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Nonstationary Spatial Modeling

A GENERAL MODELING FRAMEWORK

» Let Z(-) be a realization of a spatial stochastic process defined for
all s € D c RY, where d is typically equal to 2 or 3

» We observe the value of Z(+) at a finite set of locations
S1,...,Sn € D and wish to learn about the underlying process

» Forall s € D, let
Z(s) = u(s) + Y(s) + (s)
where
- u(-) is a deterministic mean function
- Y(-) is a mean-zero latent spatial (Gaussian) process

- €(+) is a spatially independent error process, which is assumed to be
independent of Y(+)



Nonstationary Spatial Modeling

Definition A process is said to be second-order stationary if
E[Y(s)] = E[Y(s + h)] = constant
and
cov[Y(s), Y(s+ h)] = cov[Y(0), Y(h)] = C(h)

where the function C(h), h € R9 is called the covariance
function
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» Is second-order stationarity a “reasonable” assumption?

— E[Y(s)]=E[Y(s+ h)] = constant?
— cov[Y(s), Y(s+ h)] = cov[Y(0), Y(h)] = C(h)?
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» How might one check whether the assumption is reasonable?
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» Here, Y(-) is a nonstationary spatial process with covariance
function C(s1,s2) = cov(Y(s1), Y(s2))

» We focus on modeling C(s1,s2):
1. has to be a valid covariance function

2. has to be estimable (perhaps from only a single realization of the
process)

» Following Sampson (2010)'s categorization, the following are a few
approaches in the literature:
1. Smoothing and weighted-average methods
Basis function methods

Process convolutions / spatially-varying parameters

el

Deformations

. and possibly others?
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1. SMOOTHING / WEIGHTED-AVERAGE METHODS

Idea: Construct a nonstationary spatial process by smoothing several
locally stationary processes

An example: (Fuentes, 2001):
- Divide the spatial region D into k disjoint subregions S;, for
i=1,...,k, such that D = u,.k:15,

- Let Yi(+), Ya(-), ..., Yk(+) be stationary spatial processes associated
with each of the subregions, with covariance functions estimated
using the observations in each subregion
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- Construct a global nonstationary process as a weighted average of
the locally stationary processes:

k
Y(s) = > wils)Yis),
i=1

where w;(s) is weight function based on the distance between s and
the ‘center’ of region S;

- The number of subregions is chosen using BIC
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Some other approaches:

Fuentes and Smith (2002) propose a continuous extension of the
original model where

Y(s) = /D w(s — ) Yy (s)du

Nott and Dunsmuir (2002) propose letting

k

C(Y(s1), Y(s2)) = To + Y _ wi(s1)wi(s52) Co,(s51 — 52)
i=1

local residual covariance structure

Guillot et al. (2001) propose a nonparametric kernel estimator of a
nonstationary covariance matrix

Kim, Mallick, and Holmes (2005)'s approach automatically
partitions the spatial domain into disjoint regions and then fits a
piecewise Gaussian process model
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2. BASIS FUNCTION MODELS

Idea: decompose the spatial covariance function in terms of basis
functions

An example: EOFs

- The Karhunen-Loéve (K-L) expansion of a covariance function is

Cy(s1,52) = i Ak (s1)9k(s2)

k=1

where {¢x(:) : k=1,...,00} and {A\(: k=1,...,00} are the
eigenfunctions and eigenvalues, respectively, of the Fredholm
integral equation:

/D Cy(s1,52)Pk(s)ds = Akgi(s2)
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- Using this expansion, we can write the process as

o

Y(s) =Y acou(s).

k=1

- It can be shown that the truncated decomposition

Yp(s) = D akow(s)
k=1

is optimal in the sense that it minimizes the variance of the
truncation error among all sets of basis function representations of
Y(:) of order p.

- The ¢k(s)s can be obtained numerically by solving the Fredholm
integral equation (can be difficult).
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- An alternative solution when repeated observations of the spatial
process (e.g., over time) are available: perform a principal
components analysis of the empirical covariance matrix

That is, if S is the empirical covariance matrix, we can solve the
eigensystem
Sb = DA,

where

- ® is the matrix of eigenvectors — called the “empirical orthogonal
functions” or EOFs

- N is the diagonal matrix with corresponding eigenvalues on the
diagonal
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- We can use ®« in place of Y = (Y(s1),..., Y(sn))', where
a = (a1,...,ap,) are a collection of unknown parameters

— a truncated version of this representation is used for dimension
reduction

Advantages of using EOFs:

