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Generalized Linear Mixed 
Models for Data Analysis 
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Workshop: APS Annual Meeting, 2016

Background and motivation
• Case study 1 (disease 

incidence and a randomized 
complete block)

• Some concepts:
• Models
• Experimental layouts
• Fixed vs. Random effects

From the Linear Mixed Model 
(LMM) to the Generalized 
Linear Mixed Model (GLMM)
• Binomial and other non-normal 

distributions
• Conditional vs Marginal 

distributions 
• Conditional vs. Marginal models

Case study 1 in detail
• SAS GLIMMIX code and output
• Dealing with data clustering 

and resulting over-dispersion

Case study 2: split plot
• SAS GLIMMIX code and output

Technical issue:
• Different approaches to fitting 

GLMMs based on the likelihood 
principle

Outline

Overlooked challenge:
• The “all zero problem”

Case study 3: Sub-sampling 
(time permitting)

Case study 1 
• Effect of fungicide treatment on Phomopsis leaf 

blight of strawberry (from Nita, Madden & Ellis)
– Pathogen: Phomopsis obscurans

• Randomized complete block design (RCBD)
– Four blocks ( j = 1, …, 4)
– Eight treatments ( i = 1, …, 8) randomized within 

each block
• Response variable (Y ): leaflet disease 

incidence
– Number of diseased leaflets out of n = 75 leaflets 

in each experimental unit (=plot)

• Some questions:
– Does treatment effect the probability of a leaflet being diseased (p)?
– Which treatments are different from the others in terms of p?

• Analysis: linear mixed model (traditional approach) and especially 
generalized linear mixed model (GLMM) (contemporary approach)

blk trt y n prop
1 1 13 75 0.17333
1 2 12 75 0.16000
1 3 19 75 0.25333
1 4 22 75 0.29333
1 5 3 75 0.04000
1 6 11 75 0.14667
1 7 0 75 0.00000
1 8 48 75 0.64000
2 1 32 75 0.42667
2 2 21 75 0.28000
2 3 5 75 0.06667
2 4 14 75 0.18667
2 5 1 75 0.01333
2 6 7 75 0.09333
2 7 2 75 0.02667
2 8 26 75 0.34667
3 1 18 75 0.24000
3 2 26 75 0.34667
3 3 14 75 0.18667
3 4 8 75 0.10667
3 5 2 75 0.02667
3 6 2 75 0.02667
3 7 0 75 0.00000
3 8 37 75 0.49333
4 1 26 75 0.34667
4 2 25 75 0.33333
4 3 6 75 0.08000
4 4 1 75 0.01333
4 5 4 75 0.05333
4 6 5 75 0.06667
4 7 7 75 0.09333
4 8 28 75 0.37333

Case study 1: Phomopsis leaf blight data
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Conceptual Background
• Response variable (dependent variable) (Y ): 

– A random variable that is measured or observed
– Continuous (statistical distribution: normal, gamma, beta, etc.), or 
– Discrete (statistical distribution: Poisson or negative binomial [counts], 

binomial or beta-binomial [incidence], multinomial [ordinal categorical])
• Investigations are carried out to determine if one or more factors or 

covariables affect the expected value  (mean or location parameter) of the 
distribution of the response variable

• Factor:
– An explanatory variable that may affect the response variable, which is often 

“manipulated” by the investigator in an experiment
• May be called a predictor variable or “independent variable”

– Often, “factor” is used for a classification or class variable, consisting of two 
or more levels (treat. 1, treat. 2, …; group 1 group 2, …; level 1, level 2, …)

• Covariable (in contrast to a factor):
– A continuous explanatory variable that is either manipulated or measured 

by the investigator (e.g., temperature; not considered in this workshop)

Conceptual background, continued
• Data analysis is key to determining if factors or covariables affect the 

expected value of the response variable
• In contemporary statistical science, data analysis is performed by 

fitting a model to data and interpreting the results
• Model:

– Abstraction of a real phenomenon or process that emphasizes those 
aspects relevant to the objectives of the user

• Statistical model:
– “Plausible description of the process that gave rise to the 

observations” – Stroup (2013)
– “Mathematical descriptions of how data conceivably can be 

produced” – Littell et al. (2006)
– Model with stochastic (random-effect) components and 

deterministic (fixed-effect) components, containing unknown 
constants (i.e., parameters) to be estimated              

-- Schabenberger & Pierce (2002)

Models: Fixed- versus Random-Effects  
• Models consist of fixed-effect variables and random-effect variables
• Fixed-Effects Variables (deterministic/structural component):

– Levels (i.e., groups) in the study represent all possible levels of the 
factor, or all levels of interest by the investigator

• e.g., fungicide treatment, biocontrol treatment, inoculum dose, 
temperature, cultivar, etc. 

• Random-Effects Variables (stochastic/random component):
– Levels (groups) in the study represent only a random sample of a larger 

set of levels (a sample from a distribution of effects)
• e.g., block, location (environment), plot, experimental repetition, …

– Accounting for random effects results in appropriate estimates of fixed 
effects (e.g., treatment effects, means) and their standard errors 

– We mostly consider here random effects that are a consequence of the 
experimental design (splitting, sub-sampling, repeated measures)

• e.g., “splitting” [blocking] – randomly assigning levels of one factor 
(treatment) within levels of another factor

– With random effects, the data are said to be “clustered” 

Block (b) 1 Block (b) 2 Block (b) 3

1 3 32 312 1 2

Treatment () Treatment () Treatment ()

Experimental Layout (example): 
Randomized Complete Block Design (RCBD or RCB)
The ij combination (i-th treatment and j-th block) defines the plot 

(experimental unit or unit of replication) for a RCBD

i:

j:

b is the effect of block,  is the effect of treatment
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Model: Randomized Complete Block (RCB)

Yij =    +  i +   bj +   eij

Response 
variable for i-th
treatment of the 

j-th block

Constant, can be the 
expected value
(mean) across all 

treatments and blocks 

Effect of the i-th treatment (i = 1, …, T) 
on the response variable.

Often of primary interest (expected value
of the deviation of the response variable 

from the global average) 

Effect of the j-th block (j = 
1, …, N) on the response 

variable

Usually considered a 
random effect

Residual (error term):
Represents variability in response 

variable not accounted for by the block 
and treatment effects (random), 

With normal assumption: eij ~N(0, e
2)

Unique effect of each experimental unit (plot), 
identified by ij combination, on the response.

Equivalent to an interaction of treatment and 
block.

Model is for case where  
experimental unit (plot) is same as 
sampling unit.

If block is 
random, there 
are two
random effects 
in model:
bj ~N(0,b

2)
eij ~N(0, e

2)

Alternative model formulations (RCB)
Yij =   + i + bj + eij ,        bj ~N(0,b

2) , eij ~N(0, e
2)

ij =  + i + bj

Yij = ij + eij

bj ~N(0,b
2) , eij ~N(0, e

2)

Define the linear predictor ( ; “eta”) 
as the sum of all the terms affecting the 
response variable except the residual.

Response variable (Y ) is the sum of the 
linear predictor and the residual (i.e., 
unique effect of each experimental unit 
(plot), identified by ij combination).

For normal distributions, the linear predictor (ij ) defines the expected (or 
mean) value of Y for the i-th treatment and j-th block, ij = ij :

ij = ij =  + i + bj
When there are random effects in the model, then ij is known as the 
expected value conditional on the random effects (i.e., the treatment 
mean value for the j-th block): Conditional expected value

The conditional value of the response variable for the experimental 
unit is then written as Yij | bj .

