AEV Codes and Statistics

Lab 01
1/09/2019

celerate(2,0,27,4);
goFor(2.7);
celerate(2,27,15,1);
brake(2);
reverse(2);
celerate(4,0,31,2);
motorSpeed(4,35);
goFor(1);
brake(2);
goFor(3);
brake(1);
reverse(1);
celerate(1,0,19,2);
goFor(2);
motorSpeed(2,35);
goFor(2);
celerate(2,35,19,5);
goFor(2);
celerate(4,19,0,3);
brake(1);
brake(2);


Lab 02
1/16/2019

motorSpeed(4,25);
goFor(2);
motorSpeed(4,20);
goToAbsolutePosition(295);
reverse(4);
motorSpeed(4,30);
goFor(1.5);
brake(4);


Lab 03
2/1/2019

celerate(4,0,25,3);
goFor(1);
motorSpeed(4,20);
goFor(2);
reverse(4);
motorSpeed(4,25);
goFor(2);
brake(4);

Power v. Distance Plot
(Graph 1.)

Power v. Time Plot
(Graph 2.)

Graph 1. is representing the performance of the AEV in terms of power as time increases. The plots on the graph are portraying the amount of power used during the specific time of the trial. Graph 2., on the other hand, represents the performance of the AEV in terms of power relative to the amount of distance it traveled. Although the graphs are different, they both depict the same scenario and the data can be explained the same way. In Graph 2., there is a surge of power when the AEV is starting up for the first 0.2 m, and once the AEV has steadied itself, the power output drops from about 5 watts to 3.5 watts and continues until 0.45 meters. This shows how the AEV uses a lot of power trying to gain momentum but doesn’t travel very far. This is reflected in Graph 1. by the steadily increasing power for the first 3 seconds. Once the AEV reaches a constant speed, both graphs indicate a power of around 5 watts. Afterward, the power drops to about 3.0 watts on each graph, which shows the AEV decreasing speed. When the AEV reverses direction; however, there is another surge in power, this time up to about 9 watts at the 0.5 m and 6-second mark. After this initial burst of power, the AEV power immediately drops down to around 6 watts, as shown by each graph. The AEV continues in this direction until it has traveled a total of 1m, or 8 seconds, at which point the power goes to zero which indicates that the AEV motor has stopped. This data allowed the engineers to see where the most energy was being used and showed areas for potential improvement of the AEV.


Lab 07- Test motor configuration
2/27/2019

Test 1:
motorSpeed(4,35);
goToAbsolutePosition(150);
motorSpeed(4,35);
goToRelativePosition(30);
brake(4);

Test 2:
motorSpeed(4,35);
goToAbsolutePosition(150);
brake(4);
goFor(5);
motorSpeed(4,35);
goToRelativePosition(30);
brake(4);

Test 3:
motorSpeed(4,35);
goFor(5);
brake(4);
reverse(4);
motorSpeed(4,35);
goFor(2);
brake(4);

Test 4:
motorSpeed(4,35);
goToAbsolutePosition(150);
brake(4);
goFor(5);
reverse(4);
motorSpeed(4,35);
goToAbsolutePosition(150);
brake(4);
goFor(5);


Lab 9 – Coasting
03/05/2019

Test 1:
motorSpeed(4,25);
goToRelativePosition(250);
brake(4);
goFor(10);

Test 2: 
motorSpeed(4,25);
goToRelativePosition(225);
brake(4);
goFor(10);

Test 3:
motorSpeed(4,25);
goToRelativePosition(220);
brake(4);
goFor(10);


Lab 10 – Active Braking
3/06/2019 – 3/09/2019

Test 1:
celerate(4,0,35,1);
motorSpeed(4,35);
goToAbsolutePosition(300);
brake(4);
reverse(4);
motorSpeed(4,35);
goToRelativePosition(40);
brake(4);
goFor(5);

Test 2:
celerate(4,0,40,1);
motorSpeed(4,40);
goToAbsolutePosition(210);
brake(4);
goFor(1);
reverse(4);
motorSpeed(4,30);
goToRelativePosition(40);
brake(4);
goFor(5);

Test 3:
celerate(4,0,40,1);  //accelerates all motors to 40% in 1 sec
motorSpeed(4,40); //initializes all motors at 40%
goToAbsolutePosition(208); // motors run for 9 ft
brake(4); //brake all motors
goFor(1); //motors run for 1 sec
reverse(4); //reverses all motors
motorSpeed(4,30); //initializes all motors at 30%
goToRelativePosition(40); // motors run for 1.5 ft
brake(4); //brake all motors
goFor(5);  //motors run for 5 sec

Test 4:
celerate(4,0,40,1);  //accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208);// motors run for 9 ft
brake(4); //brake all motors                
goFor(1);//motors run for 1 sec                 
reverse(4); //reverses all motors              
motorSpeed(4,30); //initializes all motors at 30%         goToRelativePosition(30); // motors run for 1 ft
brake(4); //brake all motors               
goFor(8); //motors run for 8 sec                

Test 5:
celerate(4,0,40,1); //accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208); // motors run for 9 ft
brake(4);//brake all motors
goFor(1); //motors run for 1 sec                
reverse(4);  //reverses all motors             
motorSpeed(4,30); //initializes all motors at 30%         goToRelativePosition(35); // motors run for 1.5 ft brake(4);//brake all motors
goFor(8);  //motors run for 8 sec

