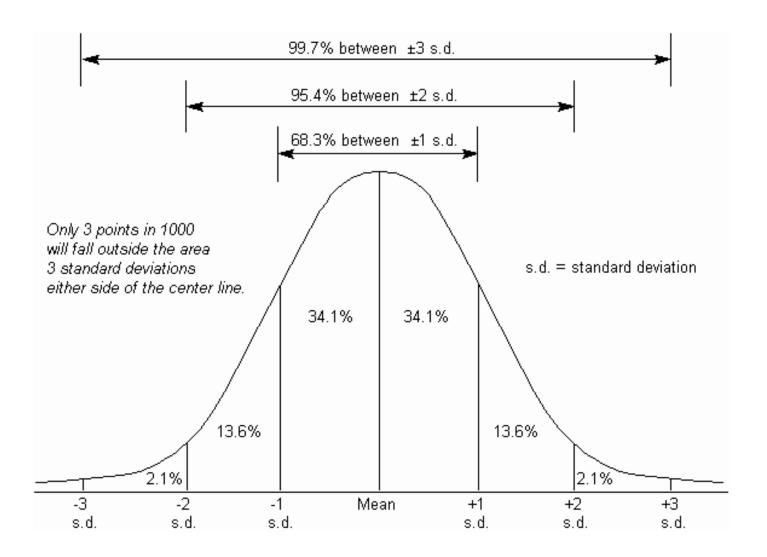
Is it significant?

Making Experimental Data Meaningful

In this talk we will be collecting data, analyzing data using statistics, and thinking about how to represent data in meaningful ways.

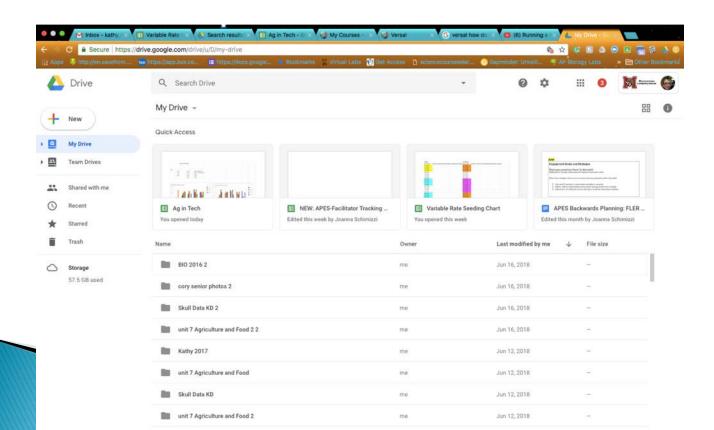
Presenter: Kathy Daniels (Mississinewa HS, Gas City, IN)


This presentation is a result of Purdue University's Summer Workshop,

Deviating from the Standard: Integrating Statistical Analysis and Experimental

Design into Life Science Education funded by HHMI.

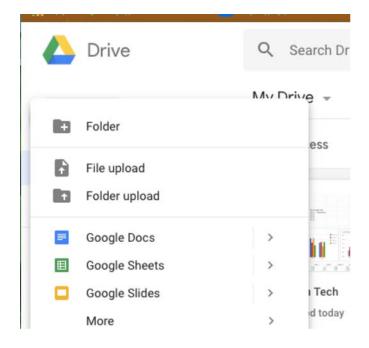
How do students (& teachers) think about probability?


- A coin...
 - What do we know?
 - If I flip the coin...what can I expect?
 - When do we start to feel suspicion if we don't get what we expect?
 - 0.1/2 = 0.50 = 50%
 - $^{\circ}$ $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ = 0.125 = 12.5%
 - $^{\circ}$ $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ = 0.0625 = 6%
 - $^{\circ}$ $\frac{1}{2}$ X $\frac{1}{2}$ X $\frac{1}{2}$ X $\frac{1}{2}$ X $\frac{1}{2}$ = 0.03125 = 3%