Alternative model formulations

 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

Yij =  + i + bj + eij

bj ~N(0,b
2)

eij ~N(0, e
2)

Traditional approach for normal data

Expectation-based 
approach for normal 

E
qu

iv
al

en
t 

(id
en

tic
al

) f
or

 n
or

m
al

Cannot be used for non-normal data—there is 
no sensible distributional concept of an 
additive non-normal residual. e.g., even if Y is 
binomial, the remainder (a fraction) cannot be 
binomial or be defined.

Linear predictor () is the sum of all the terms 
affecting the response except the residual

Link the linear predictor to the so-
called conditional expected 
value of the distribution (i.e., mean 
conditional on the random effects)

Define the so-called conditional 
distribution of Y for the experimental 
unit as a function of the conditional 
expected value (mean) of Y for treatment 
i and block j (ij).
The residual variance (e

2) becomes the 
conditional distribution variance.See Supplemental Slides for a derivation

Modeling concepts
• Linear model (LM): Classical ANOVA, t-tests, etc.

– Normal Y, all variables are fixed-effects terms (except for the residual)
• Linear mixed model (LMM): ANOVA with random effects, etc.

– Normal Y, variables are either fixed- or random-effects terms
– In particular, at least one random-effect term in model in addition to the 

residual (conditional distribution variance term)
– Observations within a level of a random-effect variable are correlated

• Generalized linear model (GLM):
– Non-normal Y (distribution in the exponential family), all variables are 

fixed-effects terms, except for the cond. dist. variance term, if there is a 
cond. dist. variance term to estimate (see later)

• e.g., Poisson, binomial, gamma, beta, etc., for Y 
• (be careful: “PROC GLM” in SAS is for a LM, not for a GLM)

• Generalized linear mixed model (GLMM):
– Non-normal Y, variables are either fixed- or random-effects terms
– In particular, at least one random-effect term in model (in addition to a 

cond. dist. variance term, if there is a cond. dist. var. term to estimate)PR
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Gbur et al. 
Most accessible book.

Recommended

Stroup
Advanced (for stat grad 
students), but great stuff

Littell et al. (chap. 14)
All mixed models.

Great way to learn SAS 

Agronomy Journal 107(2): 811‐827 (2015)
Recommended [but be careful (don’t use his beta 

distribution method for incidence)]

Non-normal distributions
• Many response variables (Y ) of relevance in plant pathology are 

not normally distributed
– Discrete data:

• Poisson or negative binomial distribution (counts with no upper  
bound)

– Lesions per plant, nematodes per volume of soil, oospores 
per gram of soil, …

• Binomial or beta-binomial distribution (proportions, or counts with 
an upper limit)

– Plant disease incidence, leaf disease incidence, ….
» Proportion of plants diseased, proportion of leaves diseased
» Number of plants diseased out of n observed plants

– Skewed (positive) continuous data:
• Gamma, exponential, or beta distribution

– Example: Time to event:  Time to germinate, time to sporulate

Emphasis on discrete (binomial) data in workshop

NOTE: It is not adequate to simply look at a histogram of observations across all the 
treatments and blocks to determine the distribution of Y for the individual experimental units

---
---
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Y: Number of individuals with a trait (e.g., disease) in an experimental unit or 
sampling unit (e.g., plot, plant) – response

n: Number of individuals observed for the trait (e.g., plants)
p: A location parameter: probability of trait, such as disease (e.g. probability that 

a leaf, plant, etc., is diseased)  (analogous to  of normal)
For a single simple random sample of n plants, disease incidence (as a 

proportion) is an estimate of p
p may be a function of treatment and block (or a function of any factor and 

random effects): the conditional probability of disease,  pij

Analogous to normal distribution ij, with a random block effect, 
Variance of conditional distribution of Y is np(1-p), fully defined by n and p (no 

separate variance parameter to estimate)
• As n becomes large, Bin(p,n) is approximated by a normal distribution in a 

single sample, with mean np, and variance np(1-p)
• However, with random effects, the distribution of Y (or the proportion Y/n) 

across the random effects will not be binomial, normal, or symmetric! (we 
will get to this soon…)

Binomial distribution: Bin(p,n)

n = 10
Skewness=0.47

n =30
Skewness=0.27

n = 100
Skewness=0.15

Binomial distribution 
(=probability mass function) 
at different values of n.           
p = 0.20.

Simulation.
No random effects. Becomes 
normal-like as n increases.



7/18/2016

5

Data Analysis
• The old (and lingering) dogma: 

– Linear models or linear mixed models are reasonably robust to moderate
departures from normality

– Many discrete distributions (e.g., binomial, Poisson) can be well 
approximated by a normal (continuous) distribution when there is a large 
number of observations (n) or when counts are large

• In fact, many discrete distributions may be approximated by a normal 
distribution only under some circumstances!
– Despite “common wisdom”, based on pre-mixed-model thinking 

(considering only fixed effects), these discrete distributions may never
be approximated by a normal when there are random effects

– Alternatives to linear and linear mixed models are needed in analysis that do 
not rely on normality: Generalized Linear Mixed Models

• A property of non-normal distributions, in general, is that the variance of 
the distribution is a function of the mean
– Property exists even when the distribution is approximated by a normal dist.
– This means that factor levels (treatments) will have different variances, a 

violation of the basic (normal) linear mixed model 
• It is not possible for:  Yij | bj ~ N( ij , e

2) (i.e., constant  variance)

Data Analysis
• Unequal variances (a property of non-normal distributions)

– In the pre-mixed-model days (when random effects were not really 
treated as random), it was shown by Bartlett, and many others, that a 
transformation of Y (Y*) could have an approximately constant 
variance (i.e., a variance that was not a function of the mean) 

– Binomial, when Y is a proportion:
• Y* = arcsin(Y) = sin-1(Y) (angular transformation)

– Poisson, when Y is a count without an upper bound:
• Y* = Y (square-root transformation)

– Transformations may also cause other problems:
• One transformation may be appropriate to stabilize variances but a 

different transformation to obtain a linear (straight-line) relation 
between the response and a predictor; another transformation to 
obtain a symmetrical distribution

– One is changing the distribution to force it into a linear mixed model

Solutions for Fixed Effects
Effect trt Estimate Standard 

Error
DF t Value Pr > |t|

Intercept 0.4633 0.04494 3 10.31 0.0019
trt 1 -0.1667 0.06356 21 -2.62 0.0159
trt 2 -0.1833 0.06356 21 -2.88 0.0089
trt 3 -0.3167 0.06356 21 -4.98 <.0001
trt 4 -0.3133 0.06356 21 -4.93 <.0001
trt 5 -0.4300 0.06356 21 -6.77 <.0001
trt 6 -0.3800 0.06356 21 -5.98 <.0001
trt 7 -0.4333 0.06356 21 -6.82 <.0001
trt 8 0 . . . .

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
trt 7 21 11.25 <.0001

Es
tim

at
ed



Es
tim
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ed

 i

௜ߤ̂ ൌ ෠ߠ ൅ ߬̂௜ ଵߤ̂ ൌ መߠ ൅ ߬̂ଵ= 0.4633 ‐ 0.1667 = 0.2967
…
଼ߤ̂ ൌ መߠ ൅ ଼߬̂= 0.4633 + 0 =  0.4633 

Response (Y ): proportion diseased
Fit with a Linear Mixed Model (assume normal)

SAS (preview):
proc glimmix ;
class trt blk;
model prop = trt / s;
random blk;
lsmeans trt / cl;
run;

Case study 1

 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij ,e
2)   

bj ~ N(0, b
2)

H0: 1=2=…T

trt Least Squares Means
trt Estimate Standard 

Error
DF t Value Pr > |t| Alpha Lower Upper

1 0.2967 0.04494 21 6.60 <.0001 0.05 0.2032 0.3901
2 0.2800 0.04494 21 6.23 <.0001 0.05 0.1865 0.3735
3 0.1467 0.04494 21 3.26 0.0037 0.05 0.05320 0.2401
4 0.1500 0.04494 21 3.34 0.0031 0.05 0.05654 0.2435
5 0.03333 0.04494 21 0.74 0.4665 0.05 -0.06013 0.1268
6 0.08333 0.04494 21 1.85 0.0778 0.05 -0.01013 0.1768
7 0.03000 0.04494 21 0.67 0.5117 0.05 -0.06346 0.1235
8 0.4633 0.04494 21 10.31 <.0001 0.05 0.3699 0.5568

௜ߤ̂ ൌ ෠ߠ ൅ ߬̂௜

Response:
Proportion 
diseased

(assume normal), 
continued

• Statistical theory shows that the estimated mean 
proportions (even with unrealistic normality 
assumption) are unbiased estimates of the true 
proportions for each treatment across all blocks.