Test 6:
celerate(4,0,40,1);//accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208);// motors run for 9 ft
brake(4);//brake all motors
goFor(1); //motors run for 1 sec
reverse(4);//reverses all motors
motorSpeed(4,30); //initializes all motors at 30%  
goFor(1); //motors run for 1 sec
brake(4);//brake all motors
goFor(8);  //motors run for 8 sec

Test 7:
celerate(4,0,40,1); //accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208);// motors run for 9 ft brake(4);//brake all motors
goFor(1);  //motors run for 1 sec
reverse(4); //reverses all motors
motorSpeed(4,30);  //initializes all motors at 30%        goFor(1);//motors run for 1 sec
brake(4); //brake all motors
goFor(8);//motors run for 8 sec

Test 8: INCONCLUSIVE
celerate(4,0,40,1);  //accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208);// motors run for 9 ft brake(4);//brake all motors
goFor(1); //motors run for 1 sec
reverse(4); //reverses all motors
motorSpeed(4,30);  //initializes all motors at 30%        goFor(1); //motors run for 1 sec
brake(4);  //brake all motors
goFor(8); //motors run for 8 sec
reverse(4);//reverses all motors
celerate(4,0,40,1); //accelerates all motors to 40% in 1 sec
goToRelativePosition(100);// motors run for 4.5 ft
brake(4); //brake all motors
goFor(1); //motors run for 1 sec                 reverse(4);//reverses all motors
motorSpeed(4,40);  //initializes all motors at 40%        goFor(3); //motors run for 3 sec

Test 9:
celerate(4,0,40,1); //accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208); // motors run for 9 ft
brake(4); //brake all motors
goFor(1);  //motors run for 1 sec                 reverse(4);//reverses all motors
motorSpeed(4,35);  //initializes all motors at 35%         goFor(1); //motors run for 1 sec
brake(4); //brake all motors
goFor(8); //motors run for 8 sec                  reverse(4);//reverses all motors                 celerate(4,0,40,1);//accelerates all motors to 40% in 1 sec
oToRelativePosition(50); // motors run for 1.5 ft
brake(4); //brake all motors
goFor(3);//motors run for 3 se
reverse(4);  //reverses all motors
motorSpeed(4,40);  //initializes all motors at 40%
goFor(3); //motors run for 3 sec

Test 10:
celerate(4,0,40,1); //accelerates all motors to 40% in 1 sec
goToAbsolutePosition(208);// motors run for 9 ft
brake(4); //brake all motors
goFor(1); //motors run for 1 sec
reverse(4);//reverses all motors
motorSpeed(4,35); //initializes all motors at 35%
goFor(1);   //motors run for 1 sec
brake(4);//brake all motors
goFor(8);  //motors run for 8 sec
reverse(4); //reverses all motors
celerate(4,0,40,1);  //accelerates all motors to 40% in 1 sec
goToRelativePosition(50); // motors run for 1.75 ft brake(4);//brake all motors
goFor(3);  //motors run for 3 sec

 


Performance Test 1:
celerate(4,0,40,1);
goToAbsolutePosition(210);
brake(4);
goFor(1);
reverse(4);
motorSpeed(4,35);
goFor(1);
brake(4);
goFor(8);

reverse(4);
celerate(4,0,40,1);
goToRelativePosition(50);
brake(4);
goFor(3);

 


Performance Test 2:
3/26/2019

reverse(4); //move forward
motorSpeed(4,40);
goToAbsolutePosition(205);
brake(4);
goFor(1);
reverse(4); //reverse to brake
motorSpeed(4,40);
goFor(1);
brake(4);
goFor(8);

reverse(4); //move forward
motorSpeed(4,30);
goToRelativePosition(100);
brake(4);
goFor(6);
goFor(7);
reverse(4);
motorSpeed(4,50); //keep orientation to exit loading zone
goFor(3);

 


Final Performance Test:
4/10/2019

// GET TO STOP SIGN
reverse(4); //move forward
motorSpeed(4,35);
goToAbsolutePosition(201);
brake(4);

// BRAKE AT STOP SIGN
goFor(1);
reverse(4); //reverse to brake
motorSpeed(4,35);
goFor(1);
brake(4);

goFor(7.5);

// ADVANCE THROUGH STOP SIGN
reverse(4); //move forward
motorSpeed(4,30);
goToRelativePosition(105);
brake(4);
goFor(3);

goFor(5);

// EXIT LOADING ZONE
reverse(4);
motorSpeed(4,50); //keep orientation to exit loading zone
goToAbsolutePosition(460);
brake(4);

// BRAKING WITH CABOOSE
goFor(1);
reverse(4);
motorSpeed(4,47);
goFor(1.5);
brake(4);

//WAIT AT STOP SIGN
goFor(8);

// EXIT STOP SIGN WITH CABOOSE
reverse(4); //reverse to exit stop sign
motorSpeed(4,45);
goToAbsolutePosition(220);
brake(4);

//RETURN TO STARTING ZONE
goFor(2);
reverse(4);
motorSpeed(4,45);
goFor(2);
brake(4);

 

Score For Final Performance Test:

 

Total Cost For AEV: