An Overview of Nonstationary Spatial Modeling

Kate Calder ¹
Department of Statistics
The Ohio State University

SSES Discussion Group September 16, 2014

¹Email: calder@stat.osu.edu

A GENERAL MODELING FRAMEWORK

- ▶ Let $Z(\cdot)$ be a realization of a spatial stochastic process defined for all $s \in \mathcal{D} \subset \mathbb{R}^d$, where d is typically equal to 2 or 3
- ▶ We observe the value of $Z(\cdot)$ at a finite set of locations $s_1, \ldots, s_n \in \mathcal{D}$ and wish to learn about the underlying process
- ▶ For all $s \in \mathcal{D}$, let

$$Z(s) = \mu(s) + Y(s) + \epsilon(s)$$

where

- $\mu(\cdot)$ is a deterministic mean function
- $Y(\cdot)$ is a mean-zero latent spatial (Gaussian) process
- $\epsilon(\cdot)$ is a spatially independent error process, which is assumed to be independent of $Y(\cdot)$

Definition A process is said to be second-order stationary if

$$E[Y(s)] = E[Y(s+h)] = constant$$

and

$$cov[Y(s), Y(s+h)] = cov[Y(0), Y(h)] = C(h)$$

where the function C(h), $h \in \mathbb{R}^d$ is called the covariance function

► Is second-order stationarity a "reasonable" assumption?

$$\rightarrow E[Y(s)] = E[Y(s+h)] = constant?$$

$$\rightarrow \operatorname{cov}[Y(s), Y(s+h)] = \operatorname{cov}[Y(0), Y(h)] = C(h)?$$

▶ How might one check whether the assumption is reasonable?

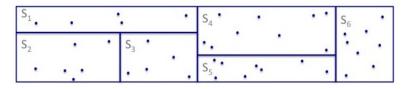
- ▶ Here, $Y(\cdot)$ is a nonstationary spatial process with covariance function $C(s_1, s_2) = \text{cov}(Y(s_1), Y(s_2))$
- ▶ We focus on modeling $C(s_1, s_2)$:
 - 1. has to be a valid covariance function
 - 2. has to be estimable (perhaps from only a single realization of the process)
- ► Following Sampson (2010)'s categorization, the following are a few approaches in the literature:
 - 1. Smoothing and weighted-average methods
 - 2. Basis function methods
 - 3. Process convolutions / spatially-varying parameters
 - 4. Deformations
 - ... and possibly others?

1. SMOOTHING / WEIGHTED-AVERAGE METHODS

Idea: Construct a nonstationary spatial process by smoothing several locally stationary processes

An example: (Fuentes, 2001):

- Divide the spatial region \mathcal{D} into k disjoint subregions S_i , for $i=1,\ldots,k$, such that $\mathcal{D}=\cup_{i=1}^k S_i$
- Let $Y_1(\cdot), Y_2(\cdot), \ldots, Y_k(\cdot)$ be stationary spatial processes associated with each of the subregions, with covariance functions estimated using the observations in each subregion



 Construct a global nonstationary process as a weighted average of the locally stationary processes:

$$Y(s) = \sum_{i=1}^k w_i(s) Y_i(s),$$

where $w_i(s)$ is weight function based on the distance between s and the 'center' of region S_i

- The number of subregions is chosen using BIC

Some other approaches:

- Fuentes and Smith (2002) propose a continuous extension of the original model where

$$Y(s) = \int_{\mathcal{D}} w(s - \boldsymbol{u}) Y_{\theta(u)}(s) d\boldsymbol{u}$$

- Nott and Dunsmuir (2002) propose letting

$$C(Y(s_1), Y(s_2)) = \Sigma_0 + \sum_{i=1}^k \underbrace{w_i(s_1)w_i(s_2)C_{\theta_i}(s_1 - s_2)}_{ ext{local residual covariance structure}}$$

- Guillot et al. (2001) propose a nonparametric kernel estimator of a nonstationary covariance matrix
- Kim, Mallick, and Holmes (2005)'s approach automatically partitions the spatial domain into disjoint regions and then fits a piecewise Gaussian process model

2. BASIS FUNCTION MODELS

Idea: decompose the spatial covariance function in terms of basis functions

An example: EOFs

- The Karhunen-Loéve (K-L) expansion of a covariance function is

$$C_Y(\mathbf{s}_1,\mathbf{s}_2) = \sum_{k=1}^{\infty} \lambda_k \phi_k(\mathbf{s}_1) \phi_k(\mathbf{s}_2)$$

where $\{\phi_k(\cdot): k=1,\ldots,\infty\}$ and $\{\lambda_k: k=1,\ldots,\infty\}$ are the eigenfunctions and eigenvalues, respectively, of the Fredholm integral equation:

$$\int_{\mathcal{D}} C_{Y}(s_{1}, s_{2}) \phi_{k}(s) ds = \lambda_{k} \phi_{k}(s_{2})$$

- Using this expansion, we can write the process as

$$Y(s) = \sum_{k=1}^{\infty} a_k \phi_k(s).$$

- It can be shown that the truncated decomposition

$$Y_p(s) = \sum_{k=1}^p a_k \phi_k(s)$$

is optimal in the sense that it minimizes the variance of the truncation error among all sets of basis function representations of $Y(\cdot)$ of order p.