• However, the estimated standard errors (SEs) are 
all incorrect (by definition)!

• The SEs must be functions of the mean for binomial 
data [must be proportional to p(1-p)]

• Incorrect SEs will give incorrect tests of significance 
for treatment effects and lead to incorrect 
conclusionsDepending on 

the level of 
incidence,
one could: 
falsely declare 
differences as 
significant when 
they are not;
or
fail to declare 
true differences 
as being 
significantly 
different!
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Response:
Angular 

transformation 
(assume normal)

• Angular transformation (Y* = arcsin(proportion) ) 
results in a distribution with an approximately constant 
variance at different levels of the mean

• Thus, the constant SEs are reasonable for Y*
• However, the estimated means are for the angular 

transformation
• With significant block effect, back-transformation 

(inverse transformation) of the logit mean is not
equal to the estimated mean proportion for the 
treatment across the blocks

trt Least Squares Means (angular transformation)
trt Estimate Standard 

Error
DF t Value Pr > |t| Alpha Lower Upper

1 0.5707 0.06422 21 8.89 <.0001 0.05 0.4371 0.7042
2 0.5535 0.06422 21 8.62 <.0001 0.05 0.4200 0.6871

3 0.3805 0.06422 21 5.93 <.0001 0.05 0.2470 0.5141
4 0.3669 0.06422 21 5.71 <.0001 0.05 0.2333 0.5004
5 0.1785 0.06422 21 2.78 0.0112 0.05 0.04499 0.3121
6 0.2822 0.06422 21 4.39 0.0003 0.05 0.1486 0.4157
7 0.1186 0.06422 21 1.85 0.0789 0.05 -0.01493 0.2522
8 0.7482 0.06422 21 11.65 <.0001 0.05 0.6147 0.8818

data p; set p;
angular = 
arsin(sqrt(prop));

proc glimmix ;
class trt blk;
model angular = trt ;
random blk;
lsmeans trt / cl;
run;

Hypothetical 
(with b

2 =1.5)

True mean prop.
= 0.15

Mean of angular
= 0.365

Back-transform of 
mean 
= 0.127 (not 0.15)

Binomial data (some summary points)
• A linear (i.e., normal) mixed model fitted to binomial data can result in 

unbiased estimates of the mean proportions (incidence) across all blocks 
for each treatment
– However, all measures of variability (e.g., SEs) are wrong, which means 

that tests of hypotheses, confidence intervals, etc., are incorrect!
– Moreover, the mean proportion diseased for a treatment across the 

blocks is not the estimated probability of disease for an experimental unit 
receiving a treatment (explained soon)

• One wants the latter: the conditional probability of disease, pij, for 
the ij-th experimental unit (plot)

• A transformation of the proportions attempts to force the data to be normal 
with variance independent of the mean
– Analysis (with back-transformation) does not give the mean proportion 

diseased for a treatment across all blocks, and does not give the conditional 
probability of disease for the ij-th experimental unit

• Neither of the above approaches is satisfactory in terms of Type I and 
Type II errors, power, confidence interval coverage, etc.

• Consider a binomial distribution for Y, with p = 0.20 and n = 30, for an 
experimental unit (e.g., plot)

• e.g., probability of disease is p = 0.20, with n = 30 plants per plot
• So-called conditional distribution:  “Y | plot ~ Bin(p,n)”
• This conditional distribution could be for one of the treatments

• Consider the impact of random effects (blocks)
• With one treatment, each plot is a block
• Consider that p is randomly perturbed by the block, so that in 

some blocks p is higher than 0.20, and in other blocks p is lower 
than 0.20 
• On average, the perturbation is 0

• What is the distribution of Y (number), or Y/n (proportion), across all 
blocks for different degrees of perturbation of p (different variances) 
and different numbers of blocks (N; j = 1, …,N) 
• This distribution is the so-called marginal distribution

• What is the mean proportion for the marginal distribution, and how does 
it compare to p? (in an analysis, we want to recover p)

Simulation demonstration

N = 10

N = 100

N = 10,000, mean=0.238

N = 1,000,000, mean=0.238
Random 
block 
effect 

p=0.20 
n=30

Block 
st.dev.:
b=1

Never
becomes

approximately 
normal.

Estimated 
mean is never

equal to p.

Marginal
distribution

When we fit a 
model to data, 

we want to 
recover p

(0.20), not the 
marginal mean
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b = 0.5 b = 1.0

mean = 
0.211

b = 2.0

mean = 
0.301

mean = 
0.238

b = 3.0

mean = 
0.335

Marginal
distribution Mean of 

marginal 
distribution 
depends on 

random effect 
variance, and 

never equals p.

With very 
large N, one is 

seeing the 
theoretical 
marginal 

distribution.

p=0.20 
n=30
N=10,000

Two treatments
N = 10,000 
(n=30 each trt)

b = 1.0
p1 = 0.2, p2 = 0.8

p2 - p1 = 0.6 (true)

mean1 = 0.239
mean2 = 0.762

mean2 - mean1= 
0.523

Means are closer 
together for 
marginal distribution 
compared with the 
true probabilities. 

Marginal
distributions

Establishing some concepts
• Marginal distribution: “Y ~ Distribution()”

– The distribution of the observations (across all the levels of the 
random effects); may not be easily defined mathematically

– The distribution that we see: 
• Outcome of the (conditional) distribution of Y at the basic experimental 

unit (e.g., plot) coupled with distribution(s) of the random effects

• Conditional distribution: “Y | random effects ~ Distribution()”
– Distribution of Y conditional on the specific level of the random effects

• For example, the distribution of the number of diseased plants in a plot 
receiving a given treatment in the first (or second, third, etc.) block

• Typical distributions: normal, binomial, Poisson, gamma, beta
– Conditional distribution represents the stochastic process 

generating the data at the experimental unit (e.g., plot) level (thus 
interest should be parameters of this distribution)

• The marginal distribution is normal only if the conditional distribution 
is normal (in general, marginal distribution is asymmetric)

• The mean of the marginal distribution does not equal the mean of the 
conditional distribution, except for the normal distribution

• A very strong recommendation for GLMMs and against LMMs 
(ANOVA is a special case of a LMM)! Based on:
1. Some poor statistical results from LMMs (normality assumption) 

fitted to proportion data or to a transformation of proportion, and
2. When one is using a LMM (normality assumption), one is targeting

the mean of the marginal distribution (which depends on random-
effect variances) and not the probability of disease in an 
experimental unit, the so-called conditional probability
• The so-called target of inference is not p with an LMM analysis, but the 

target of inference is p with a GLMM analysis

• We do not fully agree with such a strong blanket recommendation
– There are circumstances where use of GLMM is overly challenging

• However, we agree that GLMMs have much to offer

“For binomial data, ANOVA with or without 
transformation should be considered unacceptable 
for scientific publication”

--Stroup (2015)

????
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GLMM: From Normal to Binomial Conditional 
Distribution (demonstrated for a RCB)

• Normal distribution (two parameters for conditional dist.):  and e
2

• Yij | bj ~ N(ij , e
2) 

• Binomial distribution (one parameter for conditional dist.): p
• p: Probability of trait, such as disease (e.g. probability that a leaf, 

plant, etc., is diseased) – parameter (analogous to  of normal)
• Yij | bj ~ Bin(pij, n)   

Note: Variance of Y: np(1-p), fully defined by n and p [ npij(1-pij) ]
There is no separate variance parameter! (more on this later)
(For Poisson [count] data, there also is no variance parameter).

