A Reflection on Natural History (Part 2)

Before the Scientific Revolution, any attempt to ascribe order to nature was largely rooted in the study of holy texts, rather than in the nature of minerals and organisms themselves. The development of natural history as an observational science in the seventeenth century changed this entirely and lives on to be a crucial element in the study of living organisms today.

It has become popular in the modern era to dismiss natural history as “mere” classification, lacking empirical methods, but this could not be further from the truth. Accurate classification is an essential element of understanding the natural world. There is not a more essential answer to the question “what is x?” than to give the classification of x, i.e. put it in relation to other living beings. Such an indefinite number of characteristics can be inferred by an organism’s taxonomic standing alone that this serves as a sort of shortcut to ripping individual organisms to shreds and painstakingly having to analyze and reanalyze the constituent parts of each individual organism. While an understanding of the anatomy of individuals within a species is of interest to some and has intrinsic value, the understanding of organisms in context with other similar and dissimilar organisms also has value. For those with questions unconcerned with the minutia of differences between individuals and who are focused with broader themes in evolution or organismal biology, a system of classification serves as a heuristic to understanding basic aspects of the organism at hand in relation to its own or other groups of organisms. Today, rather than defining natural groups by shared characteristics, these characteristics aid in the diagnoses of natural groups, which rather are defined by evolutionary relatedness. Still a need for the accurate classification of organisms persists.

Natural history as an observational rather than experimental science is not an outdated way of conducting zoology, ecology, or botany. Research lab settings are artificial and for those concerned with ethology, ecology, and observational field studies are crucial for comprehending the life history and behavior of animals and plants. Such observational studies have formed the bedrock of the modern understandings of these subjects. Even experimental studies themselves are inspired by observational studies after all.

Carolina Parakeet specimens are among the irreplaceable extinct specimens held in the Tetrapod Collection. (Photo Credit: Chelsea Hothem 2016)

Carolina Parakeet specimens are among the irreplaceable extinct specimens held in the Tetrapod Collection. (Photo Credit: Chelsea Hothem 2016)

Natural history museums and the specimens they contain also retain both intrinsic and practical value. Far from ‘mere’ cabinets of curiosities, natural history specimens serve as physical records of organisms, vouchers, from throughout history. The tags of these specimens usually record the location where the specimen was collected, the date, the stomach contents of the organism (for animals), pre-preparation measurements, the name of the collector, the cause of death, and many other bits of information that prove invaluable for research. Each specimen is comparable to a library book brimming with information that can inform future scientists on topics ranging from biodiversity, species distribution, the changes in species over time, impacts of humans over time, genetic information, historic climates, and conservation.

A young bluebird (Sialia sialis) that died after being entangled in this plastic. This is an unfortunate reminder that what humans do with their trash has repercussions for other species.This specimen was prepared by Tetrapod Curatorial Assistant, Grant Terrell and is now housed in the Museum of Biological Diversity’s Tetrapod Collection. (Photo: Grant Terrell, 2016)

A young bluebird (Sialia sialis) that died after being entangled in this plastic. This is an unfortunate reminder that what humans do with their trash has repercussions for other species.This specimen was prepared by Tetrapod Curatorial Assistant, Grant Terrell and is now housed in the Museum of Biological Diversity’s Tetrapod Collection. (Photo: Grant Terrell, 2016)

A modern example of the utility of museum collections is the application of DDT and its effects on North American birds. Chemicals within DDT were responsible for the terminal thinning of eggshells in birds exposed to the pesticide. Not until contemporary eggs could be compared with eggs in museum collections, were scientists able to confirm why avian populations were suffering.  If naturalists had not been consistently collecting eggs from North American bird species, humans may have continued using DDT without fully understanding its effects on non-targeted species. The value of a particular specimen only increases with time. This lesson can effortlessly be learned after only a single encounter with a specimen of a recently extinct species such as the Passenger Pigeon. Individuals within museum collections and the observations of naturalists are now all that remain for researchers with questions about such species. The advent of new technologies only increases the value of the work of naturalists such as Sir Hans Sloane. Researchers now sequence the DNA of specimens and compare it to that of modern individuals. It is unknowable what advances may further enhance the value of the study of natural history.

