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• We explore the biophysical effects of
forest loss on land surface temperature.

• We use an innovative approach and the
data with 30 m spatial resolution.

• Cooling of increased albedo is offset by
warming of decreased evapotranspira-
tion.

• Precipitation impacts land surface tem-
perature by affecting evapotranspira-
tion.

• The recovery of albedo and evapotrans-
piration does not necessarily synchro-
nize.
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Forest disturbances alter land biophysics. Their impacts on local climate and land surface temperature (LST) can-
not be directly measured by comparing pre- and post-disturbance observations of the same site over time
(e.g., due to confounding such as background climate fluctuations); a common remedy is to compare spatially-
adjacent undisturbed sites instead. This space-for-time substitution ignores the inherent biases in vegetation be-
tween two paired sites, interannual variations, and temporal dynamics of forest recovery. Besides, there is a lack
of observation-based analyses at fine spatial resolutions capable of capturing spatial heterogeneity of small-scale
forest disturbances. To address these limitations, herewe report new satellite analyses on local climate impacts of
forest loss at 30 m resolution. Our analyses combined multiple long-term satellite products (e.g., albedo and
evapotranspiration [ET]) at 700 sites across major climate zones in the conterminous United States, using
time-series trend and changepoint detectionmethods. Ourmethod helped isolate the biophysical changes attrib-
uted to disturbances from those attributed to climate backgrounds and natural growth. On average, forest loss
increased surface albedo, decreased ET, and reduced leaf area index (LAI). Net annual warming—an increase in
LST—was observed after forest loss in the arid/semiarid, northern, tropical, and temperate regions, dominated
by the warming from decreased ET and attenuated by the cooling from increased albedo. The magnitude of
post-disturbance warming was related to precipitation; climate zones with greater precipitation showed
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stronger and longerwarming. Reduction in leaf or LAI was larger in evergreen than deciduous forests, but the re-
covery in LAI did not always synchronize with those of albedo and ET. Overall, this study presents new evidence
of biophysical effects of forest loss on LST at finer spatial resolutions; our time-series method can be further lev-
eraged to derive local policy-relevant ecosystem climate regulation metrics or support model-based climate-
biosphere studies.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Forests provide various social-ecological services, such as climate and
water regulation, biodiversity sustaining, nutrient cycling, recreation, and
tourism (Alix-Garcia and Wolff, 2014; Bonan, 2008). However, forests
have been in rapid decline in the past two centuries due to human activ-
ities, climate changes, and natural disturbances (e.g., wildfire, insect in-
festation, and hurricanes) (Allen et al., 2010; Barlow et al., 2016;
Chapman et al., 2008; Hansen et al., 2013; Liu et al., 2017; Randerson
et al., 2006; Senf et al., 2015). Such disturbances to forest cover and struc-
ture alter land-atmosphere interactions throughbiogeochemical andbio-
physical processes (Bright et al., 2015; Li et al., 2015; Zhao and Jackson,
2014). Loss of forests releases CO2 to the air and impairs terrestrial
biological carbon sequestration, affecting climate through intensified
greenhouse effects (Gibbs and Herold, 2007; McAlpine et al., 2010; van
der Werf et al., 2009). Concomitant with the modified carbon cycling
from forest loss are changes in land surface biophysics that also affect
energy partitioning, and impact local climate in directions that either
amplify or dampen the CO2-induced warming (Bala et al., 2007).

Forest loss affects local climate by altering the surface energy
budget and water balance through changes in evapotranspiration
(ET) and biophysical properties, such as albedo, surface roughness,
and aerodynamic canopy conductance (Anderson et al., 2011; Eder
et al., 2015; Jackson et al., 2008; Perugini et al., 2017). Such changes
may contribute to large-scale atmospheric feedbacks through
changes to CO2 concentration, cloud and precipitation patterns,
and changes to volatile organic compounds (VOC) and aerosol
concentrations. Among a variety of factors, both data-driven and
model-based studies suggest that the cooling or warming effect of
deforestation is mainly driven by changes in surface albedo, ET
(Bala et al., 2007; Li et al., 2015; Liu et al., 2019; Maness et al.,
2013; Prevedello et al., 2019), and other biophysical mechanisms,
such as surface roughness (Chen et al., 2016; Davin and de Noblet-
Ducoudré, 2010; Lee et al., 2011; Winckler et al., 2017). Changes in
albedo and ET that are driven by forest loss exert competing impacts
on land surface temperature (LST). Enhanced albedo reduces the ab-
sorption of incoming solar radiation and thus cools the land surface
(Zhao and Jackson, 2014). On the other hand, reduced leaf area leads
to lower ET and latent heat flux, thereby warming the land surface
(Bright et al., 2017). With deforestation, decreased surface rough-
ness tends to reduce turbulent exchanges of heat from the surface,
leading to local land-surface warming (Bonan, 2015; Chen et al.,
2016; Davin and de Noblet-Ducoudré, 2010; Khanna and Medvigy,
2014; Lee et al., 2011; Winckler et al., 2017; Yuan et al., 2021). The
net effect of forest loss on LST depends on the relative dominance of
the cooling effect due to enhanced surface albedo and the warming ef-
fect due to decreased ET and surface roughness. Considering the inter-
nal causes for reduction in surface fluxes are indistinguishable, we
assume that changes to ET represent the full surface-flux reduction ef-
fects, whether they are driven by reduced roughness, reduced leaf
area, and/or changes to stomatal conductance.

The impacts of ET and albedo on LST could vary with precipitation
and the recovery of the ecosystem indicated by leaf area index (LAI)
(O'Halloran et al., 2012). We acknowledge that precipitation could be
impacted by forest loss, and the extent of such effect on precipitation
is related to the scale of deforestation (Lejeune et al., 2015; Pitman
and Lorenz, 2016). Complete, large-scale deforestation could have a
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stronger impact on rainfall than partial deforestation (Lawrence and
Vandecar, 2015; Nobre et al., 2009). Previous studies showed significant
reduction of precipitation after large-scale deforestation (Lean and
Warrilow, 1989; Medvigy et al., 2011; Werth and Avissar, 2002), but
no correlation was found between precipitation and change of forest
cover at a stand scale (de Oliveira et al., 2018; Debortoli et al., 2017).
Though the impact of forest loss on precipitation may not be detectable
for limited forest loss areas, the interaction between ET and LST ismedi-
ated by precipitation because of the feedback of ET on convective pre-
cipitation (Bonan, 2015; Li et al., 2020; Shen et al., 2019). The recovery
rate is also subjected to biophysical or biochemical constraints and af-
fected by the disturbance regime and climate (Anderson-Teixeira
et al., 2013; Griffiths et al., 2014). A review by Anderson-Teixeira et al.
(2013) pointed out that the rate of forest recovery increasedwith atmo-
spheric CO2, temperature, and precipitation. Kennedy et al. (2012) also
suggested that forest recovery rate tends to be lower in ecoregions with
limited moisture.

Numerous observational and model-based studies have explored
how forest loss affects local, regional, and global climate via biophysical
processes. Because model-based studies allow complete control over
the virtual simulation environment, they can elucidate the physical
mechanisms that drive observed responses by changing one variable
or parameter at a time in controlled virtual experiments at scales that
are impossible to control in the real world (Bonan, 2008; Laguë et al.,
2019). For example, models have been used to estimate the relative
strength of albedo effects relative to transpirational effects (Davin and
de Noblet-Ducoudré, 2010). Model-based studies found that the rela-
tive strength of these effects varies by climatic zone, with albedo dom-
inance in the higher latitudes and transpirational dominance in the
tropics (Kvalevåg et al., 2010). Virtual experiments were used to evalu-
ate the effects of changes to surface roughness (Banerjee et al., 2017;
Burakowski et al., 2018; Khanna and Medvigy, 2014) and atmospheric
feedbacks through atmospheric CO2 concentrations and changes to
precipitation patterns (Jackson et al., 2005; Laguë et al., 2019; Wang
and Eltahir, 2000). Model-based studies can not only focus on processes
at high resolution and small locations but also simulate in large regions,
and in fact, the whole earth surface. For example, global models of vir-
tual deforestation scenarios showed that tropical deforestation will
have vast impacts on the global climate in terms of both temperature
and precipitation (Bala et al., 2007; Jiang et al., 2021; Nobre et al.,
2009; Shukla et al., 1990; Swann et al., 2018; Werth and Avissar,
2002). In situ measurements provided insights in local and global stud-
ies but are subjected to the inherent limitation of data availability
(Bright et al., 2017).