 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

 ij =  + i + bj

pij = ???
Yij | bj ~ Bin(pij, n)   
bj ~ N(0, b

2)

Binomial: Linking the linear predictor () to p

One could directly link the two (pij = ij), so that pij = ij =  + i + bj

However, this usually is not a good idea:

p is bound by 0 and 1, but predictions based on i and bj could include 
values less than 0 or greater than 1

There is usually a nonlinear relationship, with small changes in p near the 
limits (0 and 1) being on the same scale as large changes in p near the 
center of the probability scale (0.25-0.75)

Statistical theory based on the form of the distribution (not covered here) 
indicates that  is linked in a linear manner to a function of p:     g(p) = 

g(pij ) = ij =  + i + bj

g(p) is known as the link function, because it links  to p
The link function is a transformation of a parameter, not a 
transformation of a random variable (do not confuse these two)

Generalized Linear Mixed Model (GLMM) 
for binomial data (a conditional model)

Link function, g(p):
logit(p), probit(p), complementary log-log function [CLL(p)], etc.

We will mostly stick with logit:  logit(p) = ln[p/(1-p)]

Linear predictor for RCB:
logit(pij ) = ij =  + i + bj

Model:
 ij =  + i + bj

logit(pij) =  ij

Yij | bj ~ Bin(pij, n)   
bj ~ N(0, b

2)

Obtaining p from  :

pij = 1/(1+ exp(- ij)
Or more generically as:

pij = logit-1( ij)
Or even more generically as the 
inverse-link function:

pij = g-1( ij)

Case study 1: Phomopsis leaf blight
 ij =  + i + bj

logit(pij) =  ij

Yij | bj ~ Bin(pij, n)   
bj ~ N(0, b

2)
Yij: Number of diseased leaflets for experimental unit  

‐‐ treatment i and block j (binomial)
n: Number of observed leaflets in experimental unit
pij: Conditional probability of disease 

for treatment i and block j 

: constant (“intercept”)

i: Effect of the i‐th level of treatment on logit of p

bj: Effect of the j‐th level of block on logit of p

Note:  + i is the logit of the conditional 
probability of disease for i‐th treatment (at 
the typical value of the block effect (0))

Note: 
pi = logit-1( + i ) 

= g-1( + i ) 
is the conditional 
probability of disease for a 
plot (experimental unit) 
receiving treatment i, at 
the typical (average) value 
of the block effect (0).  

This is not the average 
proportion across blocks!Model naturally and automatically takes 

into account that var(Yij ) = n pij(1-pij)
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proc glimmix;

class block treat;

model Y/n = treat / dist=binomial link=logit;

random block;

run;

Model statement gives 
response variable (Y; 
number diseased here) 
and number observed 
(n) in experimental unit.

Model statement also gives 
all the fixed-effect terms in 
the linear predictor (), and 
specifies the distribution
and link (the intercept [] is 
there by default)

One or more random
statements are used to 
specify the random effects 
in the linear predictor () 
and the distributional 
properties of the random 
effects (by default)

 ij =  + i +  bj

logit(pij) =  ij

Yij | bj ~ Bin(pij, n)   
bj ~ N(0, b

2)

Model fitting is based on a version of 
maximum likelihood (ML)

Discussed later.

CaseStudy1.sas

GLMM: Dealing with effects “clustering”
Normal:
 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

Binomial:
 ij =  + i +  bj

logit(pij) =  ij

Yij | bj ~ Bin(pij, n)   
bj ~ N(0, b

2)

With normal 
distribution, there is 
a residual variance 
term to account for 
the unique (random) 
contribution of each 
experimental unit on 
Y (variation not 
accounted for by 
main effects of block 
and treatment).

With binomial 
distribution, there is
no residual variance 
term. Variance at the 
experimental-unit 
scale is fully defined 
as being exactly 
npij(1-pij). 

• This naïve approach might make sense if the 
experimental unit in each block was the leaflet and not
the plot. 

• In reality, there is clustering of observations (all n
leaflets clustered within the actual experimental unit) 

• Each plot may have a unique (random) effect on the 
probability of a leaflet being diseased, even after 
accounting for treatment and block. Or, equivalently, 
the treatment effect varies randomly with plot. 

• This needs to be taken into account.
• There are several ways (we focus on two)

Adjustment 1: Conditional GLMM
• One (modern) way to account for data clustering and unique 

contributions of experimental units (ij combinations [plots]) is to add 
a random effect to the linear predictor, vij ~ N(0,v

2)
– Equivalent to a (random) interaction of block and treatment (unique ij)

• The expanded GLMM: fully conditional model (new terms in black)
– Y is conditionally binomial (conditional on all the random effects)

• That is, Y has a true conditional distribution (a plausible stochastic 
model for the generation of the observed data)

• Note that the model now has one more 
random-effect term, analogous to the residual 
(eij) with a normal distribution

• The ij subscript identifies that each plot 
(experimental unit) has a unique effect

proc glimmix; /* minimal SAS code */
class block treat;
model Y/n = treat / dist=binomial link=logit;
random block block*treat;
run;

 ij =  + i +  bj + vij

logit(pij) =  ij

Yij | bj ,vij ~ Bin(pij, n)   

bj ~ N(0, b
2)

vij ~ N(0,v
2)
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Adjustment 2: Quasi-likelihood
• One consequence of a unique (random) effect of each experimental 

unit (ij), or of clustering, in general, is that the variance will be larger
than specified by the nominal conditional distribution

• Var(Yij | bj ) > npij(1-pij)
– Known as over-dispersion (or extra-binomial heterogeneity)

• One can accommodate this over-dispersion by specifying (defining):
• Var(Yij | bj) = npij(1-pij)

– : over-dispersion scale parameter, analogous to a form of 
residual variance with normal distribution (generally, > 1)

• However, the conditional distribution is no longer binomial
– In fact, the it is possible that no legitimate statistical distribution can be 

defined that has the properties of the binomial (for probability of Y=0, 1, 
etc.) and has the larger variance

• We can think of the new “distribution” as a quasi-distribution
– Thus, one uses a so-called quasi-likelihood instead of a (true) 

likelihood to fit the model
• Quasi-likelihood defined in terms of expected values (means) and 

variances only

Adjustment 2: Quasi-likelihood, 
continued

• Clustering accounted for by use of over-dispersion scale parameter 
• Var(Yij | bj) = npij(1-pij)
• : over-dispersion scale parameter

• One is not targeting the conditional p for the basic experimental unit 
(e.g., plot), but is targeting p for a higher level in the hierarchy. This is 
sort of a hybrid approach (once very common before modern GLMMs).

 ij =  + i + bj

logit(pij) =  ij

Yij | bj ~ quasi-Bin(pij,n; )   
bj ~ N(0, b

2)

proc glimmix; /* minimal SAS code */
class block treat;
model Y/n = treat / dist=binomial link=logit;
random block;
random _residual_;
run;

There are other possible adjustments not covered in this workshop. See the 
supplemental slide at the end for some guidance.