Thus it is very important to ensure preservation of specimens for future generations. Please support our efforts through our current fundraiser.

About the Author: Grant Terrell is a second year student at the Ohio State University who is currently double-majoring in Evolution & Ecology and History. He currently works as a Curatorial Assistant in the Tetrapod Collection of the Museum of Biological Diversity and focuses on Ornithology.

About the Author: Grant Terrell is a second year student at the Ohio State University who is currently double-majoring in Evolution & Ecology and History. He currently works as a Curatorial Assistant in the Tetrapod Collection of the Museum of Biological Diversity and focuses on Ornithology.

Works Cited

Huxley, Robert. The Great Naturalists. London: Thames & Hudson, 2007. Print.

Otter, Christopher. “Natural History.” History 3712. The Ohio State University Main Campus, Columbus. 6 Sept. 2016. Lecture.

Stott, Rebecca. Darwin’s Ghosts: The Secret History of Evolution. New York: Spiegel & Grau, 2012. Print.

Species of October: Eastern Hellbender

Most of the amphibian species in the Tetrapod Collection are preserved in jars and, since the specimens are rather small, many of these jars aren’t very big. For something like a frog or a toad, a large jar isn’t really needed. However, there is one species of amphibian that is so massive, we need to use our biggest jars in order to contain it. If you like amphibians, you may want to read on.

The Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) is a salamander species that can reach up to two feet in length. Just think about the average salamander length of 4-8 inches, and then triple that! If that isn’t enough to impress you, these salamanders can have a life expectancy of anywhere

A jar containing two Eastern Hellbenders from our collection

A jar containing two Eastern Hellbenders from our collection

from 25 to 60 years! With that kind of lifespan, the Eastern Hellbender can probably outlive most of your pets. Just like their name implies, the Eastern Hellbender is found throughout the eastern U.S. with a few populations in the southern end of Ohio. They are aquatic amphibians that can be found under large stones in rocky riverbeds where there is an abundance of their favorite food item, crayfish. They have wrinkly brown skin, which is often used by observers to distinguish them from their closely related cousins, the Mudpuppy. For more general facts about the Eastern Hellbender, visit the Ohio Amphibians website.

We have eleven Eastern Hellbender specimens in the collection, the oldest of which was collected in the Ohio River near Cincinnati on March 22nd in 1901 (bottom left on the map). The last specimen to be added to the collection was from 1970, with no new specimens added since then. Given the size of these animals, coupled with the fact that more than half of our hellbender specimens from Ohio, you may wonder why you’ve

Localities where hellbenders were collected

Localities where hellbenders were collected

never seen one in the wild (if you have, then I truly envy you). Well in, addition to being nocturnal, these salamanders have become rather rare. While there has been some recent improvement, the population of hellbenders has been steadily declining in the last few decades. Threats such as pollution of rivers, disease, and stocking of game fish, have reduced the Eastern Hellbender’s numbers noticeably.

So as I’m sure you can imagine, finding an animal for research is very difficult. According to a recent paper by Olsen et. al (2012), eDNA methods could prove useful in finding hellbenders for study. The idea behind Environmental DNA (or eDNA) is that, by analyzing a sample of water or soil, you will be able to determine what species are in the area. In this study, Olsen et. al were able to detect Eastern Hellbenders by using the eDNA method on samples of water from rivers where these animals may be found. This opens up a whole new set of possibilities for scientific research since this method can make finding specimens much easier. To learn more about Olsen, Briggler, and Williams’ study, please click here.

It’s easy to see why these salamanders got the name hellbender. Thanks to their massive size, amazing longevity, and rarity in the wild, the Eastern Hellbender has earned a place in the hearts and minds of many naturalists; and if we keep our rivers and streams clean, we can ensure this will be true for many years to come.

