort from the 
start to have all investigators report their findings in reports or 
proceedings (whether there was disease present or not, or whether 
the treatments appeared to work or not), results from most studies 
were obtained. This permitted the calculation of estimated effect 
sizes and their sampling variances for the K studies. 

The Uniform Fungicide Trials have served as the basis for 
several meta-analyses (30–44) as well as other statistical model-
ing (34). Here, we use the results for the effects of the fungicide 
tebuconazole (Folicur 3.6F; Bayer Crop Science, Research 
Triangle Park, NC), applied at wheat growth stage 10.5.1 (be-
ginning of anthesis), on deoxynivalenol (DON) toxin in harvested 
wheat grain (41) to demonstrate a meta-analysis and to examine 
several issues of relevance in conducting this type of analysis. 
Many of the specific results are presented here for the first time. 

The response variable in each individual study was DON 
(ppm); Folicur treatment was coded as T, and the control (no 
fungicide) was coded as C. For the ith study, the estimated effect 
size of primary interest was the percent control (Ci), but as 
discussed above, the log response ratio (Li) was analyzed directly. 
The sampling variance for the log ratio was determined with 
equation 4a. There were 101 studies (K = 101) analyzed. 

Before conducting any type of statistical modeling, it is a good 
practice to visualize the data (30,33). Histograms of the effect size 
statistics (zi) can be of value. A histogram of the Li values was 
fairly symmetrical, with values between −1.8 and 1.2 (Fig. 1A). 
Note that a log response ratio below 0 indicates a positive percent 
control. The corresponding percent control values were more 
asymmetrical, with values between −233 and 100% (Fig. 1B). 
Negative values occur when mean DON in the control is lower 
than mean DON in the treatment. Although the largest positive 
value of C is 100% (when the mean response in the treatment is 
0), the lower limit can be less than −100%. 

Although histograms of zi values (e.g., Li) are useful, they 
should not be over-emphasized (or used in isolation) when sum-
marizing the estimated effect sizes. This is because histograms 
can be misleading due to the fact that the precision of the 
individual zi values can vary greatly, as indicated by the sampling 
variances (si

2 values). The histogram does not provide information 
on the si

2 for the displayed estimated effect sizes. 
Meta-analysts often recommend a so-called Forest plot for data 

visualization, which shows the individual estimated effect sizes 
together with either standard errors [si; equal to √VLi (equation 4a) 
here] or 95% confidence intervals for the individual studies. One 
variation of this type of graph is given in Figure 1C, which shows 
the zi ± si for the 101 studies. Since there is no natural ordering of 
these studies (they come from many different states and years), 
the studies can be ordered (as here) based on the magnitude of zi. 
The full range of estimated effect sizes can be easily seen with 
this graph as well as the precision of the estimates. The values on 
the far left are the ones with large (positive) percent control, and 
the values on the right are those with lower DON in the control 
than in the treatment (negative percents control); the many effect 
sizes around 0 are the ones where the treatment and control means 
were very similar. The wide range of estimated effect sizes is a 
visual demonstration of the variability (heterogeneity) in the 
treatment effects. It is very apparent that the precision (sampling 
variation) varies a great deal in these 101 studies. This is partly 
because the standard error (or the sampling variance; equation 4a) 
is inversely proportional to the means in the two groups. Very low 
mean y (near 0) will result in a very large standard error because 
the estimate of a log ratio (or a ratio) is imprecise when the 
numerator and denominator are close to 0. 

Model. A statistical model for a meta-analysis is given by 

zi = ζ + ui + εi (6) 

where zi is the estimated effect size (Li in this case), εi is the 
within-study (sampling) variability term (the residual), ui is the 
among-study variability term, and ζ is the unknown expected 
effect size (the expected z) for the population of studies 
(21,41,65,68). Both u and ε are considered random effects that are 
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normally distributed (although the normality assumption can be 
relaxed) with zero mean; it is also assumed that u and ε are 
independent. The variance of ε for the ith study is si

2, which is the 
sampling variance (VLi in this case; equation 4a); it is assumed 
that si

2 values are known for each study and are, therefore, not 
estimated during model fitting. The variance for the among-study 
random effect (ui) is given by σ2. The distributional assumptions 
for equation 6 can be written succinctly as 

   ui ~ N(0, σ2) 
   εi ~ N(0, si

2) 
 

With these assumptions, the marginal-distributional result shows 
that zi is normally distributed with mean ζ and variance σ2 + si

2. 
One can write this simply as 

zi ~ N(0, σ2 + si
2) (7) 

Equation 6 is the classical model for meta-analysis (68); it is a 
hierarchical model, with randomness manifested at two levels. 
This can be seen by writing the equation in components. The 
estimated effect size for the ith study can be first expressed as 

zi = ζi + εi (8a) 

where ζi is the true (but unknown) effect size for the ith study, and 
εi is the residual or within-study variability term [εi ~ N(0, si

2)]. 
Then, at the second level, it is assumed that the true effect size is 
not constant but varies randomly among the studies. This is 
written as 

ζi = ζ + ui (8b) 

where ζ (zeta without a subscript) is the expected value of 
variable ζi values, and ui is the random effect of the ith study on 
the true effect size [ui ~ N(0,σ2)]. This formulation is especially 
instructive because it emphasizes the fact that the true effect size 
can vary from study-to-study due to study heterogeneity. Some 
sources of heterogeneity include variation in how the studies were 
conducted, how the response variable was measured, or, for field 

studies, differences in environmental conditions. Substituting 
equation 8b in equation 8a gives equation 6. 

Furthermore, based on equation 8a, one can specify the 
distribution of zi given the true effect size as 

zi|ζi ~ N(ζi, si
2) (9a) 

and, based on equation 8b, the distribution of the true effect size 
as 

ζi ~ N(ζ, σ2) (9b) 

The marginal distribution resulting from equations 9a and 9b is 
equation 7. 

The classical meta-analytical model can thus be expressed as: 
(i) equation 6 (with associated definitions of the random effects); 
(ii) equations 8a and 8b; or (iii) equations 9a and 9b. These are all 
equivalent, although it is likely only one of these formulations 
will be used in a particular paper. It should be further noted that 
the symbols used vary greatly in different papers and books, and 
there is no single best choice for notation. 

A special case of equation 6 is for the situation when the 
among-study variance is zero or assumed to be zero (σ2 = 0); this 
means that ui = 0 in all studies. Based on equation 8b, this also 
indicates that the true effect size is identical for all studies (i.e.,  
ζi = ζ). Therefore, ζ would no longer be viewed as a (true) 
expected effect size, but a common effect size across all studies 
(4,26). 

The model with zero for σ2 in equation 6 is often called a fixed-
effect model in meta-analysis (9,26,68), and the model with 
nonzero σ2 is called a random-effect model. However, meta-
analysts use these labels somewhat differently from the way they 
are used by other statisticians (4). So, it is probably more 
appropriate to call the “fixed-effect” version of equation 6 the 
common-effect model (26). However, the fixed and random labels 
are used so often, that it is unlikely that there will be any major 
changes to the names given to the models. 

Model fitting methods. The essence of a meta-analysis in-
volves the estimation of ζ and σ2, and the utilization of these 

FIGURE 1
Summary of estimated effect sizes for the influence of 

tebuconazole (applied at growth stage 10.5.1) on 
deoxynivalenol (DON) toxin concentration in wheat grain, 
based on the data given in Paul et al. (41). A, Frequency 
distribution of the log response ratio (log of the ratio of 

mean in the fungicide treatment divided by mean in the 
fungicide-free check) for each of the studies (Li or zi ). B, 

Frequency distribution of the percent control (relative 
reduction in mean DON by the fungicide treatment). C, 

Version of a forest plot for the individual zi values, with the 
effect sizes sorted from low to high. Bars in C represent 

standard errors.
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estimates in statistical inference and general quantification of the 
effect-size distribution. There are several methods of parameter 
estimation (11,58,68,69). The traditional approach to random-
effect parameter estimation is known as the method of moments 
(12); this approach may still be the most common approach and is 
the basis for some popular specialized computer programs. This 
method is easy to perform and parameter estimation is also less 
dependent on some of the distributional assumptions. 

A potentially superior approach is maximum likelihood (ML) 
or restricted maximum likelihood (REML) estimation (30). Al-
though more dependent on assumptions (such as normality) 
regarding the data and random effects, the likelihood methods 
result in parameter estimates with many desirable statistical 
properties (30,66,68) and powerful tests of hypotheses when there 
are many studies (large K). The distributional properties of the 
estimated among-study variance ( 2σ̂ ) can also be characterized 
with the likelihood-based approaches. Moreover, likelihood-based 
methods allow investigators to use the full suite of statistical tools 
developed in the last two decades for fitting mixed models to data 
(30); this makes it possible to fit models much more complex than 
the one given in equation 6 (and much more complex than ones 
that could be fitted by the method of moments). We prefer 
likelihood-based approaches for these reasons. 

Although theory shows that ML will give biased variance 
estimates, the bias is small with large numbers of studies (K); ML 
and REML methods will yield very similar results with a large K 
(e.g., K > 30). With a small number of studies, REML-based 
methods are preferable because they produce unbiased variance 
estimates. The likelihood-based methods are all accessible using 
several mixed-model software programs, such as the MIXED 
procedure in SAS (SAS Institute, Inc., Cary, NC), although users 
of these programs must learn certain “tricks” for fitting the meta-
analytical model (65,68). 

A third important way to fit equation 6 to effect-size statistics is 
to use Bayesian methods (26). This approach is becoming more 
and more popular in medical statistics and other disciplines. Mila 
and Ngugi (35) present a discussion on this approach. Interest-
ingly, with certain choices for a prior distribution of a parameter, 
and other distributional assumptions, Bayesian point estimates are 
very close to REML estimates (68). However, Bayesian methods 
have the additional advantage of more fully accounting for uncer-
tainty in parameter estimates in conducting statistical inference 
(tests of significance, as an example). 

It is instructive to see parameter estimation formulae for the fit 
of equation 6. These equations are appropriate for both moment- 
and likelihood-based methods. The estimated ζ is given as 

∑
∑=ζ

i

ii
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where wi is the weight for each study: 
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Because, in general, the sampling variance is different for differ-
ent studies, the study weights are also different. Note that the 
summation is over all K studies. The standard error for the 
estimated ζ is given by 

( ) 2/1)ˆ( −∑=ζ iwSE  (12) 

With the distributional assumption in equation 7, the estimated 
expected (mean) effect size is also normally distributed (at least 
asymptotically), with estimated variance of 2)]ˆ([ ζSE . 

As can be seen from equations 10 and 11, at its core, meta-
analysis is a method of obtaining weighted averages of effect 

sizes. If the sampling variance was the same for all studies, then 
equation 10 would produce the simple arithmetic average of the zi 
values. But because si

2 do vary, studies with small sampling 
variance receive proportionally more weight in determining the 
estimated expected effect size. If sample sizes within studies vary, 
then, all other things being equal, studies with larger n will have 
more weight than studies with smaller n (e.g., equations 2 and 
4a). Also, studies with smaller residual variance will have more 
weight than studies with larger residual variance. 

Estimation of ζ requires an estimate of σ2, but, although not 
shown here, estimation of σ2 requires an estimate of ζ. This 
makes ML and REML estimation an iterative process, where 
estimates of ζ and σ2 are incrementally updated in a series of 
steps (Chapter 4 in literature citation 68). Fortunately, programs 
such as PROC MIXED in SAS make this a straight-forward 
endeavor. We do not show the formulae for ML or REML esti-
mation of the parameters, because these are standard iterative 
methods for mixed models (and are too complex to help intui-
tively). Pages 94–96 in Whitehead (68) succinctly present the 
details. In the Appendix we show how the moment method is used 
for parameter estimation. 

Expected effect size. We return now to the example, which 
deals with the effect of Folicur on DON in harvested grain (41). 
The ML-based estimate of the expected effect size, mean log 
response ratio, was 24.0ˆ −=ζ , with a standard error of 

0276.0)ˆ( =ζSE  (Table 1). The estimated among-study variance 
was 0365.0ˆ 2 =σ ; we defer discussion of this term until the next 
subsection. The ratio of the estimated mean effect size and its 
standard error [ )ˆ(/ˆ ζζ= SEt ] is known as a Wald statistic, and this 
serves as the main basis for hypothesis testing. That is, under the 
null hypothesis that the expected effect size is 0 (i.e., H0: ζ = 0), t 
has a Student’s t distribution. There is some disagreement about 
what degrees of freedom (df) are appropriate for this test because 
of the hierarchical nature of the model (see discussion starting on 
page 145 of literature citation 26). A good compromise appears to 
be df = K − 2. Of course, with K > 30, the Student’s t and the 
standard normal (Z) variates are very similar, and it is quite 
common (and correct) to compare the Wald statistic to a standard 
normal variate (65) for testing the null hypothesis. The achieved 
significance level (P) for the example was <0.001 (much less than 
a preassigned critical significance level of α = 0.05). Clearly, the 
evidence is very strong that the expected log ratio is different 
from 0. 

It is important to note that the effect sizes in individual studies 
were often not significantly different from 0 [at a prespecified 
significance level (α) of 0.05]. In fact, ζi was significantly 
different from 0 in only 30% of the 101 studies (L. V. Madden, 
unpublished data). It is quite possible for the test of the individual 
effect size to be nonsignificant in every study, but for the test of 
the expected effect size (across all studies) to be highly significant 
(4). This is related, in part, to low power of the tests with small 
number of replications or blocks in individual studies (see Power 
section, below). 

The 95% confidence interval for ζ is easily calculated as 

)ˆ(ˆ *
,975.0 ζ±ζ SEt df  

where *
,975.0 dft  is the upper 97.5th percentile of the Student’s t 

distribution with df as defined above. With large K (as here), one 
can use the standard normal 97.5th percentile ( *

975.0Z = 1.98) 
instead of t value. The confidence interval extended from −0.299 
to −0.189. Because the range does not include 0, this supports (as 
it must) the conclusion that the expected log ratio was different 
from 0. However, in other ways, this log-scale result is not very 
intuitive. One can easily convert the log ratios (the point estimate 
or the confidence limits) to percent control by simple back-trans-
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formation (starting with the original equation 3). For instance, the 
point estimate of the overall percent control (which is really a 
median estimate of C) is given by: )).ˆexp(1(100ˆ ζ−=C These 
estimates are given in Table 1. In this case, one is 95% confident 
that the interval from 17.2 to 25.8% contains the true (but 
unknown) expected effect size. 