CaseStudy1.sas 
(continued)

Labels – Labels – Labels: Be Careful
• In general, there is a great deal of inconsistency in the labels given to 

GLMMs. Different authors may use different names. 
• For instance, two of the co-developers for GLMM methods (Breslow & 

Clayton) used the term “Maximum Quasi-likelihood” (MQL) for the 
situation where  is not estimated (i.e., where  = 1) (there is a reason 
which we do not cover here)
• We follow Stroup (2013), the authority on GLMMs, and use the label 

quasi-likelihood for the situation when one estimates  (when one no 
longer has a true likelihood).

• Despite labeling confusion or inconsistency, one needs to distinguish:
1. True conditional GLMM (true likelihood or true conditional distribution)

Model targets p (location parameter) for conditional distribution 
(e.g., for the basic experimental unit (plot) when this term is in 
the model)

2. Quasi-likelihood (over-dispersion), where one does not have a true 
likelihood or true conditional distribution

Model does not target the conditional p for the basic 
experimental unit (such as the plot). Rather, it is more of a 
hybrid approach.
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Random Effects, revisited
• Random effects arise from:

– Random selection of the levels of factor studied (when the factor 
level effects come from a distribution of effects)

– Clustering of data
• Cluster (or subject): collection of observations that are 

somehow stochastically related (correlated)
• Experimental design and type of data collection “create” 

(induce) the “clustering”
• Mechanisms for clustering:

– Splitting: randomly assigning levels of one factor 
within levels of another factor

– Sampling and sub-sampling (nesting of sampling units)
» Where the experimental unit or unit of replication is 

‘larger’ than the sampling unit (the unit of observation)
– Repeated observations over time (or space)

Block (b) 1 Block (b) 2 Block (b) 3

1 3 32 312 1 2

Treatment () Treatment () Treatment ()

Splitting of experimental units 
(continued): Randomized Complete Block

Each block is a cluster (randomly assigning treatments within each cluster)

Variation among blocks (i) and among 
plots (ij) (the experimental units)

j:

i:

Block (b) 1 Block (b) 2 Block (b) 3

1 3 32 312 1 2

Whole Plot () Whole Plot () Whole Plot ()

Sub 
Plot 
(ß) 2 1 2

2 2 11 1 1

2 11

2

2 1

2

1

2

Splitting of experimental units:
Split Plot (with blocks)

Each block is a cluster (with random assignment of “whole plot” levels), and each 
whole plot is a cluster (with random assignment of “sub-plot” levels)

Variation among blocks (k), among whole plots (large experimental units), and among sub-plots.
(Whole plot: ik combination. Sub-plot: ijk combination).

k:

i:

j:

Case study 2: Split plot with blocks
• Effects of wheat cultivar (variety) and fungicide-timing 

treatment on incidence of Fusarium head blight (FHB)
• from D’Angelo et al. (2014 Plant Disease 98: 1387-1397)

• Split plot with blocks
– Three blocks (bk) ( k = 1, …, 3)
– Whole plot factor: wheat cultivar (i) ( i = 1, 2), 

randomized within each block 
– Sub-plot factor: fungicide timing relative to anthesis

(j) ( j = 1, …,5), randomized within each whole plot
• Control, spray at anthesis (flowering), or 2, 4, or 6 

days after anthesis

• Response variable: spike disease incidence
– Number of diseased spikes (Y) out of n observed spikes in each 

experimental unit (plot: ijk combination)
• n varies from 70 to 100

• Analysis: generalized linear mixed model (naïve; conditional GLMM; 
quasi-likelihood)
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Split Plot Design (with blocking)

Yijk: response (dependent variable) for the i-th level of whole-plot factor, j-th
level of sub-plot factor, and k-th block

: constant (“intercept”)
i: Effect of the i-th level of whole-plot factor
j: Effect of the j-th level of sub-plot factor
()ij Interaction effect (effect of i-th whole plot and j-th subplot)

bk: Random effect of the k-th level of block
vik: Random effect of whole-plot experimental unit (ik-th experimental unit), 

equivalent to interaction of block and whole-plot
eijk: Random effect of sub-plot (ijk-th) experimental unit [residual or conditional 

dist. variance] equivalent to interaction of block, whole-plot and sub-plot

Normal Y (LMM)
ijk =  + i + j + ()ij + bk + vik

ijk =  ijk

Yijk | bk,vik ~ N(ijk , e
2)   

bk ~ N(0, b
2)

vik ~N(0, v
2)

Normal Y (LMM)
Yijk =  + i + j + ()ij

+ bk + vik + eijk

bk~N(0,b
2)

vik~N(0, v
2)

eijk ~N(0, e
2)

Split Plot Design (with blocking)

Yijk: response (dependent variable) for the i-th level of whole-plot factor, j-th level of 
sub-plot factor, and k-th block

: constant (“intercept”)
i: Effect of the i-th level of whole-plot factor
j: Effect of the j-th level of sub-plot factor
()ij Interaction effect (effect of i-th whole plot and j-th subplot)
bk: Random effect of the k-th level of block
vik: Random effect of whole-plot experimental unit (ik-th experimental unit)
uijk: Random effect of sub-plot experimental unit [analogous to a normal residual]

Binomial Y (GLMM)
ijk =  + i + j + ()ij

+ bk + vik + uijk

logit(pijk ) =  ijk

Yijk | bk ,vik , uijk ~ Bin(pijk ,n)   
bj ~ N(0, b

2)
vik ~N(0, v

2)
uijk ~N(0, u

2)

Binomial Y (naïve GLMM)
ijk =  + i + j + ()ij

+ bk + vik

logit(pijk ) =  ijk

Yijk | bk,vik ~ Bin(pijk ,n)   
bk ~ N(0, b

2)
vik ~N(0, v

2)

Split Plot Design (with blocking)
Binomial Y (condional GLMM)
ijk =  + i + j + ()ij

+ bk + vik + uijk

logit(pijk ) =  ijk

Yijk | bk ,vik , uijk ~ Bin(pijk ,n)   
bj ~ N(0, b

2)
vik ~N(0, v

2)
uijk ~N(0, u

2)

Binomial Y (naïve GLMM)
ijk =  + i + j + ()ij

+ bk + vik

logit(pijk ) =  ijk

Yijk | bk,vik ~ Bin(pijk ,n)   
bk ~ N(0, b

2)
vik ~N(0, v

2)

Binomial Y (quasi-likelihood)
ijk =  + i + j + ()ij

+ bk + vik

logit(pijk ) =  ijk

Yijk | bk,vik ~ quasi-Bin(pijk , n; )   
bk ~ N(0, b

2)
vik ~N(0, v

2)
Conditional variance 
= npijk(1-pijk)

CaseStudy2.sas

Naïve GLMM
proc glimmix data=sp;
class blk var trt ;
model diseased/n = var|trt / dist=binomial link=logit;
random blk blk*var;
run;

Conditional GLMM (with unit-level variation)
proc glimmix data=sp;
class blk var trt ;
model diseased/n = var|trt / dist=binomial link=logit;
random blk blk*var blk*var*trt;
run;

Quasi-likelihood for over-dispersion
proc glimmix data=sp;
class blk var trt ;
model diseased/n = var|trt / dist=binomial link=logit;
random blk blk*var;
random _residual_;
run;
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Fitting GLMMs to data
• GLMMs are complex, and there is no universally accepted best 

method to fit GLMMs to data, although all methods rely on the 
principles of maximum likelihood

• Challenge: there is no analytical solution (equation) for the marginal 
distribution (likelihood) of the data (i.e., the distribution that one sees)

Marginal
distribution (matrix 

notation); e.g.,
Yij ~ “Distribution”

Conditional distribution 
(e.g., binomial).