- The $\phi_k(s)$ s can be obtained numerically by solving the Fredholm integral equation (can be difficult).

 An alternative solution when repeated observations of the spatial process (e.g., over time) are available: perform a principal components analysis of the empirical covariance matrix

That is, if \boldsymbol{S} is the empirical covariance matrix, we can solve the eigensystem

$$S\Phi = \Phi \Lambda$$
,

where

- Φ is the matrix of eigenvectors → called the "empirical orthogonal functions" or EOFs
- $\boldsymbol{\Lambda}$ is the diagonal matrix with corresponding eigenvalues on the diagonal

- We can use $\Phi \alpha$ in place of $\mathbf{Y} = (Y(\mathbf{s}_1), \dots, Y(\mathbf{s}_n))'$, where $\alpha = (\alpha_1, \dots, \alpha_n)'$ are a collection of unknown parameters
 - ightarrow a truncated version of this representation is used for dimension reduction

Advantages of using EOFs:

1. naturally nonstationary

Disadvantages of using EOFs:

- 1. prediction
- 2. measurement error

Some other examples:

- ► Holland et al. (1998) represents a nonstationary spatial covariance function as the sum of a stationary model and a finite sum of EOFs
- ▶ Nychka (2002) uses multiresolution wavelets instead of EOFs for computational reasons. More recent work by Matsuo, Nychka, and Paul (2008) has extended the approach to handle irregularly spaced data
- ► Pintore and Holmes (2004) and Stephenson et al. (2005) induce nonstationarity by evolving the stationary power spectrum with a latent spatial power process
- Katzfuss (2014) propose a model with a low-rank representation of a nonstationary Matérn (with covariance tapering) model for computational considerations

3. PROCESS CONVOLUTION MODELS / SPATIALLY-VARYING PARAMETERS

Idea: use a constructive specification of a (Gaussian) process to introduce nonstationarity

An example: (Higdon, 1998)

- Let $k(\cdot): \mathbb{R}^d \to \mathbb{R}$ be a function satisfying

$$\int_{\mathbb{R}^d} k(\boldsymbol{u}) d\boldsymbol{u} < \infty \quad \text{and} \quad \int_{\mathbb{R}^d} k^2(\boldsymbol{u}) d\boldsymbol{u} < \infty$$

and $W(\cdot)$ denote d-dimensional Brownian motion.

- It can be shown that the process

$$Y(s) = \int_{\mathbb{D}^d} k_{\mathbf{S}}(\mathbf{u}) W(d\mathbf{u})$$

is Gaussian with E[Y(s)] = 0 and

$$C_Y(\boldsymbol{s}_1, \boldsymbol{s}_2) = \operatorname{cov}[Y(\boldsymbol{s}_1), Y(\boldsymbol{s}_2)] = \int_{\mathbb{R}^d} k_{\boldsymbol{S}_1}(\boldsymbol{u}) k_{\boldsymbol{S}_2}(\boldsymbol{u}) d\boldsymbol{u}$$

for $\boldsymbol{s} \in \mathcal{D} \subset \mathbb{R}^d$

- Higdon (1998) proposes a discrete approximation to a nonstationary Gaussian process:

$$Y(s) = \sum_{i=1}^k k_{\mathbf{S}}(\mathbf{u}_i) x_i$$

where the x_i 's are i.i.d. $N(0, \lambda^2)$ random variables associated with each knot location u_i .

