
Piecing together the past:

Statistical insights into paleoclimatic reconstructions

Peter F. Craigmile

Department of Statistics, The Ohio State University

http://www.stat.osu.edu/~pfc/

This talk introduces the paper of the same name, by

Martin Tingley, Peter Craigmile, Murali Haran, Bo Li,

Elizabeth Mannshardt, and Bala Rajaratnam

To appear in Quaternary Science Reviews.

1

http://www.stat.osu.edu/~pfc/


Acknowledgments

• Supported by the Statistical and Applied Mathematical Sciences Institute

(SAMSI) and the National Science Foundation.

• Thanks to SAMSI; conversations with:

Bo Christiansen, John Haslett, Cindy Greenwood, Michael Evans,

Matthew Schofield,

and comments from:

Noel Cressie, Julien Emile-Geay, Michael Mann, Douglas Nychka,

Tapio Schneider, Eugene Wahl, and five referees.

2



The cast
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And the cruise director
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The SAMSI Paleoclimate working group

• Part of the 2009-2010 SAMSI Program on Space-time Analysis for Environ-

mental Mapping, Epidemiology and Climate Change.

• Our question:

“What are the statistical challenges surrounding the reconstruction

of past climate from incomplete instrumental and proxy data sets”?

•We believe this is an area where Statistical Scientists can and should collab-

orate with Paleoclimatologists.

(Collaborate means “both ways”).

5



The United Kingdom parliamentary report on CRU

• Analyzing climate data has it controversies.

“We cannot help remarking that it is very surprising that research in

an area that depends so heavily on statistical methods has not been

carried out in close collaboration with professional statisticians.

Indeed there would be mutual benefit if there were closer collaboration

and interaction between CRU and a much wider scientific group

outside the relatively small international circle of temperature

specialists.”

www.uea.ac.uk/mac/comm/media/press/CRUstatements/SAP

6

www.uea.ac.uk/mac/comm/media/press/CRUstatements/SAP


What is our paper not about?

• There is no reconstruction.

• There is no specific statistical analyses of a statistical model.

•We do not test methods of analysis.

• It is not a general review of the climate reconstructions [see, e.g. NRC, 2006,

Jones et al., 2009].

•We do not develop statistical models for time-uncertain proxy series [see,

e.g. Haslett et al., 2006a, Auestad et al., 2008, Haam and Huybers, 2010].

•We do not discuss paleo data preprocessing [see, e.g., Briffa et al., 1992,

Schofield, in prep., Haslett et al., 2006b].
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So what do we do?

• To demonstrate the role of the hierarchical statistical models in

(paleo)climate reconstruction problems.

– To highlight the data-specific, scientific, and statistical modeling chal-

lenges in this hierarchical context.

– To show how existing methods can be interpreted (as close as possible)

in this hierarchical context.

• Also see Hughes and Ammann [2009] for an overview of the state of paleo-

climate reconstruction methods, and suggestions on how to move forward.
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We are not the only statisticians working in the area

• There are many time series analyses of paleorecords [e.g., West, 1997, Visser

and Molenaar, 1988, Harvill and Ray, 2006, Haslett et al., 2006b].

• Li et al. [2010] presents a hierarchical model and applies it to pseudo-proxies

derived from climate models.

• Brynjarsdóttir and Berliner [2011] reconstruct surface temperatures using

borehole temperature profiles.

• Lee et al. [2008] proposes a state-space or Kalman filter model for inferring

large-scale spatial average temperatures.

• Tingley and Huybers [2010a,b] propose a simple hierarchical statistical model

without forcings to infer a climate field in both space and time.
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Motivation: the Mann et al. [2008] dataset

• They reconstruct hemispheric and global surface temperatures over the last

two millenia using 1,209 proxy time series and a 5◦ × 5◦ gridded surface-

temperature data product from CRU.

• Let us focus on Northern North America and Greenland.
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the various proxy time series.
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Right panel: optimal order of AR(p) fit, according to the Bayesian Information Criterion [analysis per-

formed with the ARFit Matlab package of Neumaier and Schneider, 2001, Schneider and Neumaier, 2001].
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What are we reconstructing?

• A time series of large scale spatial averages of the climate field

[e.g., Moberg et al., 2005, Lee et al., 2008, Mann et al., 2008, Kaufman et al.,

2009].

Composite plus scale (CPS)

• The spatial pattern of a climate variable as a function of time

[e.g., Mann et al., 1998, Cook et al., 1999, Luterbacher et al., 2004].

Climate field reconstruction (CFR)

• A climate index, such as El Niño, that reflects broad aspects of climate

[e.g., Emile-Geay et al., 2012a,b].
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A statistical space-time reconstruction

•We focus on the reconstruction of a “target” latent climate processes that

can be modeled as continuous in space and discrete in time; for

example, annual mean surface temperatures.

(We’ll discuss other domains)

• Different data sources may have different uncertainties and different

relationships with the target climate process.

• Each data source, as well as the target process, typically displays spatial

and temporal dependencies.
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The paper layout

(The paper is very long, so read it in bite-size pieces!)

3. Hierarchical statistical models (Today’s topic)

4. Modeling the latent space-time climate process

5. Forward models for climate proxies

6. Modeling the observations and other data-level issues

7. Inference and computation

8. Special cases from the literature

9. Discussion
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Statistical modeling versus statistical analysis

•
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Hierarchical statistical models

•We use Bayesian inference as the analysis choice.