Conditional on random 
effects (b);

e.g., Yij | bj ~ Bin(pij, n)   

Distribution of random 
effects (b; e.g., block 

effect, block x treatment, 
etc.), usually normal;

e.g., bj ~ N(0, b
2)

• Two broad approaches based on the likelihood principle, 
plus Bayesian approaches (latter not covered here):
1. Approximate the GLMM model (known as 

“linearization” or “pseudo-likelihood”)
2. Approximate the marginal likelihood (known as 

Laplace approximation or Quadrature)

All estimation 
methods are iterative 
(singly or doubly).

Fitting GLMMs: First Approach
• Linearization or pseudo-likelihood (do not confuse with quasi-likelihood)

– Construct pseudo-response-variable (“pseudo-data”) based on the model and 
the properties of the assumed conditional distribution (e.g., binomial)

– Iteratively estimate model terms (e.g., i, b
2) by maximizing the marginal 

likelihood of the pseudo-data, until convergence (see Supplemental Slides)
• Can be used to fit true GLMMs (true conditional distributions) and quasi-

likelihood (over-dispersion;  ) models 
– A very flexible approach with good convergence properties (and fast)!

• Can handle large (or very small) data sets, and complex models
• Default in GLIMMIX (method=rspl): for true GLMMs and quasi-likelihood
• Can be done only for quasi-likelihood (estimate ) with PQLglmm {MASS} in R

– That is, a  parameter is always estimated, whether one wants it or not!
– WARNING: If you want to include a unit-level random effect in model (e.g., uij

for RCBD), algorithm attempts to estimate this random effect and the 
residual scale parameter (giving nonsensical results—very bad practice!)

– Many other restrictions on the models that can be fitted with R 
• Originally thought to produce overly biased parameter estimates (especially 

with small n), new research since 2010 shows that linearization performs 
well, in general, and is a good choice for the default method

Fitting GLMMs: Second Approach
• Maximize the approximate marginal likelihood of Y (of the actual data, not 

of the pseudo-data) with the Laplace function or with Quadrature (use 
Laplace or quadrature to approximate the likelihood)
– Quadrature can be slow, or impossibly slow, for moderate-to-large 

datasets and multiple factors, or can require too much computer memory
– Laplace is almost as accurate as Quadrature, and is much faster and 

requires far less computational time
– Can only be used for true GLMMs, i.e., those with actual likelihoods and 

actual distributions (not for quasi-likelihood; cannot estimate )
– Only method to truly evaluate goodness of fit of a model (can compare 

models with different random effects using AIC statistics)
– Best method to evaluate confidence intervals for variances (when this is 

an objective) -- Must remove a random effect if its estimate is zero!
• Obtained with method=laplace or method=quad in GLIMMIX of SAS
• Default with glmer {lme4} in R

– Thus, lme4 cannot be used for any quasi-likelihood models (one cannot 
estimate ), and is restricted to generally small GLMM problems (can 
become impossibly slow)

Go to CaseStudy1.sas
to see Laplace and 

quadrature
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An overlooked challenge
• With binomial data, GLMM software properly handles Y values equal to 

0 and n (remember, the link function [e.g., logit] is for the parameters 
[e.g., p], not for the response variable)
– With Poisson data, GLMM software properly handles Y values equal to 0

• There is a problem when all the observations (all the replicate or block 
values) for a treatment equal 0 (or all equal n)
– The estimate of the linear predictor (e.g., logit) for this treatment “tries to 

go” to minus infinity (-), with a corresponding standard error (SE) 
“trying to go” to positive infinity (+): this gives an estimated inverse-link 
(p) very close to 0

– This results in meaningless hypothesis tests and confidence intervals!
• Call this the “all-zero problem”
• No easy solution

An overlooked challenge, continued
• No easy fix for the “all-zero problem” based on theory

– If one knew the treatment must give all zeros, you could remove it
• Gets tricky with factorials 

– More likely, one needs an ad hoc adjustment
1. Add a small positive number (say, c = 0.5) to the 0 count value for 

one of the reps of just the treatments with this problem (with a 
corresponding increase in n)

2. Add a small positive number to all observations (including the non-
zeros), with corresponding increase in n

3. Add a small positive number (0.5) to all zeros in the dataset (and 
increase in n)

– Use y’ and n’ (for one of the above choices)

ᇱݕ ൌ ݕ ൅ ܿ ൌ ݕ ൅ 0.5
݊ᇱ ൌ ݊ ൅ 2ܿ ൌ ݊ ൅ 1

Go to CaseStudy4.sas

Block (b) 1 Block (b) 2 Block (b) 3

1 3 32 312 1 2

Treatment () Treatment () Treatment ()

Sub-sampling within experimental units:
Randomized Complete Block

Each block and each plot (unique ij combination) comprises a cluster, with 
nesting of sampling units within plots (unique ijk combination)

Variation among blocks (j), among plots (ij) (exper. units), and among samples within plots (ijk)

i:

j:

k:

Case study 3: RCB plus sub-samples
• Same experiment as case study #1: Effect of fungicide treatment 

on Phomopsis leaf blight of strawberry
– Explicitly account for sub-sampling within plots (ij combinations)

• Randomized complete block design (RCBD)
– Four blocks ( j = 1, …, 4), with eight treatments ( i = 1, …, 8) 

randomized within each block 
– Five sub-samples of n = 15 leaflets each in each experimental 

unit (each plot; each ij combination); k = 1, …, 5
• Previously considered the total of n = 75 leaflets

– Block, experimental unit (plot), and sampling unit (within plot) are 
considered random effects,  and treatment a fixed effect

• Response variable: leaflet disease incidence
– Number of diseased leaflets (Y ) out of n = 15 leaflets in each 

sub-sample in each experimental unit (plot)
• Analysis: generalized linear mixed model Probably will not 

have time to cover
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Randomized Complete Block with sub-sampling
Normal Y (LMM)
ij =  + i + bj + vij

ij =  ij

Yijk | bj ,vij ~ N(ij , e
2)   

bj ~ N(0, b
2)

vij ~N(0, v
2)

Normal Y (LMM)

Yijk =  + i + bj + vij+ eijk

bj ~N(0,b
2)  

vij ~N(0, v
2)  

eijk ~N(0, e
2)

Yijk: response (dependent variable) for the 
k-th observation (sub-sample) within treatment i and block j

: constant (“intercept”)
i: Effect of the i-th level of treatment on Y
bj: Random effect of the j-th level of block on Y
vij: Random effect of the ij-th experimental unit (plot) on Y [same as 

block*treatment or residual when no sub-sampling]
eijk: Error associated with k-th observation in treatment i of block j

[residual] – random sampling error (same as 
block*treatment*sampling-unit interaction)

Randomized Complete Block with sub-sampling

Normal Y (LMM)
ij =  + i + bj + vij

ij =  ij

Yijk | bj ,vij ~ N(ij , e
2)   

bj ~ N(0, b
2)

vij ~N(0, v
2)

Binomial Y (GLMM 1: Naïve)
ij =  + i + bj + vij

logit(pij ) =  ij

Yijk | bj ,vij ~ Bin(pij , n)   
bj ~ N(0, b

2)
vij ~N(0, v

2) Naïve: Duplicates 
results from GLMM 
of pooled data (case 
study #1). No sub-
sampling results

Randomized Complete Block with sub-sampling
Binomial Y (GLMM 1)
ij =  + i + bj + vij

logit(pij ) =  ij

Yijk | bj ,vij ~ Bin(pij , n)   
bj ~ N(0, b

2)
vij ~N(0, v

2)