Remote sensing complements these approaches with consistent and
repeatedmonitoring of the land surface over a large scale and extended
time period (Duveiller et al., 2018; Li et al., 2015). Studies based on sat-
ellite observations suggest that the sign and magnitude of the altered
LST after forest loss vary across latitudes, revealing a warming effect at
lower latitude and a cooling effect at higher latitude (Alkama and
Cescatti, 2016; Duveiller et al., 2018; Li et al., 2015; Liu et al., 2019; Xu
et al., 2020). Specifically, the cooling effect of enhanced albedo post-
deforestation fails to offset the warming effect of drastically reduced
ET in the tropics, leading to a net warming effect; whereas the cooling
effect of high snow albedo in the boreal winter outpaces the warming
effect of reduced growing-season ET, giving rise to net cooling. In mid-
latitudes, there are contrasting reports of net warming or cooling effects
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of deforestation (Li et al., 2015;Wickham et al., 2014; Zhao and Jackson,
2014). For example, Liu et al. (2019) reported netwarming post fire dis-
turbance between the latitudes of 20°N and 45°N, while Bounoua et al.
(2002) suggested a local cooling after deforestation in mid-latitudes.

Most large-scale studies based on remote sensing investigate the
biophysical feedbacks of deforestation at coarse spatial resolutions
(e.g., 500 m or 0.05°). However, due to the high spatial heterogeneity
of vegetation cover especially post-disturbance, observations at a finer
resolution are necessary to capture the spatial variability of the ET and
albedo, and their controls on LST. To date, most studies take space-for-
time substitution as a surrogate of real land cover change (Bright et al.,
2017; Duveiller et al., 2018; Li et al., 2015; Liu et al., 2019; Peng et al.,
2014; Zhao and Jackson, 2014). However, the space-for-time substitu-
tion assumes that vegetations between two paired sites (i.e., disturbed
site and corresponding control site) are the same, thus ignoring the spa-
tial difference between paired sites. Besides, it assumes that current veg-
etation at control sites can be used as a surrogate for pre-disturbance
vegetation at disturbed sites, ignoring the temporal variation because
the assumption only holds when there is no interannual variation of
vegetation. However, even if there is no forest loss, vegetation status
varies across years due to its natural growth or due to the impact of
background climate.

This study aims to further improve on the assessment of local cli-
mate impacts of forest loss based on satellite observations at fine spatial
resolutions.We also address the existing limitations associatedwith the
space-for-time substitution approach—the most prevalent method cur-
rently in use. The focus of our assessment is to provide a data-driven
observation-based assessment of the direct local effects of forest loss
on LST and surface energy fluxes, without fully considering large-scale
feedbacks of forest loss (e.g., changes of precipitation, atmospheric
CO2 concentration, and cloud patterns). We hypothesize that a change
of annual mean LST observed at a particular location that experiences
forest loss is primarily driven by two opposing effects: the warming ef-
fect of decreased ET, and the cooling effect of increased albedo. A net
warmingwill be observedwhere the effect of ET is stronger than the ef-
fect of albedo. This hypothesis is tested using a combination of datasets
of land cover, biophysical, meteorological, and topographic conditions
from remote sensing and reanalysis products across the conterminous
United States (CONUS) at selected sites representing five climate
zones. We specifically address the following objectives: (1) determine
Fig. 1. Sample sites in the conterminous United States, with 100 evergreen sites in each clima
limited area of the tropics and alpine tundra, sample sites in these two regions are visually overla
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the spatial and temporal variation pattern of LST due to forest loss;
(2) quantify the change and recovery of surface properties (e.g., albedo
and LAI) and fluxes (e.g., albedo-induced radiative forcing [RF], ET)
closely related to LST after forest loss; (3) evaluate the driving effects
of biophysical properties and surface fluxes on LST after forest loss.

2. Data and methods

2.1. Study area

Our study area covers thefive climate zones of the CONUS (Fig. 1), as
defined in the Köppen-Geiger climate classification (Beck et al., 2018).
The dominant climate zones are the arid/semiarid, the temperate, and
the northern (renamed from the boreal zone in the Köppen-Geiger clas-
sification to avoid ambiguity because “boreal forests”normally connotes
high-latitude regions); the alpine tundra and the tropic types are less
common. Our emphasis herewas not onwall-to-wall continuous cover-
age of thewhole continent, but on the analysis at local scales (i.e., a spa-
tial resolution of 30 m), so we chose a total of 700 paired sites
representing typical forest types across the five climate zones. In the se-
lection of the sites, we also differentiated evergreen forests from decid-
uous forests. More specifically, for evergreen forests, we sampled 100
sites in each climate zone; for deciduous forests, we sampled 100 sites
only in the temperate and northern zones because of the absence/
scarcity of deciduous forest in the other three zones. The specific criteria
and procedures to identify these siteswill be further detailed in the next
section.

2.2. Site sampling using Google earth engine

Locations of the 700 pairs of sites were determined from the com-
bined use of topography data, the land-use/land cover data, and the for-
est loss data, all of which are available and processed in Google Earth
Engine. Each pair of sites includes two spatially adjacent sites, one dis-
turbed, and another intact/undisturbed. Disturbances considered here
include those short-lived events with temporal forest damages and
losses, with a natural recovery afterward; those permanent land cover
changes (e.g., forest to urban) are excluded. To allow sufficient time to
evaluate vegetation variables both prior to the disturbance and the re-
covery process after the disturbance, the time series in this study
te zone, and 100 deciduous sites in the northern and the temperate zones. Because of the
pped in themap, yet distinct from each otherwhen zooming in to afiner spatial resolution.
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spans from 2001 to 2016, with forest loss in 2005. To do so, we overlaid
the Landsat-derived forest loss data (Hansen et al., 2013) with the USGS
National Land Cover Database (NLCD), a 30m Landsat-based land cover
database covering years of 2001, 2004, 2006, 2008, 2011, 2013, and
2016, to locate the forest loss pixels in 2005. To exclude pixels that
were classified as the forest clearance with no recovery hereafter, we
chose the pixels with temporary forest loss rather than the pixels
experiencing permanent land use or land cover change. Specifically,
for all the CONUS pixels identified as “forest-loss” in 2005 based on
Hansen et al. (2013), we identified those classified as “deciduous” or
“evergreen” in 2001 and 2004, “non-forest” in 2006, 2008, and 2011,
and the same forest type again in 2013 and 2016 based on NLCD. Each
site consists of 3 × 3 pixels satisfying the above criterion.

Unlike the disturbed sites which experience forest loss in 2005, the
control sites are categorized as forests in the NLCD continuously from
2001 to 2016. To ensure each pair of control and disturbed sites have
similar climatic and edaphic conditions, we overlaid a searching win-
dow of 10 km - 30 km hollow circle on the central pixel of each dis-
turbed site to sample the control site. Within this hollow circle, we
randomly sampled 100 pixels that were categorized as forests (ever-
green/deciduous) and that did not experience forest loss as candidate
control sites. Only pixels with similar topographic conditions compared
to disturbed sites (i.e., elevation difference less than 50 m, slope differ-
ence less than 5 degrees, and aspect difference less than 30 degrees)
were retained (Liu et al., 2019). If no pixels were identified, we would
expand the initial candidate pool until we found the pixel that met all
requirements. Then the nearest site among all the qualified pixels was
selected as the control site.

Following the above-mentioned procedures, a total number of 700
paired disturbed-control sites were selected (Fig. 1). Notably, the rela-
tively small size of the tropical and alpine tundra regions results in
concentrated sites distribution in these two climate zones.We use a tem-
perate evergreen forest site to demonstrate the abrupt land cover change
in 2005 associated with disturbance. Prior- and post-disturbance Landsat
images together withmanually-derived disturbed site are provided as vi-
sual references. Consistent green cover can be observed throughout 2001
to 2004 in this site, followed by disturbance in 2005 and post-disturbance
recovery thereafter (Fig. 1).