Google Sheets - A quick how-to

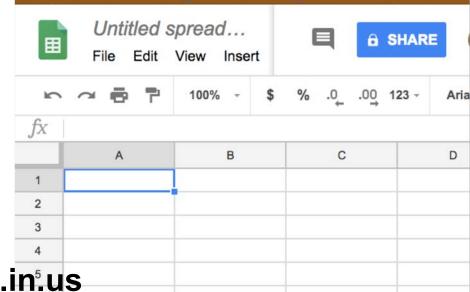
IF you have a Google account

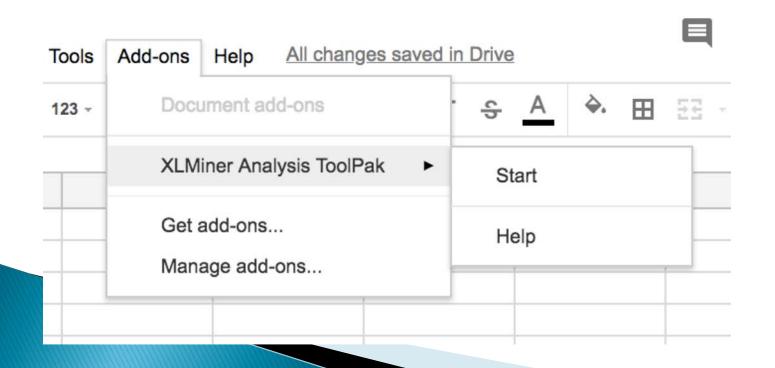
- Open your browser (Chrome is preferred)
- Go to the address bar and type Google drive



To make a new spreadsheet

Click on


Then select Google Sheets



Before we add data...

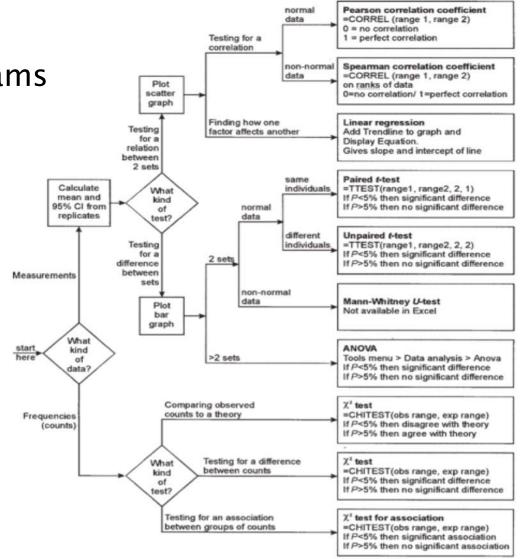
Give your new spreadsheet a name and share it with me at

kathy_daniels@olemiss.k12.in.us

The dog kennel

- Imagine you have agreed to watch your friend's dog kennel business for the weekend while they take a short vacation.
- Your kennel has 9 dogs this weekend.
- Your job is to feed, exercise, and clean up after the dogs for three days - and to keep them healthy for their owners.
- You will keep a spreadsheet of their weight to show your friend how responsible you are!

Make a spreadsheet


	A	В	С	D	E	
1		Weight on Arrival	Weight on Departure	Weight Change	% change	
2	Coco	5	2	-3	-60.00	
3	Tootsie	12	10	-2	-16.67	
4	Buttons	16	8	-8	-50.00	
5	Lacy	10	12	2	20.00	
6	Sammy	3	4	1	33.33	
7	Solo	7	10	3	42.86	
8	Waylow	9	8	-1	-11.11	
9	Red	25	22	-3	-12.00	

What kinds of graphs might be helpful in determining the health of the dogs at the end of the weekend?

Types of Descriptive Stats students can use

How do I pick what analysis tools to use?

- Graphs
 - Line, bar, pie, histograms
 - Linear Regression
- T Tests
 - Paired, Unpaired
- ANOVA
- Chi Square

What can farmers do to increase crop yields?

Think about costs, benefits, and possible issues

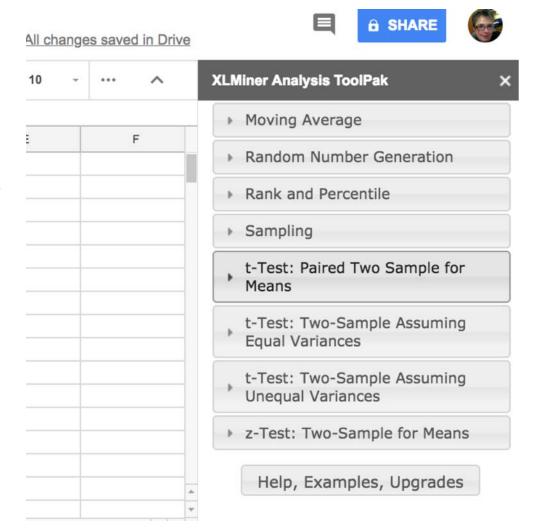
- Fertilizer
- Herbicides/Pesticides
- Seed Choice
- Field Conditions (Soil Testing / Drainage)

How do farmers make their choices?

What defines "good enough"?

Who makes the decisions for the farm?