• Given specifications of the prior distribution, π(parameters), for all un-

known parameters and the likelihood, f (data|parameters), the posterior

distribution of the unknown parameters given the data is,

π(parameters|data) ∝ f (data|parameters) π(parameters).

• cf Noel’s talk from last week, we can decompose the set of parameters

further into processes and parameters.

18



A general framework for paleo reconstruction

•We wish to infer upon the target latent space-time climate process:

Y = {Y (s, t) : s ∈ D, t ∈ T }

• Here D designates the spatial and T the temporal domains of interest.

• The form of the domains depend on the spatial and temporal coverages we

are interested in.
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The data sources: Instrumental observations

• Let

ZI,j = {ZI,j(s, t) : s ∈ DI,j, t ∈ TI,j} j = 1, . . . , NI,

denote the NI different types of instrumental observation, where DI,j and

TI,j denote the spatial and temporal domains, respectively, for the jth in-

strumental data type.

• Examples: ground-based thermometers, satellite observations.

• The domains can differ over different data types and from that of Y .
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The data sources: Proxy records

• Let

ZP,k = {ZP,k(s, t) : s ∈ DP,k, t ∈ TP,k} k = 1, . . . , NP ,

denote the NP different types of proxy records.

• DP,k and TP,k are the spatial and temporal domains.

• Examples: the spatially located tree ring density series, tree ring width

series, and ice core series in the earlier figure.
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Should we just link the data to the target climate field?

• A “cookbook” solution:

1. Given some parameters, write down the distribution of the data sources

given the latent climate process.

2. Introduce (prior) distributions for the latent climate process and the pa-

rameters.

3. Use Bayes theorem to infer upon the latent climate process and the pa-

rameters, conditional on the data.

• Problem with this approach:

1. Hard to incorporate the science correctly.

2. Not easy to account for all the different sources of uncertainty.
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An example: pollen (p.12)

[See, e.g., Ohlwein and Wahl, 2012]

• Consider a spectrum of pollen counts extracted from a sample of a lake

sediment core.

• A researcher often extracts a fixed number of grains, sorted by taxa.

• Conditional on the overall count and the probability of a given grain be-

longing to a taxon, the observed count of the taxon follows a binomial

distribution.

• The observed counts are thus used to estimate the parameter of a binomial

distribution, and uncertainty is introduced by the limited sample size and

effects such as the preferential degradation of certain pollen species.
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Pollen continued: linking to climate

• A simple model for the pollen–climate relationship may state that larger

proportions of pollen from a particular, indicator taxon correspond to

warmer temperatures.

• In addition, the model relating the pollen counts to the climate is likely an

imperfect representation of the factors that affect the pollen spectra,

in the sense that, given the actual (as opposed to estimated) parameters of

the model, there remains uncertainty about the state of the climate system.
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Two sources of uncertainty

1. The limitations of the model relating the proxy or instrument to the climate.

2. The limitations of the observations, including measurement errors and finite

sample size.

• Motivates a two-stage modeling approach.

1. We model the distribution of the error-free proxy or instrument process

given climate (“the science” or “the forward model”).

2. We model the distribution of the proxy or instrumental data conditional

on the error-free proxy or instrument process.

(There is maybe an argument that we should break it down further.)
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The error-free instrumental processes

• The NI latent, error-free, instrumental processes, associated with ZI,j:

W I,j = {WI,j(s, t) : s ∈ DI,j, t ∈ TI,j}, j = 1, . . . , NI

• Example: CRU gridded temperature anomaly product.

“The two-stage model provides flexibility in modeling the key features of the

data, including the spatial averaging of the underlying temperature field, the

spatially and temporally varying availability of station observations within

the grid boxes, and uncertainties associated with the raw station data.”
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The error-free proxy processes

• The NP latent, error-free, proxy processes, associated with ZP,k:

W P,k = {WP,k(s, t) : s ∈ DP,k, t ∈ TP,k}, k = 1, . . . , NP

• Example: For pollen,

WP,1 is the true proportion of pollen, and

ZP,1 is the observed pollen spectra.
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The likelihood is a product of

1. The joint distribution of the latent space-time climate process Y ;

2. The joint distribution of the error-free instrumental and proxy processes,

{W I,j : j = 1 . . . NI} and {W P,k : k = 1 . . . NP}, conditional on Y ;

3. The joint distribution of the instrumental and proxy data, {ZI,j} and

{ZP,k}, conditional on the error-free processes {W I,j} and {W P,k} and

the climate process Y.
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We also introduce priors and covariates

• Parameters θ: a number of unknown statistical parameters (such as au-

toregressive coefficients, spatial ranges, and measurement error variances).

We need to specify a prior distribution for θ, π(θ).

• Covariates: such as latitude, longitude, proximity to a coastline, or spatial

maps indicating where trees grow over the globe.
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The posterior

• Assume that the measurement error mechanisms are conditionally inde-

pendent across data sources, and do not depend on the climate process Y.

• Then the, posterior distribution is

π(Y, {WI,j}, {WP,j},θ | {ZI,j}, {ZP,k})

∝ f (Y|θ) g ({WI,j}, {WP,k}|Y,θ)

×

 NI∏
j=1

hI,j(ZI,j|WI,j,θ)

 NP∏
k=1

hP,k(ZP,k|WP,k,θ)

 π(θ).

•We can use Markov chain Monte Carlo (MCMC) to draw samples from this

posterior.
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The devil is in the details: for later weeks

4. Modeling the latent space-time climate process

5. Forward models for climate proxies

6. Modeling the observations and other data-level issues

7. Inference and computation

8. Special cases from the literature

9. Discussion
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