2.3. Datasets

This study combines datasets of land cover, biophysical, meteorolog-
ical, and topographic conditions from remote sensing and reanalysis
products (Table 1). The products of the NLCD, the Hansen global forest
change data, and the LST were all derived from Landsat and shared
the same spatial resolution of 30 m. Landsat data was also used here
to derive surface albedo. To maximize the temporal coverage of cloud-
free pixels, we combined the surface reflectance from the Landsat
Table 1
Datasets used to quantify biophysical changes include a range of observations of land surface ch
reflectance, evaportranspiration, leaf area index, topography, and precipitation.

Dataset Source sensor Variable

National Land Cover Database 2016 - Landcover &
Imperviousness (NLCD2016)

Landsat Landcov

Hansen Global Forest Change (v1.7) Landsat 7 ETM+
Landsat 8 OLI/TIRS

Loss yea

USGS Landsat 8 Surface Reflectance Tier 1 Landsat 8 OLI/TIRS Land sur
surface rUSGS Landsat 7 Surface Reflectance Tier 1 Landsat 7 ETM+

USGS Landsat 5 Surface Reflectance Tier 1 Landsat 5 ETM
MOD16A2 (v006) MODIS Terra/Aqua Evapotr
MCD15A3H (v006) MODIS Terra+Aqua

Combined
Leaf area

SRTM Digital Elevation Data (v4) Elevatio
Daymet – Precipita
North American Land Data Assimilation System
(NLDAS) Forcing Fields

– Shortwa

4

surface reflectance products of Landsat 5 ETM, Landsat 7 ETM+, and
Landsat 8 OLI/TIRS sensors spanning from 2001 to 2016. ET and LAI
products came from MODIS, with a 500 m spatial resolution. The topo-
graphic conditions were derived from the Shuttle Radar Topography
Mission (SRTM) digital elevation data (Jarvis et al., 2008). Different spa-
tial resolutions of the data products require resampling. The image-
pyramid structure in Google Earth Engine allows specifying the pixel
resolution of the output, thereby facilitating accessing, manipulating,
and analyzing remote sensing data with on-the-fly requests (Gorelick
et al., 2017; Oliphant et al., 2019; Wu et al., 2019). If the specified
pixel resolution is coarser than the pixel resolution the satellite data
provides, Google Earth Engine aggregates related pixels; conversely, if
the specified pixel resolution is finer than the pixel resolution the satel-
lite data provides, Google Earth Engine exports the pixel at that point.
All the data except precipitation were rescaled to a 30 m resolution
and exported using theGoogle Earth Engine; precipitationwas obtained
from Daymet, a 1 km × 1 km gridded meteorological dataset interpo-
lated from ground-station observations.

2.4. Deriving time series of LST, albedo, albedo-induced radiative forcing, ET,
and LAI

2.4.1. Land surface temperature (LST)
Two types of surface temperature are often used in climatological

studies: 2 m surface air temperature and LST (Jin and Dickinson,
2010). The record of 2 m surface air temperature is dependent on the
distribution ofmeteorological stations. This gridded product is averaged
with a coarse spatial resolution, and hence is often used to evaluate
long-term and large-scale climate changes (Alkama and Cescatti,
2016; Hansen et al., 2006; Hooker et al., 2018). In contrast, LST is re-
trieved from satellite observations at relativelyfine spatial and temporal
resolutions, so it is often utilized to assess local or regional climate im-
pacts (Bright et al., 2017). Besides, comparing to the 2 m air tempera-
ture, the LST is closely related to the radiative properties of the land
surface (Peng et al., 2014; Zhao and Jackson, 2014; Zhou et al., 2012),
as well as the interaction between albedo and ET (Li et al., 2015;
Prevedello et al., 2019). Therefore, the LST is a better indicator of local
surface energy partitioning. Considering that this study is based on re-
mote sensing data and focuses on a local scale, we choose the LST to
evaluate the impact of forest loss.

Many algorithms have been proposed to derive LST (Li et al., 2013;
Martins et al., 2016). One of the commonly usedmethods is the Statistical
Mono-Window (SMW) approach. The SMW approach is developed by
Climate Monitoring Satellite Application Facility (CM-SAF) from the
Meteosat First Generation (MFG) and the Second Generation (MSG) se-
ries of satellites. The SMW algorithm linearizes the relationship between
LST and brightness temperature in the top of atmosphere (TOA) as fol-
lows:
aracteristics and atmospheric conditions, mostly from satellites, such as land cover, surface

Spatial Resolution Reference

er 30 m Homer et al., 2020; Jin et al., 2019;
Yang et al., 2018

r 1 arc sec Hansen et al., 2013

face temperature, albedo:
eflectance

30 m Claverie et al., 2015; Vermote
et al., 2016

anspiration: ET_500m 500 m Mu et al., 2011
index: Lai_500m 500 m Myneni et al., 2015

n 3 arc sec Jarvis et al., 2008
tion 1000 m Thornton et al., 2017
ve radiation 0.125 arc degrees Cosgrove et al., 2003; Luo et al., 2003
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LST ¼ Ai
Tb

ε
þ Bi

1
ε
þ Ci ð1Þ

where Tb and ε refer to the TOA brightness temperature and the surface
emissivity of the same thermal infrared channel, respectively. Ai, Bi and
Ci are the model coefficients that have been calibrated for the classes
with different total column water vapor (TCWV) values and view
zenith angle. This algorithm is implemented in the Google Earth
Engine by Ermida et al. (2020). By specifying the region of interest,
date range and Landsat satellite missions (Landsat 4,5,7, and 8), the
LST time series of given sites can be calculated and exported. After
masking the cloud, cloud shadow, and snow pixels, the LST is aggre-
gated into monthly time series.

2.4.2. Albedo
The actual (blue-sky) shortwave albedo is calculated based on the

atmospherically corrected surface reflectance from the Landsat 5 ETM
sensor, the Landsat 7 ETM+ sensor and the Landsat 8 OLI/TIRS sensors
spanning from 2001 to 2016. Though different Landsat sensors have
slight systematic differences (Flood, 2014; He et al., 2018), it has been
demonstrated that observations across the Landsat sensors can be inte-
grated without additional bias correction (Chen et al., 2016; Jiang et al.,
2019; Qin et al., 2015). During the overlapping time ranges when data
from two sensors are available, the average of available surface reflec-
tance data is used. According to Liang (2001), five bands are used to de-
rive actual shortwave albedo:

Albedo ¼ 0:356 αBLUE þ 0:130αGREEN þ 0:373 αRED þ 0:085 αNIR
þ 0:072 αSWIR2−0:0018

where αBLUE, αGREEN, αRED, αNIR, αSWIR2 refer to the surface reflectance in
blue, green, red, near-infrared, and shortwave infrared 2. Although this
equation is developed using data from Landsat 4,5,7, it is still valid for
Landsat 8 (Naegeli et al., 2017; Traversa et al., 2021). Clouds, cloud
shadows, snow, and water pixels are masked out based on the Pixel
Quality Assessment Index. The albedo of each pixel in the sampled im-
age chips is also aggregated by averaging into monthly time series.

2.4.3. Albedo-induced radiative forcing
Albedo-induced RF is defined as the change of the reflected short-

wave radiation resulting from albedo change (Hansen et al., 1997;
Vanderhoof et al., 2014). It plays an essential role in predicting the
LST. A simple yet effective approximation has been used by numerous
studies to derive the albedo-induced RF (Barnes and Roy, 2008; Jiao
et al., 2017; Jin and Roy, 2005; Stuenzi and Schaepman-Strub, 2020;
Zhang and Liang, 2014).

RFsurf ¼ −Rsurf α2−α1ð Þ ð2Þ

where Rsurf is the surface incoming solar radiation, α1 and α2 are the
monthly surface albedo before and after forest loss, respectively. The
incoming solar radiation is obtained from the National Land Data
Assimilation System (NLDAS-2) (Ellenburg et al., 2016) and exported
using Google Earth Engine.

2.4.4. Evapotranspiration (ET) and leaf area index (LAI)
ET and LAI are processed directly fromMODIS products. ET describes

the process whereby water is transported from the earth surface to the
atmosphere by evaporation from the soil andwet vegetation, or by tran-
spiration from plants (Liu et al., 2020; Zhang et al., 2019). TheMODIS ET
product (MOD16A2 V006) is derived using the Penman-Monteith equa-
tion that includes inputs of meteorological reanalysis data and remotely
sensed dynamic surface properties (Mu et al., 2011). The MODIS ET
product (MOD16A2 V006) and MODIS LAI product (MCD15A3H
V006) provide 8-day and 4-day composite data, respectively, with
500-m pixel size. Both datasets are aggregated to monthly time series
and exported using Google Earth Engine. We use quality control layers
5

to exclude the retrievals with poor quality caused by snow, average or
high aerosol, clouds, and cloud shadow.

2.4.5. Time series reconstruction
We used the Bayesian Estimator of Abrupt change, Seasonality, and

Trend (BEAST) (Zhao et al., 2019) to obtain the interannual trend
under background climate in disturbed sites. Comparing to conven-
tional single-best-model paradigms, BEAST allows flexibility to account
for all themodel candidates. It evaluates the probability that eachmodel
is the truemodel and synthesizesmultiplemodels to derive an averaged
model. Due to the nature of model-averaging, BEAST detects the change
point by a continuous probability instead of a binary decision (a change
point or not). This fuzzy-logic time-series algorithm helps to generate a
rich set of information.

The dynamics of a long-term time series with forest loss can be
decomposed into three levels: (1) the abrupt changes driven by distur-
bance, (2) the seasonality forced by phenological drivers, and (3) the
gradual changes associated with climate background or chronic recov-
eries. BEAST model decomposes time-series into seasonal change,
long-term trend, abrupt changes, and noise. Mathematically speaking,
consider the time series of a sample pixel as TS= {ti,yi}i=1, …, n, where
n is the number of observations, ti and yi are the time i and the
corresponding observation. Observation yi can be decomposed into
three components as the following equation:

yi ¼ S ti;ΘSð Þ þ T ti;ΘTð Þ þ εi ð3Þ

S(ti;ΘS) and T(ti;ΘT) indicate the seasonality and the trend, respectively.
Note that the abrupt change (if exists) is implicitly embedded in the
parameters ΘS and ΘT. εi is the residual not captured by the seasonality
or the trend and is assumed to be normally distributed with a standard
deviation of σ.

The reconstructed time series is the sum of the seasonality and the
trend, i.e., byi ¼ S ti;ΘSð Þ þ T ti;ΘTð Þ. Here, we take a sample site in the
tropics as an example. This site is in southern Florida, an area heavily
damaged by Hurricane Wilma in October 2005 (Amiro et al., 2010).
The time series reconstruction via the BEAST model is illustrated in
Fig. 2. The original time series is decomposed into the seasonality and
the trend components. The probability of abrupt change is evaluated
throughout the time series. Notably, an abrupt change is identified at
the end of 2005 (Fig. 2d) right after HurricaneWilma, supporting the ef-
fectiveness of the BEAST approach. We reconstructed the time series of
LST, albedo, albedo-induced RF, ET, and LAI. The reconstructed gap-free
time series include only the primary dynamics (seasonal change and the
long-term trend) and are used in the following analysis.

Noticeably, because outliers in time series impact time series recon-
struction, and further impact analyses based on the reconstructed time
series, quality control is essential for all the remote sensing and reanal-
ysis products (i.e., removing cloud, cloud shadow, and snow). Values
that failed to pass quality control weremasked in the time series. To en-
sure the credibility of reconstructed time series, we excluded monthly
time series with no value for more than half a year (i.e., 6 consecutive
masked values) from the reconstruction.

2.4.6. Changes in land surface variables
We used the trend detected using BEAST at each control site as the

variation of land surface variables (i.e., albedo, ET, LAI, and LST) under
background climate if no forest loss occurred. This trend was then
subtracted from the time series at the disturbed site to isolate the im-
pact of forest loss on land surface variables. For example, we used the
BEAST model to fit an albedo time series from 2001 to 2016, including
seasonal dynamics and long-term trend as in Fig. 2(c) and (d), respec-
tively. Then, we calculated the detrended albedo (TSdisturbed_detrend) by
subtracting the albedo trend generated at the control site (TSctrl_trend)
from the albedo time series at the corresponding disturbed site
(TSdisturbed), i.e., TSdisturbed_detrend = TSdisturbed − TSctrl_trend. We compared



Fig. 2. An example of disturbance detection and time series reconstruction using the BEAST model. BEAST disentangles the original time series (a) into the components of seasonality
(c) and the trend (d), and evaluates the probability of abrupt change along the time series (e). The red vertical bar in (d) indicates the highest probability of abrupt change at the end
of 2005. The fitted time series (black line in b) is the sum of the seasonality and the trend. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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the detrended albedo before and after forest loss to calculate the resultant
albedo difference. This temporal difference of the detrended albedo
(ΔAlbedo) represents the intrinsic contribution of forest loss to albedo
variation. We calculated the adjusted difference of LST (ΔLST), ET (ΔET),
and LAI (ΔLAI) using the same procedure (Fig. 3). The difference before
and after forest loss (i.e., ΔAlbedo, ΔLST, ΔET, ΔLAI) was tested by paired
t-test, and the difference among climate zones was tested by one-way
ANOVA. Confidence intervals (at 95%) were also calculated for all the
sites with the same climate and forest type.

2.5. Statistical analysis

We examined the relationships among ΔLST, ΔAlbedo, and ΔET.
Relationships between variables are considered significant when
p < 0.001. We also performed a stepwise regression using JMP
(Matheny et al., 2014; Sall et al., 2017) to determine whether
ΔAlbedo or ΔET played the most important role in predicting ΔLST
Fig. 3. The derivation of change induced by forest loss. TSdisturbed, TSctrl and TSctrl_trend refer to th
respectively. The detrended time series at the disturbed site (TSdisturbed_detrend) is derived by sub
by averaging the data at the same month before forest loss in TSdisturbed_detrend. Then the month
pre-disturbance monthly mean from the current month in TSdisturbed_detrend.
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after forest loss. We started the model with an intercept-only model.
The predictor that explained the most variation of ΔLST was added to
the model first. After adding each predictor into this model, the overall
goodness-of-fit was measured by Bayesian Information Criterion (BIC),
and predictors that reduced BIC were kept in the model. All the vari-
ables were standardized by the standard deviation prior to regression.
The pairwise correlation between ΔAlbedo or ΔET was also checked,
and the correlation was considered significant when p < 0.001.

3. Results

3.1. Temporal and spatial patterns of altered LST

The temporal trend of ΔLST was heterogeneous in different climate
zones. Sample sites in the arid/semiarid, the tropical, the temperate
(both deciduous and evergreen forests), and the northern (both decid-
uous and evergreen forests) generally became warmer after forest loss
e time series at a disturbed site, a control site, and the trend of time series at a control site,
tracting TSctrl_trend from TSdisturbed. Pre-disturbance monthly mean (e.g. Janpre) is calculated
ly land surface variable change in each year (e.g. Janpost_06) is calculated by subtracting the
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(Fig. 4). The 11-year annual average ΔLST across the categories was
1.39 ± 0.28 °C, 3.56 ± 0.33 °C, 1.98 ± 0.27 °C, 2.41 ± 0.45 °C, 1.17 ±
0.66 °C and 1.27 ± 0.35 °C, respectively (Fig. 5). The sample sites in al-
pine tundra were slightly cooler with an 11-year annual mean ΔLST of
−0.31± 0.35 °C (Fig. 5). On a seasonal scale, forest loss led to warming
in both summer andwinter in the tropical and temperate zones,making
the annual warming effect the most prominent in these two climate
zones. In arid/semiarid and northern forests, consistent summer
warming was attenuated by winter cooling after the disturbance; how-
ever, the winter cooling was dwarfed by the summer warming, leading
to overall annual warming in these sites. A different pattern was ob-
served in the alpine tundra, where slight summer warmingwas accom-
panied by strong winter cooling, leading to an annual cooling effect in
most of the years.

Multi-year averaged ΔLST could reflect how the LST changed along
with the recovery of forest (Fig. 5). In the temperate evergreen and de-
ciduous forests, multi-year averaged annual ΔLST after forest loss con-
tinuously decreased, suggesting that the warming effect decreased
with forest recovery. Nonetheless, the warming effect decreased much
slower in temperate deciduous forests compared to the trend in tem-
perate evergreen forests (Fig. 5). In the alpine tundra, multi-year aver-
aged annual ΔLST after forest loss increased with forest recovery,
suggesting the cooling effect declined with forest recovery (Fig. 5).
However, the changes in the arid/semiarid evergreen, tropical ever-
green, northern evergreen and northern deciduouswere statistically in-
significant because the uncertainty ranges of the 3-, 5-, and 11-year
averages largely overlapped with each other.

3.2. Temporal and spatial patterns of altered albedo and albedo-induced RF

3.2.1. Albedo
Forest loss generally resulted in increased albedo (Fig. 6) due to

more exposed understory plants or bare soil after forest loss. One excep-
tion was the tropical zone, where annual ΔAlbedo in the first year after
forest loss was negative, likely caused by the exposure of darker under-
lying surfaces with greater soil moisture after disturbance in the sample
sites (O'Halloran et al., 2012). Though ΔAlbedo was mostly positive
right after forest loss, the trend of ΔAlbedo during the recovery differed
across climate zones (Fig. 6). The albedo in the arid/semiarid and trop-
ical evergreen forests continuously deviated from its pre-disturbance
status until 2013 and then plateaued. The albedo in the alpine tundra
and northern evergreen forests monotonically increased, indicating an
even longer recovery time to reach the pre-disturbance state. In the
temperate zone, albedo started to recover right after forest loss, suggest-
ing a shorter recovery time of albedo. Compared to the evergreen forests
in the northern and temperate zones, the deciduous forests showed
lower ΔAlbedo with less interannual variation (Fig. 6).

Unlike annual ΔAlbedo, seasonal ΔAlbedo specifies the responses in
the summer and in the winter. As shown in Fig. 7, forest loss exerted a
Fig. 4. Temporal variation of averaged altered land surface temperature (ΔLST) annually (a), in
vice versa. Grey shaded area denotes the 95% confidence interval for all the sites with the same
zones. Annual and SummerΔLST are significant right after the forest loss in all the regions excep
years.
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significantly greater impact on albedo in the summer than in thewinter
for all the climate zones except for the tropics, where the 11-year aver-
aged ΔAlbedo was similar between the summer (29.00 ± 0.50
(×10−3)) and the winter (28.00 ± 0.53 (×10−3)). Unlike tropical ever-
green forests, the seasonality of tree canopy was stronger in other cli-
mate zones due to phenology. Noticeably, the annual variation
amplitude of albedo in tropical evergreen forests was significantly
lower than those in all other climate zones (Table A1). A large seasonal
amplitude of albedo indicated a much darker surface in the summer
than in the winter likely due to canopy phenology. Therefore, the im-
pact of the forest loss on albedo was similar throughout the year
in tropical evergreen forests but more prominent in the summer
than in the winter in other climate zones. For instance, in the arid/
semiarid zone, the 11-year averaged ΔAlbedo was 19.53 ± 0.61
(×10−3) in the summer, but only 13.45 ± 0.39 (×10−3) in the win-
ter (Fig. 7). The same pattern was also identified in the northern, al-
pine tundra, and temperate zones.

3.2.2. Albedo-induced RF
The altered surface albedo induces shortwave surface RF. RF is de-

fined as the perturbation to the radiation balance of the climate system
(Zhao and Jackson, 2014). Due to increased albedo after forest loss, the
albedo-induced RF was negative (i.e., less net radiation) in all the five
climate zones (Fig. 8). The increasing trend of RF after deforestation in
the temperate evergreen zone was opposite to the decreasing trend in
the other four climate zones (Figs. 8, 9), which was consistent with
the trends of ΔAlbedo (Fig. 6). The RF in the deciduous forests was
less variable compared to the RF in the evergreen forests within the
same climate zone, which also aligned well with the pattern observed
from ΔAlbedo (Fig. 6). Compared to the RF in the summer, the RF in
the winter was less variable in all the climate zones except for the
tropical and temperate evergreen (Figs. 8b, c, 9). The relatively stable
RF in the arid/semiarid, the northern, and the alpine tundra could be
attributed to similar canopy cover in the winter before and after for-
est loss.

3.3. Temporal and spatial patterns of altered ET

AnnualΔET gradually recovered in all the climate zones except for the
alpine tundra, where ET deviated further from the pre-disturbance state
(Fig. 11). In most climate zones, the ΔET averaged across 3 years,
5 years and 11 years after forest loss progressively became less negative
(Fig. 11), but the recovery pattern in each climate zones differed
(Fig. 10). The tropical evergreen had continuously negative annual ΔET
after forest loss, with the 11-year averaged annual ΔET of −7.23 ±
0.48 mm. In contrast, ET of the temperate evergreen and deciduous for-
ests reduced in the first 3 years after forest loss (i.e., averaged annual
ΔET equaled to−6.51 ± 0.34 mm and−3.81 ± 0.37 mm, respectively),
and then recovered back to pre-disturbance condition, with the 11-year
summer (b), and in winter(c) after forest loss. Positive ΔLST suggests warming effect, and
climate and forest type. Both annual and seasonal ΔLST differ significantly across climate
t for the alpine tundra.WinterΔLST is not significant in northern evergreen inmost of the



Fig. 5. Annual, summer, and winter altered land surface temperature (ΔLST) averaged 3-year, 5-year, and 11-year post forest loss in different climate zones. The 3-year averaged ΔLST
reflects the LST change right after forest loss, while 5-year and 11-year averaged ΔLST represent the combined effects of forest loss and recovery on local LST. Error bars represents 95%
confidence interval.

Fig. 6. Temporal variation of averagedΔAlbedo annually (a), in summer (b), and inwinter(c) after forest loss. PositiveΔAlbedo suggests enhanced albedo, and vice versa. Grey shaded area
denotes the 95% confidence interval for all the sites with the same climate and forest type. Both annual and seasonal ΔAlbedo differ significantly across climate zones. With a few
exceptions, annual and seasonal ΔAlbedo are significantly different from zero in all the climate zones.
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Fig. 7.Annual, summer, andwinterΔAlbedo averaged 3-year, 5-year, and 11-year post forest loss in different climate zones. The 3-year averagedΔAlbedo reflects the albedo change right
after forest loss, while 5-year and 11-year averaged ΔAlbedo represent the combined effects of forest loss and recovery on albedo. Error bars represents 95% confidence interval.
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averaged annual ΔET of −0.27 ± 0.52 mm and −0.68 ± 0.28 mm, re-
spectively. ET of evergreen forests in the arid/semiarid, northern, and al-
pine tundra regions were less impacted by forest loss. Over the 11 years
post-disturbance, ET in these zones showed no clear trend and the aver-
age change was −0.47 ± 0.12 mm, −1.47 ± 0.10 mm, and −0.79 ±
0.10 mm, respectively. The impact of the forest loss on ET was stronger
in the summer than in the winter (Fig. 10b, c). Noticeably, winter ΔET
in the arid/semiarid, northern, alpine tundra, and temperate regions
was close to 0. This is due to the similar canopy cover during the winter
before and after forest loss, and due to the fact that low winter tempera-
ture leads to low actual ET, whichmakes any changes inwinter ET appear
to be small. However, forest loss led to an apparent reduction in the
winter ET in the tropical region because canopy cover reduced after
disturbance all-year round, including the winter season, and because
of higher actual ET during tropical winter compared to other climate
zones.
9

3.4. Temporal and spatial pattern of altered LAI

Albedo did not recover to the pre-disturbance state even 11 years
after the forest loss (Fig. 7), but ET largely recovered in most climate
zones (Fig. 11). To understand the opposite patterns of albedo and ET,
we also examined the recovery of canopy cover as reflected by LAI.
From Fig. 12, forest loss resulted in decreased LAI in all the climate
zones, with a stronger impact on the evergreen forests than on the de-
ciduous forests. Specifically, the 11-year averaged annual ΔLAI in the
northern and temperate evergreen forests was−0.198 ± 0.010 m2/m2

and −0.184 ± 0.022 m2/m2, respectively; whereas the 11-year aver-
aged annual ΔLAI in the northern and temperate deciduous forests
was -0.015 ± 0.003 m2/m2 and −0.037 ± 0.009 m2/m2, respectively
(Fig. 13). The recovery pattern of LAI in evergreen forests also differed
across the climate zones. Annual ΔLAI progressively became more neg-
ative in the arid/semiarid and the alpine tundra, decreasing from the



Fig. 8. Temporal variation of averaged albedo-induced radiative forcing (RF) annually (a), in summer (b), and inwinter(c) after forest loss. Positive RF indicates increased radiative energy
flux, and vice versa. Grey shaded area denotes the 95% confidence interval for all the sites with the same climate and forest type. Both annual and seasonal RF differ significantly across
climate zones.

Fig. 9. Annual, summer, and winter albedo-induced radiative forcing (RF) averaged 3-year, 5-year, and 11-year post forest loss in different climate zones. The 3-year averaged RF reflects
the radiative energy change right after forest loss, while 5-year and 11-year averaged RF represent the combined effects of forest loss and recovery on radiative energy flux. Error bars
represents 95% confidence interval.
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Fig. 10. Temporal variation of averaged altered evapotranspiration (ΔET) annually (a), in summer (b), and inwinter(c) after forest loss. PositiveΔET suggests increased ET, and vice versa.
Grey shaded area denotes the 95% confidence interval for all the siteswith the same climate and forest type. Both annual and seasonalΔET differ significantly across climate zones. Annual
ΔET is significantly different from zero right after forest loss in all the regions except for the northern deciduous forests. Summer ΔET is not significant right after forest loss in northern
deciduous, and evergreen in the tropics and alpine tundra. Winter ΔET is not significant in northern forests for most of the years.

Fig. 11.Annual, summer, andwinter altered evapotranspiration (ΔET) averaged 3-year, 5-year, and 11-year post forest loss in different climate zones. The 3-year averagedΔET reflects the
ET change right after forest loss, while 5-year and 11-year averaged ΔET represent the combined effects of forest loss and recovery on ET. Error bars represents 95% confidence interval.
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Fig. 12. Temporal variation of averaged altered leaf area index (ΔLAI) annually (a), in summer (b), and inwinter (c) after forest loss. NegativeΔLAI suggests the loss of leaf area. Increased
ΔLAI trend indicates the recovery of forests in disturbed sites, and vice versa. Grey shaded area denotes the 95% confidence interval for all the sites with the same climate and forest type.
Both annual and seasonalΔLAI differ significantly across climate zones. Annual and seasonalΔLAIs are significantly different from 0 right after the forest loss in all the climate zones except
for the summer ΔLAI in northern deciduous forest. ΔLAI of the temperate evergreen, as well as the northern and temperate deciduous forests shifts from significant to not significant with
the recovery of forests.

Fig. 13.Annual, summer, andwinter altered leaf area index (ΔLAI) averaged3-year, 5-year, and 11-year post forest loss in different climate zones. The 3-year averagedΔLAI reflects the LAI
change right after forest loss, while 5-year and 11-year averaged ΔLAI measure the combined effects of forest loss and recovery on LAI. Error bars represents 95% confidence interval.
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Fig. 14. Temporal variation of post-disturbance annual precipitation (a), summer precipitation (b), and winter precipitation (c). Grey shaded area denotes the 95% confidence interval for
all the sites with the same climate and forest type. Both annual and seasonal precipitation differ significantly across climate zones.
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3-year average of −0.093 ± 0.007 m2/m2 to the 11-year average of
−0.119 ± 0.006 m2/m2 in the arid/semiarid, and from −0.029 ±
0.003 m2/m2 to−0.075 ± 0.007 m2/m2 in the alpine tundra. A possible
explanation is that the disturbance type in these two regions is mainly
beetle infestation (Fig. A1). Beetle infestation leads to a gradual decrease
in LAI rather than a sharp drop, because in beetle-infested forests, snags
begin to fall off five years after stand death and this process peaks after
ten to fifteen years (Mitchell and Preisler, 1998; Vanderhoof et al.,
2014). In contrast, the annual ΔLAI in other climate zones became less
negative as the forest recovered, especially in the temperate and tropical
evergreen,where the annualΔLAI increased from−0.314±0.015m2/m2

to −0.184 ± 0.022 m2/m2, and from −0.440 ± 0.005 m2/m2 to
−0.314 ± 0.026 m2/m2, respectively.

3.5. Temporal and spatial pattern of precipitation

As expected, precipitation differed across climate zones. The
annual precipitation in the tropical and temperate regions
exceeded 1000 mm, while the arid/semiarid, northern, and alpine
tundra regions received less annual precipitation (Fig. 14).
Precipitation in the northern, alpine tundra, and temperate
Fig. 15. Fitting annual land surface temperature change (ΔLST) with annual ΔAlbedo (a–c) and
colors refer to sampled evergreen pixels in different climate zones. The grey line represents the
grey line suggests how ΔAlbedo (a–c) and RF (d–f) are related toΔLST, respectively. R2 denotes
observations are masked out (as we described in Section 2.4.5).
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regions were similar in the summer and in the winter, in contrast
to large seasonal variations in the tropics. In the summer, the tro-
pics received the most precipitation compared to other climate
zones but had less precipitation compared to the temperate region
during the winter.

3.6. Response of ΔLST to ΔAlbedo and ΔET in evergreen forests

In this study, evergreen forest dataset is available in all the climate
zones, whereas deciduous forest is limited to the temperate and north-
ern regions. Therefore, to explore how the changes of albedo and ET are
related to altered LST after forest loss, we focus on evergreen forests in
all the climate zones.

3.6.1. Relationships between ΔAlbedo and ΔLST
Fig. 15(a–c) illustrates the relationship between ΔAlbedo and ΔLST.

Positive ΔAlbedo after forest loss was associated with increased ΔLST.
As a result of increased albedo, more negative RF (i.e., less absorbed in-
coming solar radiation) after forest loss also corresponded to higher
ΔLST (Fig. 15d–f), suggesting that the impacts of albedo-induced RF
on ΔLST was offset by non-radiative mechanisms, such as the reduced
radiative forcing (RF) (d–f), respectively, in 2006, 2011, and 2016. The dots with different
relationship between ΔLST and ΔAlbedo (a–c) and RF (d–f), respectively. The trend of the
howmuch variation inΔLST has been explained by each predictor. Pixels with insufficient
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ET of forest loss. Over the 11 years following forest loss, ΔAlbedo ex-
plained 44% - 63% of the ΔLST variation across sites and climate zones.

3.6.2. Relationship between ΔET and ΔLST
From2006 to 2016, themajority ofΔET shifted fromnegative to near

zero or even positive, indicating recovery of plantwater use after distur-
bance (Fig. 16). Besides, the increase of ΔET was related to the decrease
ofΔLST; though the response sensitivities differed across climate zones,
the pattern remained consistent (Fig. A2). This supports the cooling ef-
fect of ET. ΔET explained 25%–53% of the variation of ΔLST across sites
and climate zones, less than the R2 between ΔAlbedo and ΔLST.

3.6.3. Stepwise fit for ΔLST
The stepwise fit forΔLSTwas performed based on the data spanning

from 2006 to 2016. Annually averaged ΔAlbedo and ΔET were used as
predictors. The model that includes both predictors is preferred over a
simple linear regression model because BIC continuously decreases in
the second step. The results of the stepwise fit suggest that both
ΔAlbedo and ΔET are significant in fitting ΔLST, but ΔAlbedo plays a
more important role than ΔET in predicting ΔLST after the forest loss.
The statistical interpretation of the relative importance of ΔAlbedo
and ΔET in fitting post-disturbance ΔLST should be taken carefully as
we will discuss in Section 4.3. The estimated slope of ΔAlbedo was pos-
itive, aligningwellwith the pattern in Fig. 15(a–c). ForΔET, the negative
slope was also in agreement with the trend in Fig. 16. ΔAlbedo and ΔET
explain less variation of ΔLST compared to Fig. 15(a–c) and 16, respec-
tively. Because we use the data spanning from 2006 to 2016 in the step-
wise fit for ΔLST, this 11-year period after disturbance includes the
variation resulting from forest recovery.

4. Discussion

4.1. Impacts of forest loss on albedo and ET

Both annual and seasonal albedo increased in all the five climate
zones after forest loss (Fig. 6). Albedo in the temperate evergreen and
deciduous forests progressively recovered back to the pre-disturbance
status. However, albedo in all other climate zones deviated from the
original condition, especially in the tropics where the annual ΔAlbedo
drastically increased from −0.01 in 2006 to 0.036 in 2016 (Fig. 6). The
consistently increasingΔAlbedowas not attributed to further deteriora-
tion of vegetation after initial disturbance or further forest loss by
human activities, because the sampling procedure ensured that the
sampled pixels only experienced forest loss in 2005 and gradually re-
covered thereafter (as described in Section 2.2). However, we realize
that even with such a filtering procedure, sites that recovered back to
the same forest type may have shifted canopy structure and species
composition, possibly making the albedo diverged from that prior to
disturbance. In addition, further exposure of the soil surface has been
Fig. 16. Fitting annual land surface temperature change (ΔLST) with annual evapotranspiratio
evergreen sites in different climate zones. The grey line represents the relationship between Δ
how much variation in ΔLST has been explained by ΔET. Pixels with insufficient observations
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observed after beetle infestation and wildfires (Landry et al., 2016;
O'Halloran et al., 2012; Russell et al., 2006; Vanderhoof et al., 2013).
Beetle infestations gradually decrease leaf and snags in forests after
stand death, resulting in a gradually increased exposure to snow inwin-
ter, thereby increasing the albedo (Landry et al., 2016; O'Halloran et al.,
2012; Vanderhoof et al., 2013). Albedo after wildfiresmay also continue
to increase because the dead snags after burning gradually fall off,
resulting in a gradual increase of exposed land surface (Goetz et al.,
2007; O'Halloran et al., 2012; Randerson et al., 2006), especially when
half of dead snags have been reported fallen after 5–15 years postfire
(Russell et al., 2006).

Unlike albedo that increased in all climate zones after forest loss, we
found local ET did not necessarily decrease after forest loss. Specifically,
compared to the tropical and temperate zones, ΔET in the northern de-
ciduous forests was positive immediately after the forest loss (Fig. 10,
11). This finding contradicted some existing studies that revealed de-
creased ET after wildfires (Bond-Lamberty et al., 2009; Kang et al.,
2006; Ma et al., 2020; Poon and Kinoshita, 2018), typhoon (Hirano
et al., 2017), and mountain pine beetles (Hubbard et al., 2013; Maness
et al., 2013; Mikkelson et al., 2013). However, one mechanism revealed
by previous studies showed that decreased transpiration could be offset
by increased ET from understories or forest floors (Mikkelson et al.,
2013; Nolan et al., 2015); another mechnism suggested that annual ET
decreased with the age of forests (Delzon and Loustau, 2005; Lane and
Mackay, 2001; Moran and O'Shaughnessy, 1984; Roberts et al., 2001;
Vertessy et al., 2001). Both mechanisms support post-disturbance in-
creases in local ET.

We expect thatΔAlbedo andΔET converge to zero alongwith the re-
covery of forests. For instance, with the recovery of the annual LAI in the
temperate evergreen (Fig. 12), the annual ΔAlbedo decreased from the
3-year annual average of 33.01 ± 0.45 (×10−3) to the 11-year annual
average of 21.72± 1.16 (×10−3) (Fig. 7), and the annual ΔET increased
from -6.51 ± 0.68 mm to -0.27 ± 1.05 mm accordingly (Fig. 11).
Similarly, as the annual ΔLAI in the alpine tundra sites continuously de-
creased from 2006 to 2016 (Fig. 12), the ΔAlbedo increased from the 3-
year annual average of 5.65 ± 0.76 to the 11-year annual average of
12.49 ± 3.68 (Fig. 7), while the ΔET decreased from -0.50 ± 0.07 mm
to -0.79 ± 0.19 mm (Fig. 11). However, the recovery pattern of albedo
did not synchronize with the recovery pattern of ET in the tropical and
the northern evergreen forests. Specifically, the annualΔLAI in the trop-
ical and the northern evergreen regions continuously increased after
forest loss (Fig. 12), corresponding well with the ΔET trend (Fig. 11)
but contradicted the increased pattern of the ΔAlbedo (Fig. 7). The
fact that the annual ET in the tropical and the northern evergreen
areas gradually recovered to its initial status implied the gradual recov-
ery of forest from the perspective of water use. However, the annual
ΔAlbedo in those two regions kept deviating from the original status
after forest loss, suggesting that the secondary succession of forests at
the disturbed sites did not force the albedo back to the initial state.
n change (ΔET) in 2006, 2011, and 2016. The dots with different colors refer to sampled
LST and ΔET. The trend of the grey line suggests how ΔET is related to ΔLST. R2 denotes

are masked out (as we described in Section 2.4.5).
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The increased annual ΔAlbedo accompanied by the increased annual
ΔLAI in the tropicswas also reported by Alibakhshi et al. (2020), who in-
dicated that the relationship between albedo and LAI varied over geo-
graphical locations. Therefore, additional efforts with field observations
are necessary to determine the underlying mechanisms responsible for
this relationship.

4.2. Impacts of forest loss on LST

Forest loss generated local cooling in the alpine tundra but resulted
in long-term local warming in the arid/semiarid, northern, tropical,
and temperate climate zones, though with discrepancies (Figs. 4, 5).
However, from the perspective of seasonal ΔLST, negative winter ΔLST
was observed in the arid/semiarid and northern evergreen forests, as
well as the northern deciduous forests (Fig. 5). Becausemost of the sam-
pled sites in the arid/semiarid and northern regions are located at
higher latitudes, the increase in bare land from forest loss not only facil-
itated snow accumulation but also reduced the melt rate (Gelfan et al.,
2004), thereby contributing to enhanced winter albedo. Besides, the ET
reduction in the arid/semiarid and northern regions was less prominent
than in the tropical and temperate regions (Fig. 11), so the coupling effect
in the winter was dominated by albedo cooling in northern latitudes
(Jackson et al., 2008).

The winter cooling at higher latitudes in this study echoes model-
dependent experiments (Davin and de Noblet-Ducoudré, 2010; Loranty
et al., 2014; van der Molen et al., 2011) and observation-driven assess-
ments (Alkama and Cescatti, 2016; Bonan, 2008; Duveiller et al., 2018;
Lee et al., 2011; Zhao and Jackson, 2014). For annual LST, however, we
find inconsistent results compared to previous studies. For instance,
Alkama and Cescatti (2016) demonstrated annual cooling after forest
loss at latitudes north of 50°N in North America, while Duveiller et al.
(2018) and Li et al. (2015) suggested that forest loss resulted in decreased
mean LST frommid-latitudes. In this study, post-disturbance LSTwith 30-
m spatial resolution indicates the annualwarming in the northern sample
sites with the maximum latitude at 48.917°N.

4.3. Driving effects of ΔET and precipitation on local LST associated with
forest loss

Forests generally have lower albedo than adjacent open lands.
Therefore, with forest loss, increased albedo contributes to less absorp-
tion of incoming solar radiation and cooler LST. Meanwhile, the latent
heat loss due to decreased ET counteracts the albedo-induced RF. The
sign and magnitude of the ΔLST depend mainly on those two biophysi-
cal processes. From the relationships between ΔLST with ΔAlbedo and
ΔET, respectively, enhanced LST is related to decreased ET (Fig. 16)
but increased albedo (Fig. 15a–c). This suggests that the cooling effect
of increased albedo can be offset by the warming effect of reduced ET,
though previous studies demonstrate contradicting results across
northern region (Alkama and Cescatti, 2016; Davin and de Noblet-
Ducoudré, 2010; Duveiller et al., 2018; Lee et al., 2011; Li et al., 2015).

From the stepwise fit for ΔLST (Section 3.6.3), ΔAlbedo shows more
variation relative to ΔLST than that of ΔET, but the role of ΔAlbedo in
predicting ΔLST should be concluded carefully. The stepwise fit for
ΔLST suggests a positive relationship between ΔAlbedo and ΔLST, con-
tradicting the biophysical mechanism that increased albedo contributes
to reduced radiative energy flux and ideally leads to local cooling if other
land surface variables remain constant. Because post-disturbance ΔLST
in a local scale is dominated by ΔAlbedo and ΔET, the resultant local
warming highlights that the decreased-ET-induced warming offsets
the increased-albedo-induced cooling. The abovementioned process is
not observed through stepwise fit forΔLST due to the following reasons.
First,ΔAlbedo andΔET are not independent from each other. Albedo is a
direct measurement, but remote sensing ET is a model product instead
of ground observation, and albedo is used as input to predict ET in the
MOD16A2 product (Mu et al., 2011). Besides, albedo is generated at
15
30 m spatial resolution, while ET is at 500 m spatial resolution. The
coarser resolution in ET data adds noise when fitting post-disturbance
ΔLST. Therefore, the results from stepwise fit for ΔLST should be
interpreted carefully.

The confounding effects of ΔAlbedo and ΔET on ΔLST are closely re-
lated to precipitation. Specifically, the tropics and the temperate regions
experienced stronger and longer post-disturbance warming (Figs. 4, 5),
resulting from prominent ET reduction in those two regions (Figs. 10,
11), and were accompanied by greater annual precipitation (Fig. 14).
But for the climate zones with lower precipitation, such as the arid/
semiarid, the northern, and the alpine tundra (Fig. 14), moderate ET re-
duction was detected, even slightly enhanced ET in some regions
(Figs. 10, 11). It led to relatively weak warming in the arid/semiarid
and the northern regions, as well as local cooling in the alpine tundra
(Figs. 4, 5). The extent of ET reduction is also determined by how tran-
spiration and evaporation change after forest loss; this is beyond the
scope of this research but should be explored in further studies.

4.4. Uncertainties

This study provides new evidence of the biophysical effect of forest
loss on LST and identifies the key role of decreased-ET-induced
warming on post-disturbance LST. However, uncertainties can still be
identified.

4.4.1. Uncertainties from coarser spatial resolution of ET data
The ET from MOD16A2 (V006) is improved by Mu et al. (2011). In

contrast with the old algorithm where stomatal conductance shares a
constant value across all biomes, the new algorithm allows the mean
potential stomatal conductance per unit leaf area to vary with different
land cover types. Land cover changes are taken into considerationwhen
specifying the biome physiological parameters (e.g., stomatal conduc-
tance) in the MOD16A2 (V006) as the MODIS land cover product used
in the improved algorithm is a three-year smoothed land cover dataset
(MCDLCHKM) (Running et al., 2019). Therefore, we consider that the
MOD16A2 (V006) data is qualified to provide ET data in studies
concerning land cover changes. However, the coarser spatial resolution
of MOD16A2 (500 m × 500 m) brings about a potential issue of incon-
sistent forest type surrounding the sampled 3 × 3 image chips from
the Landsat dataset. Because the pixels that meet the existing masking
criteria (i.e., forests that only experience forest loss in 2005 and the veg-
etation type is consistent before and after the forest loss) are quite dis-
crete, and the further requirement of similar surrounding vegetation
types ends upwith an empty result of sample sites in all the five climate
zones, we compromise on a less parsimonious mask that sets the sur-
rounding pixels as forest instead of the same forest type. Potential un-
certainties should be considered when using ET and LAI from the
MODIS 500m product to represent the corresponding variable in pixels
with a finer resolution.

4.4.2. Uncertainties from the lack of field data validation
Field data validation, if available, will help ensure that the remote

sensing products or meteorological datasets used in this study are ro-
bust. However, we have little concern about the uncertainty caused by
the lack of field data validation, because the remote sensing products
and meteorological datasets used here have been carefully examined
in previous studies. Specifically, the LST algorithm has been validated
by Ermida et al. (2020) using in-situ LST in 12 stations. They found a
good agreement between Landsat LST and in-situ LST. Similarly, the al-
gorithm used to derive land surface albedo has been validated by Liang
et al. (2003) using field data at one of 24 NASA EOS (Earth Observing
System) Land Core Validation Sites. They suggested a good consistency
between filed data and Landsat-derived shortwave albedo. Other prod-
ucts used in this study (i.e., evapotranspiration, leaf area index, and pre-
cipitation) have also been validated (Mu et al., 2011; Myneni et al.,
2015; Thornton et al., 2017) and extensively used in related works
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(Hao et al., 2021;Holden et al., 2018; Huet al., 2021;Maness et al., 2013;
Meng et al., 2020; Vanderhoof and Williams, 2015; Wang et al., 2016;
Zhou et al., 2018).

4.4.3. Uncertainties from not considering the variation of surface roughness
This study focuses on the response of post-disturbance local LST to

two major biophysical processes (i.e., albedo and ET), but the local
warming attributed to decreased surface roughness should also be
noted. Though previous studies suggested that the biophysical temper-
ature effects of deforestation aremainly controlled by changes in albedo
and evapotranspiration (Bala et al., 2007; Li et al., 2015; Liu et al., 2019;
Prevedello et al., 2019), the variation of surface roughness also regulates
the post-disturbance LST in addition to albedo and ET. Some studies rec-
ognized the importance of surface roughness (Khanna and Medvigy,
2014; Yuan et al., 2021), and even considered surface roughness as a
key driver for local changes in surface temperature (Chen and Dirmeyer,
2016; Davin and de Noblet-Ducoudré, 2010; Lee et al., 2011; Winckler
et al., 2017).With deforestation, decreased surface roughness tends to re-
duce turbulent exchanges. The weakened turbulent exchanges cannot
transfer the energy available at the surface to the atmosphere, thus lead-
ing to local warming (Bonan, 2015; Davin and de Noblet-Ducoudré,
2010).

5. Conclusions

Biophysical effects of forest loss on LST have been extensively
studied on local and global scales, but to the best of our knowl-
edge, few large-scale studies have been conducted with fine spa-
tial resolution. Space-for-time substitution used in most studies
treats the current vegetation at control sites as a substitute for
pre-disturbance vegetation, ignoring the vegetation difference be-
tween disturbed sites and control sites and the interannual varia-
tion in vegetation that is not caused by forest loss, but by natural
growth or background climate. We adopted a synergetic approach
to minimize the abovementioned concerns. Specifically, we subtracted
the trend detected at control sites from the time series at disturbed
sites; the remaining signal allowed comparison before and after forest
loss to evaluate the pure impact of forest loss on the land surface vari-
ables.

We investigated how forest loss affected LST through biophysical
processes with 30 m spatial resolution data. Increased albedo was ob-
served at all the disturbed sites, and its cooling effect was counteracted
by decreased-ET-inducedwarming in the arid/semiarid, northern, trop-
ical, and temperate regions, leading to net annual warming. Though the
stepwise fit for ΔLST suggests that ΔAlbedo plays a key role in fitting
ΔLST, it contradicts the biophysical mechanism that increased albedo
leads to local cooling, therefore should be interpreted with caution.
From the perspective of seasonal ΔLST, the sample sites in the
arid/semiarid evergreen and northern forests (i.e., the evergreen
and deciduous) experienced winter cooling. Besides, the confound-
ing effects of ΔAlbedo and ΔET on ΔLST were closely related to pre-
cipitation. The climate zones with greater precipitation (i.e., the
tropical and the temperate) experienced stronger and longer
warming after forest loss due to larger ET reduction, whereas the cli-
mate zones with less precipitation (i.e., the arid/semiarid, the alpine
tundra, and the northern) experienced mild local warming or even
local cooling, accompanied by lower ET reduction or even slightly
increased ET. Forest loss decreased LAI in all the five climate zones,
with stronger impacts on the evergreen than on the deciduous for-
ests. ΔLAI suggests continuous forest recovery in the tropical, tem-
perate, and northern regions, but it has limited help in explaining
the post-disturbance ΔLST because the forest recovery inferred by
LAI does not necessarily synchronize with the recovery of albedo
or ET. Overall, this study explores biophysical effects of forest loss
on local LST, identifying the key role of decreased-ET-induced
warming after deforestation.
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