How can we help our students think about these factors objectively?


What is a T-test?

- A test designed to determine the significance of the data collected during an experiment.
 - Can compare the mean of one population to a fixed constant (One-Sample t-test)
 - Can compare the mean of 2 independent populations to each other (Two-Sample t-test)
 - Can compare 2 linked measurements, such as before and after of the same individuals (Paired ttest)

To DO a t-test on Google Sheets

- Open the XLMiner ToolPak
- Choose t-test Paired Two Sample for Means

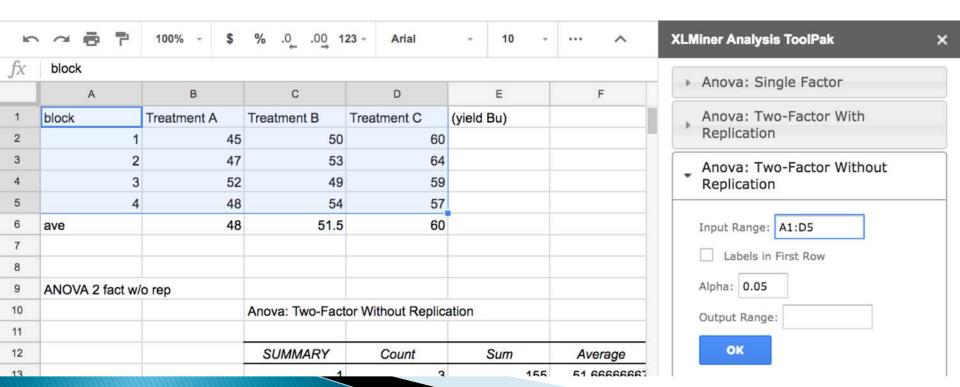
Calculate Average

Fill in data ranges and select output location

Block	Variety A	Variety B
1	47	45
2	46	50
3	51	60 t-Test
4	48	57 T- Test

t-Test: Paired Two Sample	for Means	
	Variety A	Variety B
Mean	48	53
Variance	4.666666667	46
Observations	4	4
Pearson Correlation	0.7962775716	
Hypothesized Mean Differe	0	
df	3	
t Stat	-1.912730139	
P(T<=t) one-tail	0.0758589777	
t Critical one-tail	2.35336342	
P(T<=t) two-tail	0.1517179554	
t Critical two-tail	3.182446305	

What does the p value tell us?


- ▶ If the "p is low, reject the H₀"
- If the p value is generally less than 0.05 then we can be relatively certain the difference seen is significant, our alternate hypothesis, H_a, is supported
 - 5% chance the difference is due to random chance
 - 95% chance the difference is due to treatment or variable being tested
- Generally H₀ is that there is *no effect* and H_a is that there is some effect

ANOVA

- Analysis of Variance and allows you to see if two variables in an experiment influenced one another in the experiment.
 - One-way ANOVA compares data from single category but with different levels of the variable
 - Two-way ANOVA compares data from 2 different categorical levels

To do an ANOVA

- Follow same steps as in the t-test except select Anova: Two-Factor without replication
- Then for Input Range select entire table
- Check Labels in First Row box
- Select location for output analysis

What do these p values mean?

Anova: Two-Factor	Without Replication	n				
SUMMARY	Count	Sum	Average	Variance		
1	3	155	51.66666667	58.33333333		
2	3	164	54.66666667	74.33333333		
3	3	160	53.33333333	26.33333333		
4	3	159	53	21		
Treatment A	4	192	48	8.666666667		
Treatment B	4	206	51.5	5.666666667		
Treatment C	4	240	60	8.666666667		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Rows	13.66666667	3	4.55555556	0.4939759036	0.6995242793	4.757062664
Columns	304.6666667	2	152.3333333	16.51807229	0.003631223645	5.14325285
Error	55.33333333	6	9.22222222			
Total	373.6666667	11				

LSD

- Least Significant Difference
 - How is it calculated?
 - What does it mean?

So tonight & tomorrow you need to think about Organizing, Graphing, Testing & Interpreting Data

- 1. Think and talk about how to organize the data <u>before</u> making your graphs or performing your statistical analysis
- 2.Compare the different visual representations (plots) of the data what graph really gives you a helpful and accurate "picture" of the data?
- 3. Select one plot that your group feels is the best representation of the data and be prepared to justify your choice
- 1.Select one statistical test (t-test or ANOVA) that you could do on your data set

Versal Self-guided course in Statistics https://versal.com/c/ybyfr3/summary

To contact me:

Kathy daniels@olemiss.k12.in.us