References:

“Eastern Hellbender.” Ohio Amphibians. N.p., 26 Feb. 2012. http://ohioamphibians.com/salamanders/Hellbender.html

“Ohio’s Hellbender Population Set Up for Success.” Ohio Department of Natural Resources. N.p., 09 Oct. 2014.

http://ohiodnr.gov/news/post/ohio-s-hellbender-population-set-up-for-success

Olsen, Z. H., Briggler J.T., Williams R.N. 2012 An eDNA Approach to Detect Eastern Hellbenders (Cryptobranchus A. Alleganiensis) Using Samples of Water. Wildlife Research 39, 629-36. http://www.publish.csiro.au/?paper=WR12114

Species of the Month: Cane Toad

Picture of Cane Toad

Adult Cane Toad

by Raymond Gonzo, OSU zoology major

The other day I was working in the Amphibian section of the Tetrapod collection, when I saw two toad specimens that really stood out to me. The toads were almost the size of a Coke can, which is bigger than the American toads that you may find in your backyard. Another interesting thing I noticed about these toads was the fact that one specimen was collected in Fortin de las Flores, Mexico, and the second specimen came from Australia. How is it that these two specimens were collected on different sides of the planet? On the jars they were labeled Rhinella marinus, which struck a cord with me. I had heard that name many times before, but I couldn’t remember from where. A quick check through the Tetrapod Collection’s curatorial database revealed that the amphibian in question was none other than the infamous Cane Toad.

The Passenger Pigeon that I wrote about last month was a species that declined in numbers and went extinct due to human activities. The cane toad, Rhinella marinus, is an example of the opposite effect, a species that proliferates with human help.

Until the 1930s, the cane beetle, an Australian native whose larvae feast on the leaves of sugar cane, did excessive damage to the sugar cane crop. In order to control the beetle population, the cane toad was released as a new predator. The idea being that this toad would feast on the beetles and thus protect the sugar cane crop. However, it did not work out as planned, the cane toad became a major pest in itself.

Instead of controlling the beetles, the toads began eating everything in sight, which allowed them to thrive and reproduce at an alarming rate. If that weren’t enough, the toads are highly poisonous and release a deadly toxin if a predator, who has not evolved defense strategies against cane toad toxin, should try to eat them. In the Americas, there are predators who can eat the toads and consequently keep their population in check. For example, there are many crocodilian reptiles, snakes, and various species of fish that are both immune to the toxins and can be found in the toads’ natural habitat. Many Australian predators of frogs and toads are unfamiliar with the toxins and cannot tolerate them, which means they will often die from eating a cane toad. This has given the toads a chance to drastically increase in numbers. Interesting fact, the cane toad is in the same family (Bufonidae) as the American toad, Anaxyrus americanus, an example of related species having a very different effect on their environment, especially when displaced.

However, as recent studies show, over time species may evolve the ability to either recognize and avoid cane toads or be able to tolerate their toxins. In 2004, Ben Phillips and Richard Shine demonstrated that some Australian snake populations that are at risk of death by the cane toad have adapted to living with the invaders. The authors of this study found that snakes increased in size in areas where they co-exist with cane toads. Small individuals face a much higher risk of fatal poisoning by toads, thus over time this species has been selected for large body size. More recent studies have shown that spiders and ants may also help keep cane toad numbers in check. If you are interested in finding out more read this article in the Australian Geographic. You can also read the study conducted by Phillips and Shine.

There are hundreds of instances where animals from one part of the world are introduced to another area, and often times there are disastrous consequences. A local example of this is the Emerald ash

borer. The ash borer is a native to China, but turned into an invasive pest of ash trees in North America. Here at the Ohio State University, much research is being done on the impact these beetles are having on the local Ohio ecology. More information on the control of this pest can be found here.

When it comes to trying to control nature, mankind has a pretty mixed track record of both successes and failures. Invasive species such as the Norway rat, the feral pig, and the ball python are all examples of how carelessness can lead to the destruction of an ecosystem. The Cane Toad is just one in a long line of destructive invasive species, and with the increased inter-continental travel of the modern world, it certainly won’t be the last.

 

References

Phillips, B. L., and Shine R. 2004 Adapting to an Invasive Species: Toxic Cane Toads Induce Morphological Change in Australian Snakes. PNAS 101, 17150-7151.

http://www.pnas.org/content/101/49/17150.full

 

Observations from the Freshman-Brought to you by Raymond

If I said that I had planned to work at The Ohio State University’s Museum of Biological Diversity from the beginning of my college career, I’d be lying. If I said that I was aware of the museum’s existence before last October, I’d still be lying (I know. I’m just the worst).

