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The n-body Problem

 C(lassically, seek to calculate motion of n bodies under the action of
Newtonian gravity, or other interactive forces

 Seek to model small-scale interactions (1 — 100 bodies)

* No closed form, mathematical solution to the coupled differential equations
that describe the interactions

Simulation parameters:

 Masses vary between [1, 100]
* Initial velocities varying between [-1, 1]
1 event = 2560 steps per unit time t, simulated until t = 10.

Results:
d*q, " Gmim; (q; — q;) Uy 3 bodies (4000 events) - 4 bodies (500) - 5 bodies (500)
g g2 Z 3 - q. (1) * 24 hours to produce ~500 events for 3 body simulation, ~200 events for 4 and 5 body
o la; - aif 1 simulation
e The problem must be approached through numerical solutions of the
differential equations « Neural network chosen to solve coupled differential equations due to ability to

e The problem is chaotic — extreme sensitivity to initial conditions, impossible to

predict accurately after a long period of time covariates.

 Simulate n bodies interacting through gravity, G=1, for N bodies = 3, 4, 5.

approximate function that describe the relationship between an outcome and a set of
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Machine Learning Approach to the n-Body Problem

Fig. 5. Training (Orange) and
Testing (Blue) MAE per epoch for
3 body network.

Fig. 1. Path of n particles interacting through gravity, simulated using Brutus [1].

Brutus simulation originally developed by Protegies, Zwart & Boheckolt [1] and

adapted by Breene et al. [2].

The Brutus simulation is an arbitrary precision brute force simulation that loops
over each combination of particles and directly calculates the acceleration from

* Many have already demonstrated ability of neural networks to predict the states of
dynamical systems in time (See [3] [4] [5]).
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Figure 3. Schematic of the network, drawing from [6]

 Need different neural network for each n-body simulation, since each n represents
different computational complexity

 Each is optimized by conducting a Grid Search over a set of parameters to determine
which vyields the best performing network (evaluated using validation MAE): the
parameters optimized are the number of hidden layers of the network and the
number of nodes per layer.

At each combination of parameters, a 5-fold validation is conducted. K-Fold validation
consists of randomly splitting the data in K batches to train K-1 batches and validate
on the last, which gives an unbiased estimate of the network's performance on
unseen data.
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achieve about an order of magnitude better than our results of a more complex
system. We achieved similar results for the same problem.

Figure 4. Grid search MAE results for 4 and 5 bodies.
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 Higher MAE than Breene at al reflects increased dimensionality of problem (2 ->
5%*n)
* Comparable performance between 3, 4, and 5 bodies -> early indication of the
scalability

e Predicted results do not observe conservation laws as well as simulation. Paths

also don't observe same smooth path as simulation
 Networks seemed to have achieved a certain amount of accuracy, but need more

work to achieve greater accuracy akin to the result in Breene et al.

 Seek to generalize to higher dimensional problems
 Consider alternative data driven methods, starting from new architectures of neural

networks, LSTM, CNN, etc.
 Develop way to incorporate physics into the neural network (e.g. via Physics Informed

Neural Networks, ChaosNet etc.)

* Apply method to other chaotic systems that obey physical laws (atoms, turbelent
flow, etc.)

* Seek to increase predictability of physical chaotic systems
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