These results based on ML estimation repeat what was given in 
Paul et al. (41). For comparison purposes, we also give the results 
for other estimation methods in Table 1. Normally, an investigator 
should simply use one estimation method. The results based on 
REML estimation are virtually identical to those found for ML 
estimation. This is because of the large number of studies. With  
K < 30, it is generally preferable to use REML (68), although 
some authors prefer ML for a wider range of circumstances (65). 
When the type of likelihood method makes a difference, the ML 
estimates of variability [ )ˆ(ζSE , 2σ̂ ] will be smaller than the 
REML estimates because the ML variability estimates are biased 
downward. The method-of-moments (MM) results were also 
similar to those found by the likelihood methods, as is usually the 
case (4,9). However, there is some noticeable discrepancy in the 
variability estimates [ )ˆ(ζSE , 2σ̂ ] between the MM and the likeli-
hood-based estimates. For other analyses, the discrepancy can be 
either in the positive or negative direction. It should be noted that 
there is no standard error estimate for the estimated among-study 
variance with the MM approach. 

The comparison of ML, REML, and MM all involve the same 
model (equation 6). Finally (for now), we show the parameter 
estimates for the fit of a different type of model, the fixed-effect 
model (where σ2 = 0 or ui = 0, by definition). This is a poor 
approach for estimating ζ for this data set because the among-
study variance was clearly larger than 0 (as discussed in more 
detail below). A major negative consequence of using the fixed-
effect model is that the calculated )ˆ(ζSE  is much too low, result-
ing in artificially large Wald statistic (t) and artificially narrow 
range of the confidence interval (Table 1). In other data sets, the 
estimate of ζ itself may also be poor (because the estimate 
depends on the estimate of σ2; equation 10). In agreement with 
many authors (4,26,27,65,68), we see little advantage in using a 
fixed-effect meta-analysis for most investigations. If the estimated 
σ2 is actually 0, or close to 0, then the random-effect approach 

will automatically give about the same results as a fixed-effect 
approach, without the need for taking a modeling approach that 
can be severely biased and misleading when there is, in fact, 
substantial among-study variability. 

Heterogeneity. As stated by Higgins et al. (26), “The naïve 
presentation of inference only on the mean of the random-effects 
distribution [expected effect size] is highly misleading.” Estima-
tion of σ2 may be just as important, because this parameter 
quantifies the variability of the true effect sizes among studies. 
However, many published meta-analyses give little information 
on the extent of the variability or impact of the variability on the 
expected effect size (4,25,36). 

Hypothesis tests for heterogeneity are possible. For those who 
use the MM parameter estimates, a chi-square test for σ2 is 
routine, based on the calculation of the Q statistic (equation A1 in 
Appendix). For our example, the estimate of Q was 250.4. Com-
paring this to quantiles of a chi-square distribution with K − 1 = 
100 degrees of freedom gave a P value of <0.001, confirming that 
the among-study variance was larger than 0. For those who prefer 
likelihood-based parameter estimation (as we do), a likelihood 
ratio test can be performed (30,65). This involves fitting equation 
6 and a version of equation 6 with no ui term (i.e., no random 
effect of study), and determining the difference in −2 times the 
log-likelihood for both model fits (which is the likelihood ratio 
statistic [LRS]). Under the null hypothesis of σ2 = 0, it is 
traditional to assume that LRS has a chi-square distribution with  
1 degree of freedom. For the example, LRS = 54.04, which corre-
sponded to a P value of <0.001. Recent research has shown that 
the distribution of LRS under the null hypothesis is more complex 
than that represented by the simple chi-square distribution (66), 
but we do not expand on this here. 

Confidence intervals can be calculated for σ2, although this is 
much more complicated than with ζ. This is partly because the 
distribution of the test statistic can be quite complex (and possibly 
poorly defined) when the null hypothesis is not true (3,36,67), 
especially if K is small. No single method is best for this purpose 
(36,67). The profile likelihood method is a good choice for those 
who use likelihood-based methods (3,65,67). Until recently, this 
approach entailed fitting equation 6 multiple times, with different 
fixed values of σ2 for each fit (to determine cut-off limits of σ2 

TABLE 1  
Estimated expected effect size (log response ratio), among-study variance, and related statistics for the effect of a single application 
of tebuconazole (Folicur) on the deoxynivalenol toxin content in harvested wheat grain, based on a meta-analysis of 101 studies (41) 

Effect size statisticsb Among-study variance Percent controlc 
Estimation 
methoda ζ̂  ( )ˆ(ζSE ) t P Confidence limits for ζ 2σ̂  ( )ˆ( 2σSE ) Ĉ  Confidence limits for C 

ML −0.244 (0.0276) −8.85 <0.001 −0.299 ↔ −0.189 0.0365 (0.0206) 21.6% 17.2% ↔ 25.8% 

REML −0.244 (0.0278) −8.80 <0.001 −0.299 ↔ −0.189 0.0374 (0.0108) 21.6% 17.2% ↔ 25.8% 

MM −0.245 (0.0285) −8.60 <0.001 −0.301 ↔ −0.189 0.0407 (--)d 21.7% 17.2% ↔ 26.0% 

FIXEDe −0.223 (0.0163) −13.70 <0.001 −0.255 ↔ −0.192 –f 20.0% 17.5% ↔ 22.5% 

ML(MI)g −0.249 (0.0287) −8.68 <0.001 −0.305 ↔ −0.193 0.0469 (0.0156) 22.0% 17.6% ↔ 26.3% 

a ML: maximum likelihood; REML: restricted maximum likelihood; MM: method-of-moments (4,12); FIXED: fixed-effect model (equation 6 
without ui term); ML(MI): multiple-imputation with ML estimation for each imputation. 

b ζ̂ : estimated expected effect size (from fit of equation 6, with Li used for zi ); t: Student’s t statistic; P: significance level of t test for the 
equality of ζ to 0; Confidence limits: limits of a 95% confidence interval for ζ. 

c Percent control estimate ( Ĉ ) based on back-transformation of the estimated expected effect size and the confidence-interval limits. 
d Standard error of estimated among-study variance not calculated with method of moments (MM). 
e The fixed-effect (or common-effect) model is not appropriate for these data, but results are shown for comparison purposes. 
f By definition, the among-study variance is 0 for the fixed-effect model. 
g Statistics for ML(MI) determined from 10 imputations of missing sampling variances followed by ML parameter estimation. Twenty percent of 

the studies were randomly selected and assigned a missing value for the sampling variance for the purpose of the multiple-imputation (MI) 
analysis. 
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based on achieved log-likelihood values for each fit). The calcu-
lation of the LRS and also the profile likelihood confidence 
interval is now straightforward using the GLIMMIX procedure in 
version 9.2 of SAS. For the FHB example, a 95% confidence 
limit is 0.020 to 0.063. Note, in general, the confidence interval 
for a variance is not symmetrical; typically, the width of the 
interval above the point estimate is larger than the width below 
the point estimate. 

When K is not large (<30), tests of σ2 are not powerful (4,28) 
and confidence intervals can be very wide. In contrast, tests of the 
variance are very powerful at large K. For instance, with a small 
number of studies, a large estimated σ2 may be considered non-
significant, but with a large number of studies, a very small σ2 
may be considered significant. As pointed out elegantly by Higgins 
and Thompson (25), quantification of the impact of heterogeneity 
is probably more useful than determining if there is (significant) 
heterogeneity. Higgins and Thompson developed three inter-
related indices of impact, although two of these are most easily 
expressed (through a function of Q) when the MM estimation 
method is used. 

The R2 index (which is not a coefficient of determination) is 
especially straightforward no matter which estimation approach is 
taken. The index involves the estimated standard error of the 
estimated ζ when the random-effect model is fitted (equation 6), 
which we temporarily label as RANSE )ˆ(ζ , and the standard error 
when the fixed-effect (common-effect) model is fitted (equation 6 
with no ui term), which we label as FIXSE )ˆ(ζ . The index is written 
as 
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The square-root of equation 13 represents the inflation in the 
confidence interval for ζ under a random-effect model compared 
with a fixed-effect model; the inflation is attributable to the 
among-study variability of the true effect size (25). If the samp-
ling variance (si

2) was the same in all studies ( 22 ssi
)≡ ), then 

equation 13 would reduce to 
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an expression that clearly shows the inflation due to σ2. Indices 
such as R2 are advantageous because they are scale free, which 
means their magnitude can be compared across different meta-
analyses. When the among-study variation is zero, R2 equals 1. 

It is a good practice for investigators to always present one of 
the indices of Higgins and Thompson (25) when reporting on a 
meta-analysis. Based on the ML method of model fitting with the 
example used here, one finds R2 = 2.9. Based on analogies of R2 
with related indices discussed in Higgins and Thompson (25), the 
among-study variation has a large impact on the meta-analytical 
results whenever R2 is larger than ~1.5. For our example, study 
variability must clearly be accounted for in the analysis. 

Missing values. Missing data in studies considered to be part 
of a meta-analysis are not uncommon. Missing information on 
variability (e.g., V or si

2) may be the most common problem, 
because authors often do not report any measure of variation 
when there is a nonsignificant result (18). The conservative 
approach to a missing sampling variance (or other measure of 
variation that can be used to calculate si

2) is to omit the data set; 
however, this eliminates valuable information on the estimated 
effect size and will most likely increase the bias of the estimated 
expected effect size. A useful alternative is to impute values for 
the sampling variance (18), based on relationships between si

2 (or 
V) and other variables in the data set (for the studies without 
missing values). Along these lines, Paul et al. (41) found a strong 
linear relationship between the log of V and the log of the mean 

DON in the study (across all treatments); from a fitted regression 
model, missing values of si

2 could be estimated (equation 4a) 
based on predicted V, using a single imputation approach. 

It turns out that a random-effect meta-analysis is often not 
overly sensitive to a moderate number of missing sampling 
variances. We demonstrate this with our example. Using the 
SURVEYSELECT procedure of SAS, we randomly selected 20% 
of the studies and assigned them a missing value for si

2 (and for 
Vi, the residual variance for the observations in the ith study). We 
then utilized the MI procedure in SAS to perform multiple impu-
tations using the MCMC method, based on a multivariate normal 
distribution for the variables on a log scale (Vi, mean DON and 
mean field disease severity). The missing data were then filled in 
10 times, by drawing random samples of missing value from its 
estimated distribution, to obtain 10 complete data sets. A meta-
analysis (using ML estimation) was then performed on these 10 
completed’ data sets, and then the results (estimated ζ and σ2) 
were combined using the multiple-imputation methods of Rubin 
(54) to produce composite results for inference. 

As shown in Table 1, the results [ML(MI)] from the multiple 
imputations were very close to those found for the original 
complete data set. There was a slight trend for a larger among-
study variance, which is expected given the extra uncertainty 
associated with the imputations. Confidence intervals for ζ were 
little affected by imputation. 

The insensitivity of the results to missing sampling variances is 
likely due to the strong relationship among the observed variables 
that made up the imputations. With other systems, there may be 
greater sensitivity to missing sampling variances. An additional 
cause of the insensitivity may be related to the weight function 
(wi) involved in the estimation of ζ (equations 10 to 12), which 
involves the estimated among-study variance (fixed across all 
studies) added to the sampling variance (dependent on study). The 
larger the 2σ̂  relative to the sampling variances, the less the 
weights vary with study; under these circumstances, inaccuracy in 
sampling variances will not affect the weights very much because 
a reasonable range of predicted si

2 values will give about the same 
wi values. We expect that when R2 is large (equation 13), impu-
tation of missing variance data will work well even when there is 
not an overly strong relationship between variances and other 
observed variables. 

PREDICTION 

Prediction intervals. As stated recently by Higgins et al. (26), 
“Predictions are one of the most important outcomes of a meta-
analysis, since the purpose of reviewing research is generally to 
put knowledge gained into future application. Predictions also 
offer a convenient format for expressing the full uncertainty 
around inferences, since both magnitude and consistency of 
effects may be considered.” Unfortunately, formal predictions and 
the uncertainty in the predictions are seldom reported in published 
meta-analyses. 

When equation 6 is fitted to data from K studies, the estimated 
expected effect size ( ζ̂ ) is the best predictor of the true effect size 
in a randomly-selected new study (ζnew). This new study would 
have to be done in the same way as the studies represented in the 
analysis. By implication, in the FHB example this prediction also 
applies to commercial wheat fields treated in the same manner. 
Note that ζnew is a random variable, not a constant. Although the 
point estimate of the effect size is important, the variance of ζnew 
and the width of the so-called prediction interval for ζnew are just 
as important. It can be shown that the estimated variance of ζnew is 

22 ))ˆ((ˆ ζ+σ SE . The second term reflects the uncertainty in the 
estimate of the expected effect size and the first term reflects the 
heterogeneity in the true effect sizes. Note that )ˆ(ζSE is also a 
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function of 2σ̂ (equations 11 and 12); thus, the among-study 
variance enters the formula twice for the variance of ζnew. 

A 95% prediction interval for the effect size of a randomly 
selected new study is estimated by 

( ) 5.022*
,975.0 ))ˆ((ˆˆ ζ+σ±ζ SEt df  (14) 

where *
,975.0 dft  is the 97.5th percentile of the Student’s t 

distribution with df = K − 2. Of course, when K is large (≥30, for 
instance), one could use the standard normal variate ( *

975.0Z = 1.96) 
instead of the Studen’s t value. Based on the ML estimates for the 
example (Table 1), and use of the standard normal, the 95% 
prediction interval is 

( ) 5.020276.00365.096.1244.0 +±− = 193.096.1244.0 ⋅±−   

which is −0.622 to 0.134. Back-transforming these log ratios, one 
obtains a prediction interval for percent control of −14.3 to 
46.3%. One interpretation of this interval is that if a large number 
of future studies are conducted (or if commercial fields are 
treated) in basically the same manner as in the studies comprising 
the original analysis, about 95% of the individual true percents 
control will be between −14 and 46%. This is in general agree-
ment with the histogram of the individual estimated effect size 
values shown in Figure 1A and B. The agreement between 
prediction intervals and raw percentiles of frequency distributions 
will never be more than approximate, however, because the latter 
does not account for, among other things, the different sampling 
variances of the studies. 

Even though there is very strong evidence—from the confi-
dence interval—that the expected log ratio is truly less than 0 
(meaning that the expected percent control is truly greater than 0), 
the meta-analysis also gives strong evidence—from the prediction 
interval—that a wide range of individual results could be 
experienced, when applying Folicur to susceptible wheat at one 
growth stage of the crop, under high inoculum density. Clearly, 
Folicur is not an overly effective fungicide for managing the level 
of DON in harvested grain (41). Meta-analyses show that other 
triazole fungicides are much more effective (42). 

One can consider any prespecified significance level (α) in 
determining prediction intervals. For instance, for an 80% pre-
diction interval, one would use *

,2/2.01 dft − (i.e., *
,9.0 dft ) or, for large K 

(as here), the standard normal variate ( *
9.0Z = 1.28). When there is 

substantial heterogeneity, for instance, when R2 > 1.5 (equation 
13), 2σ̂  will be substantially larger than 2))ˆ(( ζSE . Thus, the last 
term in equation 14 [i.e., ( ) 5.022 ))ˆ((ˆ ζ+σ SE ] can be approximated 
by σ̂ . For example, the last term is given fully as 0.193 above, 
which is very similar to .191.00365.0ˆ ==σ  Therefore, one can 
simplify calculations by using σ̂  in determining prediction 
intervals. Technically, strict use of the simplification implies that 
the expected effect size is estimated without uncertainty. 

Risk probabilities. The above prediction intervals were two-
sided, but one could also calculate one-sided intervals. One can 
also turn this idea around and specifically estimate the probability 
that ζnew is below (or above) a critical limit or value (such as a log 
ratio of 0), rather than determine the limits of an interval for a 
pre-specified probability (65). We demonstrate this for a situation 
where we can use the standard normal as an approximation for the 
Student’s t distribution. For simplicity, we use the square-root of 
the estimated among-study variance (i.e., σ̂ ) instead of the more 
complex function used in equation 14. 

Following van Houwelingen et al. (65) and Paul et al. (41,42), 
the estimated probability that ζnew is less than a constant, ϑ, can 
be expressed as  

( )σζ−ϑΦ=ϑ<ζ=ϑ ˆ/)ˆ()Pr( newp  (15a) 

where Φ(•) is the cumulative distribution function of the standard 
normal distribution. The probability that ζnew is greater than ϑ is 
estimated as 

( )σζ−ϑΦ−=ϑ>ζ=ϑ ˆ/)ˆ(1)Pr( newp  (15b) 

For the example, the probability that ζnew (specifically here, the 
log ratio Lnew) is less than ϑ = 0 (equivalent to the probability that 
Cnew is greater than 0) is estimated as p0 = Φ(0.244/0.191) = 0.90. 
If one wanted to estimate the probability that percent control of 
DON is greater than 25%, one needs to estimate the probability 
that the log ratio is less than ϑ = ln(1−0.25) = −0.288. This gives 
p−0.288 = Φ((−0.288+0.244)/0.191) = 0.41, much less than the 
probability that any positive control will occur. 

We have found equations 15a and 15b, and their expansions for 
more complex scenarios, to be extremely valuable in interpreting 
results from a random-effect meta-analysis (40–42). The excellent 
article by van Houwelingen (65) gives additional background on 
use of these equations, although they use a different notation. It 
should be noted that there is a typing mistake on page 599 of their 
article (65), where they inadvertently used the estimated among-
study variance instead of the estimated among-study standard 
deviation in their numerical example. The correct result, based on 
our notation is p0 = ( ) 911.0302.0/)742.0(0( =−−Φ . 

POWER IN META-ANALYSIS 

An obvious reason to conduct a meta-analysis is to increase our 
knowledge base for some phenomenon, which will hopefully lead 
to better (or more appropriate) predictions of a future effect size 
(such as the effect of some treatment), as well as to better 
informed decision-making regarding management of a system 
(8,29). In this context, hypothesis testing can be very important. 
Individual studies are often conducted to test a null hypothesis 
(H0) versus an alternative hypothesis (Ha). Using our notation, we 
can write these for the ith study as  

0:0:0 ≠ζ=ζ iai    H   versus     H  (16a) 

In our example, the null hypothesis would be that the effect of 
Folicur on DON in wheat grain, expressed here in terms of log 
ratios (Li), equaled 0, and the alternative hypothesis would be that 
the treatment effect was not 0 (i.e., that Folicur did actually affect 
DON). The effect size could also be the mean difference (Di) or 
standardized mean difference (di). For correlation studies, the null 
hypothesis would be that there was no relation between two 
variables (a correlation coefficient of 0), and the alternative hy-
pothesis would be that there was a relationship (a nonzero 
correlation coefficient). As discussed above, hypothesis testing 
extends directly to a meta-analysis. With a random-effect meta-
analysis, the null and alternative hypotheses are typically ex-
pressed in terms of the true expected effect size (for the popu-
lation of studies): 

0:0:0 ≠ζ=ζ    H   versus     H a  (16b) 

For individual studies or for the population of studies, one can 
also be more specific and provide a direction for the alternative 
hypothesis (e.g., that the effect size is less than 0). 

In the usual practice of statistical inference, one gathers evi-
dence (such as data from experiments or surveys) that will allow 
the investigator to reject the null hypothesis in favor of the 
alternative based on the results of a test. Statistical tests are 
designed to control, usually at a low level (e.g., α = 0.05), the 
probability of rejecting the null hypothesis when it is in fact true. 
However, the probability of rejecting the null hypothesis when the 
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alternative is true, known as power, is often overlooked. It can be 
argued that statistical power is a key aspect of hypothesis testing, 
in general (30,38,61). Unfortunately, the power of tests of many 
interesting hypotheses is low for individual studies (4,27); the low 
power may be due to a small number of replicates, a high degree 
of variability (si

2), or a small true effect size (ζi). As it turns out, 
however, the power of statistical tests in a meta-analysis can be 
very high. In fact, high statistical power could be considered a 
major (or even the primary) reason to conduct a meta-analysis 
(27). We considered below several aspects of power, using the 
DON example as a guide. 

Power of individual studies. If one assumes that the alter-
native hypothesis is true (such as a nonzero log response ratio), 
one can estimate the power for an individual study (study i) based 
on the assumed or specified effect size and its variance (or 
standard error), pre-determined significance level for the test (α), 
and residual degrees of freedom (30,38). For demonstration 
purposes, we consider only the two-sided situation where the null 
hypothesis is zero and the alternative is nonzero (not specifically 
less than or greater than 0). We take the approach described in the 
SAS/STAT POWER User’s Guide (especially page 16 of Chapter 
1 in citation 55); the analogous approach for a meta-analysis is 
described explicitly below. 

We can get a good sense of the power of the test for an effect of 
Folicur on DON (as a log ratio) by using the estimated effect sizes 
(zi) and their variances for the true values. Based on the results in 
Figure 1, we do not believe that DON is truly reduced in every 
study, so that it is not realistic to assume that the alternative 
hypothesis is true in all cases. However, the exercise serves to 
demonstrate the range of powers for studies like this (i.e., studies 
with the kind of estimated effect sizes and sampling variances 
found in the 101 studies). A more technical description of this 
exercise is that, assuming the alternative hypothesis is always 
correct, we are calculating the power that would be achieved if 
another (future) collection of studies were conducted in the same 
manner with the same levels of sampling variability and mag-
nitude of effect sizes. 

Figure 2A shows a histogram of the estimated powers for the 
example studies, given the assumptions and qualifications pre-
sented above. It is clear that if there truly was an effect of Folicur 

in every study, that the power to detect the effect would often be 
quite low. The mean power was only 0.36, and the median was 
0.23 (i.e., half the studies had power less then 0.23). In many 
disciplines, a power of 0.8 is considered to be a desired goal in 
designing studies. Only 15% of the studies had an estimated 
power of 0.8 or higher. 

Power in a meta-analysis. One can take the same approach to 
estimate the power of a meta-analysis as done for individual 
studies. Note, with a random-effect meta-analysis, the hypotheses 
are different (equation 16b) compared with the hypotheses for 
individual studies (equation 16a). In particular, the hypotheses in 
the meta-analysis involve the true expected effect size (ζ, across 
all studies), not the true effect sizes for individual studies (ζi). To 
calculate power for the meta-analysis, one simply assumes that 
the true expected effect size is nonzero; one does not need to 
make any assumptions about the true effect sizes in the individual 
studies (in other words, one can fully expect that the individual 
true effect sizes be positive, negative, or nil in the different 
studies). 

A so-called noncentrality parameter (assuming 0 for the null 
hypothesis) for a specified true expected effect size is given by 
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where the summation is over all K studies, and the denominator is 
the same as )ˆ(ζSE when the estimate of the among-study variance 
( 2σ̂ ) is substituted for the true variance (σ2) (equations 11 and 
12). The value of φ indicates how far, on a standardized scale, the 
true mean is from the hypothesized value under H0. If the estimate 
of ζ ( ζ̂ ) and its standard error [ )ˆ(ζSE ] are substituted in equation 
17, one obtains the Student’s t statistic described previously 
[ )ˆ(/ˆ ζζ= SEt ]. For α = 0.05 and a two-sided test, power is 
estimated as  

),,1;(1 2*
,1,95.0 φ−= dfFFPower dfF  (18) 

where F*
0.95,1,df is the 95th percentile of the central-F distribution 

with 1 and df for the numerator and denominator degrees of 

 

FIGURE 2 
Power and precision in the meta-analysis of the effects of 
tebuconazole on deoxynivalenol (DON) toxin in wheat 
grain, based on the data given in Paul et al. (41). Results 
are based on the use of the log response ratio as the 
effect size (Li or zi ). A, Frequency distribution of the 
estimated power to detect an effect of the fungicide for 
the individual studies, with the (unrealistic) assumption 
that the alternative hypothesis (a nonzero effect of the 
fungicide) was true for every study. B, Estimated power to 
detect an effect of the fungicide on the expected value 
(across all studies; ζ ), with the (realistic) assumption that 
the alternative hypothesis (a nonzero effect of fungicide on 
the expected value) was true overall (not necessarily for 
individual studies), in relation to number of studies in the 
meta-analysis (ranging from 2 to 100). Solid symbols are 
for theoretical calculations, and open symbols are for 
simulations. C, Estimated mean effect size ( ζ̂ ) (points) 
and 95% confidence interval (hatched area) in relation to 
number of studies (ranging from 2 to 100). Results based 
on simulations. D, Estimated percent control (relative 
reduction in DON), and 95% confidence interval, based on 
a transformation of ζ̂  and the limits of the confidence 
interval for ζ̂  in C. 
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freedom, respectively; FF(•; 1,df, φ2) is the cumulative non-
central-F distribution with 1 and df for the numerator and de-
nominator degrees of freedom, respectively; and φ is as defined in 
equation 17. More details can be found in Stroup (61) for a more 
complex model, and in the SAS POWER instructional book (55) 
for a wide range of situations. For a meta-analysis, we chose here 
to use df = K − 1 for the denominator degrees of freedom, but as 
discussed above, other choices are possible. 

As discussed for power calculations with single studies, we do 
not know the true status of the expected effect size for this 
population of studies (nor the variability in the effect sizes). 
However, we can substitute the ML estimates to get a sense of the 
power that would be achieved (assuming, as always here, that the 
alternative hypothesis is correct) for another population of studies 
with the same distribution of effect sizes. Taking this approach, 
the power for this meta-analysis was estimated as >0.999. Thus, 
there is a very high (almost certain) chance that the correct de-
cision would be made regarding a nonzero expected effect size 
(when there is truly a nonzero expected value). Clearly, the power 
advantages over individual analyses are obvious. Investigators 
considering only individual studies would have a difficult time 
discovering the overall, but modest, benefits of Folicur for 
reducing DON. 

Number of studies. In classical power analysis applied to 
meta-analysis (4), one can explore the impact of a range of (true) 
expected effect sizes, variability, and number of studies on power. 
We consider only the latter here. Given the very high power found 
above in the example, it is natural to ask: How many studies 
would be required to achieve a power of 0.8 or 0.9? This can be 
done in a standard (classical) theoretical way, and also with 
simulation. The theoretical approach involves adjustments to the 
denominator of equation 17 for φ (the standard error) to reflect 
the number of studies (K). If the sampling variance was the same 
for all studies (i.e., 22 ssi

)≡ ), then the denominator of equation 17 
would be equivalent to ( ) 2/1222/1 sK )+σ−  or Ψ− 2/1K , where 

( ) 2/122 s)+σ=Ψ (a type of standard deviation). The impact of 
different K values is then easy to obtain at a fixed Ψ (which 
reflects the sampling and among-study variability, not dependent 
on number of studies). With variable sampling variances, K cannot 
be removed from the standard-error equation. However, as an 
approximation, we can estimate Ψ (roughly) as 2/1/)ˆ(ˆ −ζ=Ψ KSE , 
and fix this in the power calculations; for the example with  
K = 101, 277.0101/0276.0ˆ 2/1 ==Ψ − . 

Power was estimated for values of K from 2 to 100 using the 
noncentrality parameter in equation 18 with Ψ− ˆ2/1K  as the 
denominator (an approximate standard error). As shown in Figure 
2B, estimated power increased rapidly with K, and exceeded 0.80 
with 13 or more studies, and exceeded 0.95 with 18 or more 
studies. 

To determine if these results were overly dependent on the 
approximation for the standard error, a simulation was conducted 
(30). For our example data set, effect-size data were generated 
using equation 6, using normal distributions for ui and εi. The ML 
estimate of ζ was used for the expected effect size and the ML 
estimate of σ2 was used for the variance of ui. The variances of εi 
depended on the study (as required). In separate work, we 
previously found that the distribution of the reciprocal of the si

2 
values was well described by a gamma distribution with estimated 
scale parameter of 32.8 and shape parameter of 1.1 (L. V. 
Madden, unpublished data). We thus generated an si

2 value for 
each simulated study from a gamma distribution, and used this 
sampling variance to generate a normally distributed εi value. One 
thousand simulations were performed for selected values of K 
between 2 and 100. For each simulation, equation 6 was fitted to 
the data, and the expected effect size and its standard error were 
calculated, as well as the P value of the t test for ζ. The propor-

tion of P values less than or equal to α across all simulations was 
an estimate of the power (Fig. 2B). 

The estimates of power based on simulation were very similar 
to those found by the more approximate theoretical approach 
(Fig. 2B) at most values of K. For instance, power was over 0.8 
for 13 or more studies, and above 0.95 for 19 or more studies. The 
greatest difference in the approaches was at K values of 2 and 3, 
where a meta-analysis should not normally be done. This analysis 
does show that the simpler theoretical approach was adequate to 
explore power of a meta-analysis for situations represented by the 
DON example data set. Analysis of other examples would be 
necessary before more general recommendations could be given 
about the best approach to evaluate power. 