If I were to spin a yarn about how I first got started at the museum, it would begin last semester when I was frantically searching for an undergraduate research position. As a zoology major entering my third year of college, I thought to myself, I should probably start getting zoology work related experiences to put on my resume and undergraduate research seemed the most appealing. The problem is that Sasquatch is easier to find than a professor doing zoology-related research and who is looking for an undergraduate to participate. So after much searching, emailing, crying, etc… I asked the undergraduate research office where I could go to find said professors looking for undergraduate workers. They replied that most of researchers could be found, or have an office at the University’s Museum of Biological Diversity.

Upon hearing this, my initial thought was, “We have a Museum of Biological Diversity?” My second thought was, “We have a Museum of Biological Diversity and I’m just hearing about this now?”  I took a bus out to Carmack Corner, walked up a dirt road and found this place on the very edge of the University’s land. When I first discovered the museum, I was so incredibly intrigued and excited about what could be inside. Upon further investigation however, I was incredibly disappointed to see it wasn’t an “actual” museum but more akin to the warehouse from the end of Raiders of the Lost Ark.

A picture of OSU's Museum of Biological Diversity. A very plain looking brick building.

There is the building in all its glory. When I say that this museum is out of the way, I mean it is really at the far western end of campus.

It wasn’t until the beginning of this semester that I had heard about the museum’s annual open house. I had been told that this is the one day of the year that the museum resembles the general public’s view of what an actual museum rather than a warehouse, so I decided to attend. The open house was a wonderful experience for a zoology major, such as myself. After entering the building, I was soon surrounded by specimens of exotic and colorful birds and skeletons from a wide variety of different animals. After seeing all this awesome stuff, I thought to myself, “Gosh wouldn’t it be just swell to work/intern/volunteer here?” So I had met with the curator, Dr. Angelika Nelson, and began to volunteer my time labeling and organizing specimens in the museum’s Tetrapod collection.

So it’s been a little over a month since I started at the museum (I refer to myself as a freshman for a reason) and now I have a chance to really look back and reflect on what I’ve done so far. All that I’ve really done (again, I’ve only been here a month) is print labels, organize loans, do some geo-referencing and maybe (if I should be so lucky) count how many 100-year old hummingbirds we have in our collection. Make no mistake; museum work is not for everybody. At times it can seem like long, tedious and mind-numbingly boring work.

But I love every minute of it.

I’m sure that if the average person were to come to the museum and try to do what it is that we do there, they’d either recoil in disgust or fall asleep from boredom. And that’s fine, it’s not everybody’s cup of tea. For me however, working at the museum is one of the greatest jobs I’ve ever had. Animals, in general, just wholly fascinate me and I grew up watching the old Animal Planet. When I printed labels for specimen cabinets, I got to look at some of the most exotic and unique bird species I’ve ever seen. Not to mention that I got to touch three of the endangered bird species the Tetrapod collection possess: an Ivory-Billed Woodpecker, a Passenger Pigeon and a Carolina Parakeet (I can die happy now). Working there is basically nirvana for a guy like me.

A head on picture of the Tetrapod Collection's Ivory Billed Woodpeckers.

Not going to lie… These are the most exciting specimens I have seen so far.

While working at the museum is incredibly fascinating and fun, I’d be lying (again) if I said there was only one reason why I love it there. Going into the museum and doing all this science-related work makes me feel like I’m getting closer to actually being a zoologist. For anyone who is a zoology major at OSU, I don’t need to tell you how difficult the major program is. I spent the first two years of college trying my absolute hardest just to get through the math requirements (don’t even get me started on that ungodly chemistry program). So working here (along with actually doing major courses) makes me feel as though I’m becoming a “big kid” in my field.

I’ve often said that the greatest decision that I ever made was joining the Boy Scouts. However, I think I may have topped myself by choosing to work at this museum. I love the work that I do in the Tetrapod collection and it helps me feel as though I’m actually doing something worthwhile with my time. If you’ve enjoyed reading about my experiences, then you’re in luck. My latest responsibility for the museum is to write more of these blog posts, so the fun never has to end. Until next time dear reader.

Raymond is one of our newest volunteers in the Tetrapod Collection who will be interning with us this coming fall. His current projects here included working with our amphibian and reptile collection.