Binomial Y (GLMM 2)
ijk =  + i + bj + vij + uijk

logit(pijk ) =  ijk

Yijk | bj ,vij ,uijk ~ Bin(pijk , n)  
bj ~ N(0, b

2)
vij ~N(0, v

2)
uijk ~N(0, u

2) Binomial Y (quasi-likelihood)
ij =  + i + bj + vij

logit(pij ) =  ij

Yijk | bj ,vij ~ quasi-Bin(pij , n; )   
bj ~ N(0, b

2)
vij ~N(0, v

2)
Conditional variance 
= np(1-p)

Naïve: Duplicates results 
from GLMM of pooled 
data (case study #1)

CaseStudy3.sas
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Summary
• Generalized linear mixed models (GLMMs) can accommodate 

observations from a large number of (conditional) statistical distributions, 
collected using a wide range of experimental and treatment designs
– GLMMs can be fitted with “linearization” (pseudo-likelihood) methods or with 

Laplace/quadrature likelihood methods (the latter for true cond. distributions)
• GLMMs can target the mean or location parameter (e.g., p) of the 

conditional distribution, which is a major advantage over linear mixed 
models, which target the mean of the marginal distribution across all 
levels of the random effects (the latter depending on the variances of the 
random effects with non-normal data)

• Careful consideration of experimental and treatment design will indicate 
the proper GLMM to fit to the data
– For data that nominally have a binomial (or Poisson) discrete conditional 

distribution, investigators should consider adding an experimental unit-level 
term in the link function (for a true conditional GLMM), or adding a scale-
parameter () for a quasi-likelihood analysis

• With GLMMs, one must pay special attention to conditional versus 
marginal distributions, data- versus model-scale inference, (e.g., logit vs. 
p), and the approach used for fitting models to data

Other references
• In addition to the books and the Stroup (2015) paper shown earlier, see:

– Madden, Turechek, & Nita (2002). Evaluation of generalized linear mixed 
models for analyzing disease incidence data obtained in designed 
experiments. Plant Disease 86: 316-325. 

• Sub-sampling problem (see Case study 3). Article is now a bit dated, and the 
model labels are not quite the same as used here. This was written before PROC 
GLIMMIX was developed; the analyses (either for true conditional GLMM or for 
quasi-likelihood over-dispersion, and even for more complex analyses not 
covered in workshop) were conducted using a specialized macro in SAS. 

• The GLIMMIX procedure replaced the macro, and added a great deal more 
functionality and model-fitting methods.

• In 2002, we were slightly in favor of quasi-likelihood. Now we slightly favor true 
conditional GLMMs (based on the most recent statistical research).

– Kriss, Paul, & Madden, L. V. (2012). Characterizing heterogeneity of disease 
incidence in a spatial hierarchy: A case study from a decade of observations 
of Fusarium head blight of wheat. Phytopathology 102: 867-877.

• For observational (survey data). Emphasis on variances and BLUPs.
– Bolker, et al. (2008). Generalised linear mixed models: A practical guide for 

ecology and evolution. Trends in Ecology and Evolution 24(3): 127-135.
• Good article, but the authors are too critical of penalized- and quasi-likelihood estimation 

methods based on recent statistical research. Best methods depends on circumstances.

A few supplemental slides follow
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• Y ~Bin(p,n)
Y: Number of individuals with a trait (e.g., disease) in an experimental 

unit or sampling unit (e.g., plot, plant) – response
y: specific value of the random variable Y (1, 2, …, n)

n: Number of individuals observed for the trait (e.g., plants)
p: Parameter: probability of trait, such as disease (e.g. probability that a 

leaf, plant, etc., is diseased) – parameter (analogous to  of normal)
Variance of Y : np(1-p), fully defined by n and p (no separate parameter)

Background on binomial distribution

After some algebraic rearrangement, the log of the distribution function 
(or log of the likelihood when data are substituted) can be written as the 
following (note the logit within the formula):

N = 100,000
p = 0.2
b = 1

n=10
mean = .240

n=100
mean =.239

n=1000
mean =.239

More on marginal 
distributions:

Increasing n (in plot) does 
not lead to normal 

distribution 

p = 0.3
mean = 0.330

p = 0.05
mean = 0.074

p = 0.1
mean = 0.133

p = 0.2
mean = 0.239

p = 0.01
mean = 0.016

p = 0.99
mean =0.984

p = 0.9
mean =0.868

p = 0.8
mean =0.761

p = 0.5 mean =
0.499

n=30, N=10,000, b=1

More on marginal 
distributions (only 

at p=0.5 is there 
symmetry)

Incidence:
mean = 0.30, 
skewness=0.84

Transformed:
Mean_angle = 0.52, 
mean* = 0.25
Skewness=0.53

Does transformation of Y help? NO!
Binomial, with normal random subject effect (b =2). p=0.2, n=30.
N=100,000 blocks.

mean* is estimated back-transformation (inverse transformation), 
which does not equal p and does not equal mean of marginal 
distribution of Y/n

Skewness of transformed is not 0.

Compromise (a marginal effect). 
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N = 10,000
Block st.dev.: b=1

Plot conditional  = 40, 
Plot conditional st.dev.: 
e=1 

Estimated mean= 40

Marginal distribution (with normal 
conditional distribution for plot)

• Only with Normal conditional distribution (say, for the plot [experimental 
unit]) does the conditional mean equal the marginal mean 

• Only for the Normal conditional distribution does the marginal distribution 
have the same form as the conditional distribution.

Different model forms (preview)

 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

 ij =  + i + bj

logit(pij) =  ij

Yij | bj ~ Bin(pij , n)   
bj ~ N(0, b

2)

Yij =  + i + bj + eij

bj ~N(0,b
2), 

eij ~N(0, e
2)

Traditional approach for 
normal data

Expectation-based 
approach for normal 

Equivalent 
for normal

Only the 
expectation 
approach provides 
an avenue to 
model non-normal 
data (such as the 
conditional 
binomial shown 
here). 

In the next several 
slides, we derive 

the model structure 
that will work with 
non-normal data 

(especially 
binomial).

Be patient!

Above cannot be used for non-
normal data (there is no sensible 
concept of an additive non-normal 
residual)

Expected values (means), etc.: RCB

Yij =  + i + bj + eij ,   bj ~N(0,b
2), eij ~N(0, e

2)

Look at expectations (means), E(), and variances, Var():
E(Yij )   = E() + E(i ) + E(bj ) + E(eij ) 

=     +     i +     0 +     0 =  + i
Var(Yij) =     0   +    0    + Var(bj ) + Var(eij )          

= b
2       +     e

2 = b
2 + e

2

Note: the expected value for the random effects is 0, by definition
Note: the variance of a fixed effect is 0, by definition

Marginal distribution result: Yij ~ N(+i , b
2+e

2)

Now consider the expectation of Y for an individual block (for the j-th
block). This is the conditional expected value or conditional mean.

Derivation in next several slides is applicable when all variables have normal distributions

Conditional model (conditional means): RCB
Yij =  + i + bj + eij ,   bj ~N(0,b

2), eij ~N(0, e
2)

Now: the expectation (mean) conditional on random block effect (the 
conditional expectation), E(Yij |bj ) .
That is, consider the expected value of Y for a specific block (e.g.,   j-th
block). Then, the random block effect is locked in at the specific level.

E(Yij | bj) = E() + E(i ) + E(bj ) + E(eij )             
=     +    i +   bj +   0 =  + i + bj

Var(Yij | bj)  =   0   +    0     + 0 + Var(eij )       = e
2

So,  Yij | bj ~ N(+i+bj , e
2)   and   bj ~N(0,b

2)

Conditional distribution result, 
or Conditional model result



7/18/2016

19

Conditional model, continued
Yij =  + i + bj + eij ,   bj ~N(0,b

2), eij ~N(0, e
2)

E(Yij |bj )=  + i + bj Yij | bj ~ N(+i,+bj , e
2),  bj ~N(0,b

2)
• Note: Conditional mean includes everything except the residual!
• The additive residual variance becomes the variance of the 

conditional distribution.