1. naturally nonstationary

Disadvantages of using EOFs:
1. prediction

2. measurement error
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Some other examples:

» Holland et al. (1998) represents a nonstationary spatial covariance
function as the sum of a stationary model and a finite sum of EOFs

» Nychka (2002) uses multiresolution wavelets instead of EOFs for
computational reasons. More recent work by Matsuo, Nychka, and
Paul (2008) has extended the approach to handle irregularly spaced
data

» Pintore and Holmes (2004) and Stephenson et al. (2005) induce
nonstationarity by evolving the stationary power spectrum with a
latent spatial power process

» Katzfuss (2014) propose a model with a low-rank representation of
a nonstationary Matérn (with covariance tapering) model for
computational considerations
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3. PROCESS CONVOLUTION MODELS / SPATIALLY-VARYING
PARAMETERS

Idea: use a constructive specification of a (Gaussian) process to
introduce nonstationarity

An example: (Higdon, 1998)

- Let k(-) : RY — R be a function satisfying

/ k(u)du < oo and / k?(u)du < oo
RY RY

and W(-) denote d-dimensional Brownian motion.
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- It can be shown that the process
Y(s) = / ks(u)W(du)
Rd
is Gaussian with E[Y(s)] =0 and
Cy(s1,52) = cov[Y(s1), Y(s2)] = /Rd ks, (u)ks, (u)du

forse D c RY
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- Higdon (1998) proposes a discrete approximation to a nonstationary
Gaussian process:

M=

Y(S) = ks(u,-) X

i=1

where the x;'s are i.i.d. N(0, A\?) random variables associated with
each knot location u;.
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- Higdon (1998) proposes using this model for North Atlantic ocean
temperatures. In this model, the kernels were weighted averages of

fixed ‘basis kernels’
k
Y(s) =) ks(ui)xi
i=1
where

latitude

1 2 .
wy(s) ox exp (—5ls = 57 ?) SR
longitude
(Higdon, 1998)

N 1 —1 1 * s —Llr* .
ks () = ——IEs; [ exp (—E(sj - w) Tl (s - u,))
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Some other examples:

» Kernel parameters can vary smoothly in space (Higdon, Swall, and
Kern, 1999; Paciorek and Schervish, 2006):
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» Paciorek and Schervish (2006) use this idea to develop a general
class of nonstationary covariance functions (including the Matérn
model):

-1/2

g(—VQ12)

2+ 2
Clo,52) = o |4 o F T 22

where )
21+ 3X\
Q2 = (51— s2)' <122) (s1 — s2)

and g(+) is a valid isotropic correlation function

This model allows locally-varying geometric anisotropies — more on
this model in the practicum
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» Stein (2005) and Anderes and Stein (2011) extend the Paciorek and
Schervish (2006) model to allow spatially-varying variance and
smoothness parameters

» Kleiber and Nychka (2012) further extend this model to the
multivariate setting

» Calder (2007, 2008) proposes space-time versions of the Hidgon
model

» Heaton (2014) extends process convolution models to spherical
spatial domains
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3. DEFORMATIONS

Idea: (Sampson and Guttorp, 1992): Map the geographic locations of
observations to a deformed space where stationarity holds
A Bayesian example: (Schmidt and O'Hagan, 2003)

- Consider the n x n sample covariance matrix, S, of a spatial process
observed at n locations independently at T time points. The goal is

to learn the true covariance matrix of the Gaussian process, X, from
S.

- Likelihood function:
~(T-1/2) T i(sEt
f(S|X) x |X] exp —Etr(SZ )

- The diagonal elements of X are given conditionally independent
inverse gamma priors.



Nonstationary Spatial Modeling

- The off diagonal elements of X are modeled as follows:

Ca(si,sp) = g(lld(xi) — d(x;)l[)

where g(+) is a monotone function of the form

Z ay exp( bkh2

with the a,’s and by's unknown.

- The d(+) process:

d(-) ~ GP(u(), oGR4(:,"))
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- Schmidt and O’Hagan claim that Gaussian process prior on the
deformation process tends to eliminate the non-injective mappings
noted by Sampson and Guttorp (1992).
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SUMMARY
- lots of models — some have been well studied, some haven't
- very little work on model comparison

- with the exception of the basis function models, computation is a
BIG challenge

- no general software

- recent work has focused on understanding the reasons for
nonstationarity (e.g., covariates)

- nonstationary versus non-Gaussian models
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