Precision. If all an investigator wished to do was determine if a 
treatment was effective (on average), use of 101 studies in a meta-
analysis would be overkill, based on the power results for our 
example. However, a meta-analysis is valuable for many reasons, 
not just for hypothesis testing. For instance, we can consider the 
precision of the estimated ζ, as quantified by the width of the 
estimated 95% confidence interval around ζ̂  ( )ˆ(*

,975.0 ζ± SEt df ). 
Using the above simulated data, we calculated the point estimate 
and 95% confidence-interval limits for each of the simulated data 
sets for each chosen K, and then determined the means for these 
at each K (across all simulations). As shown in Figure 2C, the 
(mean) estimate of ζ depended very little on K, with an estimate 
around −0.244 (the prespecified value), even with two or three 
studies. The back-transformed mean and the confidence-interval 
limits are given in Figure 2D; the intervals are nonsymmetrical 
(wider below the mean, especially at small K) because of the 
nonlinear transformation. 

Graphs such as Figure 2C and D can be used in different ways 
for determining the influence of study number on precision. For 
instance, if one wanted to determine the number of studies that 
would result in a lower bound of 15% on the confidence interval 
for percent control (when expected percent control was 21%), one 
would need 45 studies (with the among-study and sampling 
variances considered here). Or, if one wanted to determine the 
number of studies that gave a width of the confidence for ex-
pected percent control of no more than 10% (e.g., from 16 to 
26%), one would need a K of 75. 

The fallacy of counting individual P values. Meta-analysis is 
generally considered to be an alternative to so-called narrative 
review for research synthesis. In a classical narrative review, “An 
expert in a given field would read the studies that addressed a 
question, summarize the findings, and then arrive at a con-
clusion…” (4). Meta-analysts have written extensively about 
problems with such narrative reviews; we recommend interested 
readers start by consulting Borenstein et al. (4). We deal only 
with one aspect of this approach, which is related to statistical 
power. 

A typical narrative or qualitative summary of a topic, at least at 
the simplest level, is to review the published studies and count the 
number of significant results (studies where the test of a treatment 
effect gives P ≤ 0.05). For instance, if one wanted to know if 
DON in wheat grain was related to head blight symptoms on 
spikes in the field, one could count the number of studies where 
the investigator found a significant relationship between symp-
toms and DON. If interested in the effect of a biocontrol agent, 
one could count the number of studies where agent “X” sig-
nificantly reduced disease severity compared with a control. One 
would conclude that there truly was a relationship, or there truly 
was a treatment effect, if at least half the studies had significant 
results. Using our DON example, with K = 101 studies under 
consideration, P would have to be less than or equal to 0.05 (α) in 
a least 51 studies to declare that this fungicide had any true effect. 
This general approach is known sometimes as vote counting, and 



 

Vol. 101, No. 1, 2011 27 

it is easy to show that it is a fatally flawed approach to test 
hypotheses (23,27). 

We demonstrate this with an instructional example where the 
alternative hypothesis (equation 16a) is true in each of the K 
studies. In other words, the true treatment effect (the effect size of 
interest) is nonzero in every study. We also suppose that power to 
test for the treatment effect is 0.40 in every study. This is not a 
high value, but it is not uncommon; it is actually higher than the 
mean individual-study power in the DON example (Fig. 2A) 
(with the assumption that effect size was truly nonzero in every 
study). With a large number of studies (K > 100) under these 
circumstances, about 40% of the studies will have a significant 
result (27). Thus, the criterion for overall true effect in the vote-
counting approach would not be met, and one would falsely 
conclude that treatment was not effective, even though it was truly 
effective in every study! 

Whenever the power of tests in individual studies is not high, 
the narrative-review approach is problematic, and bound to fail 
under many circumstances. In other words, the power of the vote-
counting method is low, and often (much) lower than the power of 
the individual studies on which it is based. In fact, as shown by 
Hunter and Schmidt (27) and Hedges and Olkin (23), the power 
of the vote-counting method can tend towards 0 as the number of 
studies increases. As stated by Borenstein et al. (4), “vote 
counting is not only misleading, it tends to be more misleading as 
the amount of evidence (the number of studies) increases!” 

There is ample evidence that naïve vote-counting approaches 
can lead to disastrous conclusions under many circumstances 
(23,27). It should be pointed out that there are valid statistical 
methods for combining P values from independent studies, going 
back to the work of Fisher (17) and Tippett (63). Chapter 36 in 
Borenstein et al. (4) and, in more detail, Chapter 3 in Hartung et 
al. (21), describes these approaches. These methods are usually 
considered as special types of procedures under the general 
approach of meta-analysis. These specialized methods are not as 
powerful or useful as the methods described here, but can be 
utilized when the actual effect size estimates are not available. 

PUBLICATION BIAS 

General issues. If statistical power is one of the major 
advantages of meta-analysis, then publication bias is one of the 
major potential disadvantages (4,26). Most meta-analyses make 
the tacit assumption that the studies under review are a random 
sample from a hypothetical population of possible studies, or, 
more realistically, that the effects in each study comprise a ran-
dom sample from an imaginary population of effects (26). From a 

Bayesian perspective, this is equivalent to assuming that the study 
effects meet the criterion of exchangeability. Despite common 
misconceptions, there is no requirement that results from all 
studies be included; the principle of randomness, applied to 
random samples of effects (out of a larger population of effects), 
assures that statistical inference is valid. Of course, the assump-
tion of a random sample of effects is rather strong, and is unlikely 
to be fully met for any meta-analysis. 

Study results are published or made available for review for 
many reasons. Other study results are discarded or stored away in 
a file cabinet for other reasons. There is a considerable literature 
on this topic, going back at least to Rosenthal (50). Borenstein (4) 
and Lipsey and Wilson (29) are good places to start reading about 
the issue, and many more details are given in Rothstein et al. (53). 
It is likely that larger studies, or studies with significant results, or 
studies with small standard errors, or studies with novel results 
will be published, compared with smaller studies, or those with 
high variability, or those with nonsignificant or nonnovel results. 
van Houwelingen (64) considered the selective reporting of study 
results to be the nightmare of meta-analysis. 

It is always a good practice to use quality and relevance criteria 
(unrelated to the actual estimated effect sizes) when selecting 
studies for a meta-analysis (Boxes 1 and 2) (9,29). However, if 
inclusion of studies in the data set for analysis depends on the 
realized effect sizes, then the meta-analytical results will be 
biased. A biased result means that the expected value of ζ̂  does 
not equal the true value, ζ; that is, ζ≠ζ)ˆ(E . This is the publi-
cation-bias problem. In general, the direction of the bias will be to 
favor the alternative hypothesis. Bias is not a real concern for the 
DON example data set because the national wheat scab initiative 
encouraged the reporting of all results (not necessarily in journal 
articles). 

Some solutions. By far, the most common approach to the 
problem is to ignore the selection bias of studies (4,9). This 
means that the population of studies under consideration is 
actually a restrictive subset of the larger population of studies. 
Among other things, this limits the scope of inference about the 
effect size and can lead to higher type I errors (too frequently 
rejecting H0 when H0 is true). More informative approaches 
involve the use of weights for the observed effect sizes (in 
addition to the nominal weights based on variability, as given in 
equation 11), based on various assumptions regarding the study-
selection (publication) process, followed by a sensitivity analysis 
to determine the implications of the hypothesized selection 
process on the calculated statistics (53). 

However, based on the available studies, it is impossible to 
determine the selection process that makes certain studies avail-

FIGURE 3 
Estimated maximum possible bias of the mean effect size ( ζ̂ ) when there are 
from 1 to 100 studies not used in the meta-analysis. Results are based on the 
theoretical work of Copas and Jackson (10), utilizing the data published in Paul  
et al. (41) for the effects of tebuconazole on deoxynivalenol toxin in wheat grain. 
Upper horizontal line is the absolute value of the estimated expected effect size for 
the data set, and the lower horizontal line is the limit of the 95% confidence 
interval for the expected effect size 
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able for analysis and others unavailable. Studies get published, or 
become available in reports and so on, for numerous reasons. The 
size of the observed effect size may be one reason, but not the 
only reason. A very interesting new alternative is to determine the 
upper bound on the bias (in absolute units) for any number of 
unpublished studies. Copas and Jackson (10) show that this worst-
case bias (for any selection mechanism) is straightforward to 
calculate based on the statistics from the analysis of the available 
studies. 

One assumes that there are K0 unpublished (or unavailable) 
studies in addition to the K published studies. Thus, the prob-
ability of selection (i.e., the probability that study results become 
available) is K/(K + K0). Of course, K0 is not known. The 
approach of Copas and Jackson (10) is not to predict K0, rather, 
their approach is to determine the maximum bias [ |)ˆ(| ζ−ζE ] or 
bound for the bias for a range of possible K0 values. The formula 
to estimate this bound for normal distributions is given as 
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where ϕ{•} is the probability-density function for the standard 
normal distribution, and Φ−1(•) is the inverse cumulative density 
function for the standard normal. The summations in the last term 
are over the K observed studies. It is important to point out that 
the bias (in absolute value) will be less than or equal to the right 
side of equation 19, and possibly much less; thus, the right side of 
this equation gives the upper bound (in absolute value). 

The bound for the bias for the DON example (Table 1, Fig. 1) 
was calculated using equation 19 (utilizing the ML estimates of ζ 
and σ2), with K0 values from 1 to 100. Note that if K0 = 20, for 
example, this means that there were, in fact, a total of 121 studies 
(K + K0). As required, the bias bound increased with K0, but the 
increase in the bias slowed as K0 became larger (Fig. 3). Also 
shown on the graph is the absolute value of the estimated ζ and 
the absolute value of the confidence limit that was closest to 0 
(Table 1). There would be a bias problem in the meta-analysis if 
the calculated |bias| bound was close to or above the confidence 
limit, or, especially, close to or above the point estimate of ζ at 
small K0. With the example, the bias bound only crosses the 
confidence limit at K0 ≈ 85 additional studies, and does not reach 
the estimate of ζ even with K0 = 100 additional studies. 

We clarify a few points by considering the situation with K0 = 
20 unpublished studies. The bias bound is 0.077. This means that 
ζ̂  could be as high as −0.167 (= −0.244 + 0.077) or as low as 
−0.321 (= −0.244 − 0.077), instead of equal to −0.244 (Table 1), if 
there were actually 121 and not 101 studies. Back-transforming to 
percent control, this means that expected C could be decreased to 
15% or increased to 27%, instead of being equal to 22% (Table 
1). Given the distance between the bias bound and ζ̂  for reason-
able values of K0, we consider publication bias to be of little 
concern for this example. 

EXPANSIONS 

The among-study variance reflects, among other things, the 
diversity of study conditions or characteristics in the analyzed 
data set (26,36,58). One may be able to simultaneously reduce the 
among-study variability term and increase our understanding of 
the phenomenon being studied by incorporating so-called mod-
erator variables into equation 6 (4,29,65,67,68). A moderator 
variable is a characteristic of a study that is included in the data 
set for a meta-analysis (4). Examples include categorical variables 
such as cultivar and continuous variables such as environment. In 
many cases, it may be more interesting to determine which 
moderator variables are affecting effect sizes than it is to simply 
estimate the expected effect size (40–44). 

The individual studies in a meta-analysis may consist of several 
treatments, such as different fungicides or cultivars. If one is 
actually interested in several effect sizes, one could actually 
conduct several separate meta-analyses (one for each treatment 
effect), as suggested by Borenstein (4). However, it may be more 
efficient to analyze all the effects simultaneously using multi-
variate mixed models or other expansions of equation 6 (1,2,31, 
32,40,42,46–48,65,68). These expanded approaches are especially 
useful if one explicitly wants to compare different treatments with 
each other, and not just with the control. The multivariate 
approaches may also result in lower standard errors of estimated 
expected effect sizes because they account for the correlations of 
the treatment effects (47,48). 

CONCLUSIONS 

Meta-analysis has become quite common in many fields, and 
has even become the standard approach to research synthesis in 
some disciplines (4,26,27,62). As stated by Sutton and Higgins 
(62), “as the need for … research and clinical practice to be based 
on the totality of relevant and sound evidence has been 
increasingly recognized, the impact of meta-analysis has grown 
enormously.” There are now so many meta-analyses performed in 
some fields (especially in medicine) that there are now meta-
analyses of the meta-analyses (meta-meta-analyses) (13,60). Plant 
pathologists are now slowly utilizing the methodologies (litera-
ture review in literature citation 37), and considerable progress 
can certainly be made in the coming years in utilizing this 
approach for synthesizing the available information on a 
particular topic. 

This article summarized the classical methods of meta-analysis, 
focusing on fitting the random-effect meta-analytical model with 
likelihood methods for the purpose of inference and prediction. 
Among other things, we showed how meta-analysis can lead to a 
high level of statistical power and provided methods to evaluate 
the potential impact of publication bias on the results. For those 
wanting a more thorough explanation of the practice of meta-
analysis, Borenstein et al. (4) and Lipsey and Wilson (29) are 
excellent starting points. 

APPENDIX 

Moment-based estimation. A statistical problem in meta-
analysis is that the estimate of ζ depends on σ2, and the estimate 
of σ2 depends on ζ. The moment-based approach gets around this 
problem in a clever manner (68). It is first assumed that σ2 = 0 in 
equation 11 (i.e., a fixed-effect model is fitted). This makes the 
weight (equation 11) wi = si

−2; using this weight, the estimate of ζ 
is direct with equation 10 (but not a very good estimate if there 
really is heterogeneity in the true effect sizes). We call this 
estimate FIXζ̂ . A test of nonzero σ2 is obtained from the statistic 

( )∑ ζ−= − 22 ˆ
FIXii zsQ  (A1) 

Under the null hypothesis that σ2 = 0, Q has a chi-squared 
distribution with df = K − 1. Large values of Q (relative to df) is 
an indication that σ2 > 0. It is common to use this test (3,4, 
24,28,29,67), but it is well known to lack power when K is small 
(i.e., even when σ2 > 0, the probability of finding a significant 
result is low when K is not large). 

Based on the theoretical expectation of Q for any value of σ2, 
DerSimonian and Laird (12) showed how to use Q calculated 
from equation A1 and the sampling variances for individual 
studies to directly estimate σ2. This approach is not part of 
general-purpose statistical programs with mixed models, but 
specialized meta-analysis programs typically make this calcu-
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lation (4,29). Page 4323 of Mittlböck and Heinzl (36) and page 73 
of Borenstein et al. (4) succinctly show how to perform the 
calculations. The moment estimate is given simply as 

c
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One can then substitute the moment-based variance estimate 
into equation 11 in order to calculate the random-effects estimate 
of the expected effect size. Whenever the calculated Q is less than 
K−1, one uses 0 for the estimated among-study variance. More 
recently, DerSimonian and Kacker (11) presented some variations 
of the method of moment approach that can be used in meta-
analysis. 
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