New symbol: Define ij as the expectation (mean) of the response 
variable for the i-th treatment and j-th block (a function of the 
treatment and block); this is the conditional expectation.

ij = E(Yij | bj )
Now, write the RCB model as:

ij =  + i + bj , Yij | bj ~ N(ij , e
2),  bj ~ N(0, b

2)

There are now two equivalent ways of writing the same model (for 
normally distributed data).

Model formulations for normal data
Yij =  + i + bj + eij

bj ~N(0,b
2)

eij ~N(0, e
2)

ij =  + i + bj

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

Describe Y with additive error, 
obtain expected values (means) 
from the equation for Y (and 
definitions of random effects)

Describe the conditional expected value 
for the experimental unit, and the 
distribution of Y for the experimental 
unit (conditional on any random 
effects).
Then define the distribution of any 
random effects.

Two formulations are equivalent (identical) here. But only the 
second approach for defining the model provides the framework 
for non-normal data.
An additive residual does not work with non-normal distributions
(the residual does not have an easy-to-define distribution when the 
conditional distribution of Y is not normal).

Model formulations for normal data
ij =  + i + bj

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

A general symbol for the linear 
predictor is  (“eta”)

ij =  + i + bj

or

ij = ij =  + i + bj

Need to add another symbol (sorry)!
The right-hand side of the model (without 
the residual term [+i+bj]) is known as the 
linear predictor. Based on treatment 
design and experimental design.

It meets the statistical criterion of being linear
It describes how predictor variables 
(covariates, factors, …) determine the mean or 
a function of the mean

 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

Excessive 
notation for 
normal, but 
not for non-

normal 
distributions

Model formulations for normal data
ij =  + i + bj

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

A general symbol for the linear 
predictor is 

ij =  + i + bj

Need to add another symbol!
The right-hand side of the model 
without the residual term (+i+bj ) is 
known as the linear predictor.

It meets the statistical criterion of being linear
It describes how predictor variables 
(covariates, factors, …) determine the mean or 
a function of the mean

 ij =  + i + bj

ij =  ij

Yij | bj ~ N(ij , e
2)   

bj ~ N(0, b
2)

Seems excessive for normal data, but 
is required for non-normal data (as 
we shall see)



7/18/2016

20

Adjustments (summary)
• True GLMM (using likelihood principles)

– Add a random effect for the basic experimental unit [analogous to a residual term 
(vij), but is a true random effect]

• Hybrid approach using quasi-likelihood
– Start with a true GLMM (e.g., fixed effects of treatment and random effects of 

block), and specify a different (larger) variance for the conditional distribution (not 
allowed by the distribution) – no longer a true distribution or true GLMM

• Use a true GLMM (e.g., fixed effects of treatment and random effects of 
block), but with a different conditional distribution (& no vij unit-level term)

– i.e., start with naïve GLMM and then switch to a different conditional distribution
– e.g., beta-binomial conditional dist. (for over-dispersion) instead of binomial
– GLIMMIX does not allow for this conditional distribution, but Stroup (2015) gives a 

trick to achieve almost the same result (using a beta conditional distribution with 
disease proportion as the response variable)

• Trick only works correctly if there are no 0s or 1s (all 0s and 1s are converted 
to missing values!). Stroup does not mention this – BE CAREFUL!

• Generalized estimating equations (GEE) approach: quasi-likelihood
– Remove (i.e., “correct for”) the random effects of block (bj) and plot (vij), and fit 

model with quasi-likelihood – all fixed effects, with over-dispersion terms
• Popular in some fields from the pre-true GLMM days (see Stroup 2015)---

---
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Fitting GLMMs to data, continued
• First approach: So-called linearization or pseudo-likelihood (not to 

be confused with quasi-likelihood)
– “Doubly iterative approach”(LMM fitting is iterative, in general)
– In outer iteration step, construct pseudo-response-variable (pseudo-data) 

based on the model (fixed and random effects) and the properties of the 
assumed conditional distribution (e.g., binomial)

– In inner iterations, fit weighted LMM to the pseudo-data
– At (inner) convergence, update the pseudo-data in an outer iteration step 

(based on the GLMM and conditional distribution)
– Continue with new inner iterations, and then outer iterations, and so on, 

until there is convergence with the outer iterations
• Can be used to fit true GLMMs (true conditional distributions) and 

quasi-likelihood models 
– A very flexible approach with good convergence properties (and fast)!
– Default in GLIMMIX (method=rspl): for true GLMMs and quasi-likelihood
– Can be done only for quasi-likelihood models with PQLglmm {MASS} in R

• WARNING: If you want to include a unit-level random effect in model (e.g., 
uij), you estimate this random effect and the  residual scale parameter 
(giving nonsensical results—bad statistical practice!)

Fitting GLMMs to data, continued
• Second approach: maximize the approximate marginal likelihood of Y

(of the actual data, not the likelihood of pseudo-data) with the Laplace
function or with Quadrature 
– Singly iterative, but can be very slow 

• Quadrature can be impossibly slow for moderate-to-large datasets and 
multiple factors, or require too much computer memory

– Quadrature is technically more accurate, but Laplace is quite accurate
– Can only be used for true GLMMs, i.e., those with actual likelihoods and 

actual distributions (not for quasi-likelihoods) (cannot estimate )
– Only method to truly evaluate goodness of fit of a model (can compare 

models with different random effects)
– Best method to evaluate confidence intervals for variances (when this is 

an objective)
• Must remove a random effect if its estimate is zero! Very important.

– Obtained with method=laplace or method=quad in GLIMMIX
– Default with glmer {lme4} in R 

• Thus, lme4 cannot be used for any quasi-likelihood models (one cannot 
estimate ), and is restricted to generally small GLMM problems

Fitting GLMMs to data, summary
• “Early” statistical research (mid-1990s) suggested that the linearization 

method could lead to biased parameter estimates (such as treatment 
effects) when n (number of observations in a cluster for binomial data) 
was small
– For a while, there were many recommendations against this approach
– However, detailed simulation studies by Stroup and others since 2010 show 

that the linearization approach holds up well, in general
• Linearization is much faster, and can handle much larger problems

– The Laplace/Quadrature approach is preferred when n is very small (< 10) 
and when one is trying to compare models for goodness of fit

In SAS/GLIMMIX (default = linearization: method=rspl)
• Linearization (pseudo-likelihood): true GLMM and quasi-likelihood
• Laplace/Quadrature: true GLMM only (no quasi-likelihood)

Many restrictions in R (with current software, which is always changing)
• Can only fit quasi-likelihood models using linearization/pseudo-likelihood 

(no true conditional GLMMs can be fitted): PQLglmm {MASS}
• Can fit true GLMMs only using quadrature/Laplace (which means relatively 

small data sets): glmer {lme4} 
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Mixed models (LMM, GLMM)
• A very flexible and general approach to deal with fixed and 

random effects, and, in particular, account for the effects of 
experimental design (clustering, in general) on response variables 

• Mixed models can accommodate:
– Data correlated over time or over space

• Temporal or spatial repeated measures
– unequal variances, 
– missing values, 
– Lack of “balance”; that is:

• not all treatments need to be in each block, 
• number of samples (observations) in each experimental unit can be 

different
– multiple sources of variation (i.e., multiple random effects), 
– complex experimental designs (including restrictions of 

randomization), 
– covariance analysis (both factors and continuous co-variables)
– BLUPs (prediction) and many other features…