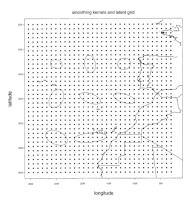
 Higdon (1998) proposes using this model for North Atlantic ocean temperatures. In this model, the kernels were weighted averages of fixed 'basis kernels'

$$Y(s) = \sum_{i=1}^{k} k_{s}(u_{i}) x_{i}$$

where

$$k_{\mathbf{S}}(u_i) = \sum_{j=1}^8 w_j(\mathbf{s}) k_{\mathbf{S}_j^*}(\mathbf{u}_i)$$

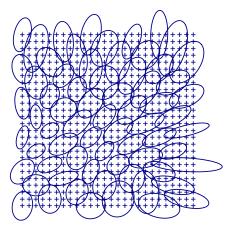
$$w_j(\mathbf{s}) \propto \exp\left(-rac{1}{2}||\mathbf{s}-\mathbf{s}_{\mathbf{j}}^*||^2
ight)$$



$$k_{\boldsymbol{s}_{j}^{*}}(\boldsymbol{u}_{i}) = \frac{1}{\sqrt{2\pi}} |\boldsymbol{\Sigma}_{\boldsymbol{s}_{j}^{*}}|^{-1} \exp\left(-\frac{1}{2}(\boldsymbol{s}_{j}^{*} - \boldsymbol{u}_{i})' \boldsymbol{\Sigma}_{\boldsymbol{s}_{j}^{*}}^{-1}(\boldsymbol{s}_{j}^{*} - \boldsymbol{u}_{i})\right)$$
(Higdon, 1998)

Some other examples:

► Kernel parameters can vary smoothly in space (Higdon, Swall, and Kern, 1999; Paciorek and Schervish, 2006):



► Paciorek and Schervish (2006) use this idea to develop a general class of nonstationary covariance functions (including the Matérn model):

$$C(s_1, s_2) = \sigma^2 |\mathbf{\Sigma}_1|^{1/4} |\mathbf{\Sigma}_2|^{1/4} \left| \frac{\mathbf{\Sigma}_1 + \mathbf{\Sigma}_2}{2} \right|^{-1/2} g(-\sqrt{Q_{12}})$$

where

$$Q_{12} = (\boldsymbol{s}_1 - \boldsymbol{s}_2)' \left(rac{oldsymbol{\Sigma}_1 + oldsymbol{\Sigma}_2}{2}
ight)^{-1} (\boldsymbol{s}_1 - \boldsymbol{s}_2)$$

and $g(\cdot)$ is a valid isotropic correlation function

This model allows locally-varying geometric anisotropies \rightarrow more on this model in the practicum

- Stein (2005) and Anderes and Stein (2011) extend the Paciorek and Schervish (2006) model to allow spatially-varying variance and smoothness parameters
- Kleiber and Nychka (2012) further extend this model to the multivariate setting
- ► Calder (2007, 2008) proposes space-time versions of the Hidgon model
- ► Heaton (2014) extends process convolution models to spherical spatial domains

3. DEFORMATIONS

Idea: (Sampson and Guttorp, 1992): Map the geographic locations of observations to a deformed space where stationarity holds

A Bayesian example: (Schmidt and O'Hagan, 2003)

- Consider the $n \times n$ sample covariance matrix, \mathbf{S} , of a spatial process observed at n locations independently at T time points. The goal is to learn the true covariance matrix of the Gaussian process, $\mathbf{\Sigma}$, from \mathbf{S} .
- Likelihood function:

$$f(\boldsymbol{S}|\boldsymbol{\Sigma}) \propto |\boldsymbol{\Sigma}|^{-(T-1)/2)} \exp\left(-\frac{T}{2}tr(\boldsymbol{S}\boldsymbol{\Sigma}^{-1})\right)$$

- The diagonal elements of Σ are given conditionally independent inverse gamma priors.

- The off diagonal elements of Σ are modeled as follows:

$$C_d(s_i, s_j) = g(||\boldsymbol{d}(\boldsymbol{x}_i) - \boldsymbol{d}(\boldsymbol{x}_j)||)$$

where $g(\cdot)$ is a monotone function of the form

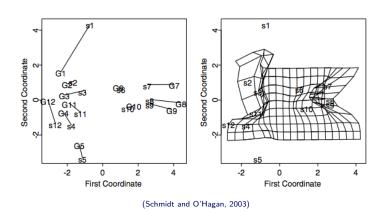
$$g(h) = \sum_{i=1}^{k} a_k \exp(-b_k h^2)$$

with the a_k 's and b_k 's unknown.

- The $d(\cdot)$ process:

$$m{d}(\cdot) \sim \mathsf{GP}(m{\mu}(\cdot), m{\sigma}_d^2 R_d(\cdot, \cdot))$$

- Schmidt and O'Hagan claim that Gaussian process prior on the deformation process tends to eliminate the non-injective mappings noted by Sampson and Guttorp (1992).



SUMMARY

- lots of models \rightarrow some have been well studied, some haven't
- very little work on model comparison
- with the exception of the basis function models, computation is a BIG challenge
- no general software
- recent work has focused on understanding the reasons for nonstationarity (e.g., covariates)
- nonstationary versus non-Gaussian models

SOME REFERENCES

Anderes, E. B. and Stein, M. L. (2011). Local likelihood estimation for nonstationary random fields. *Journal of Multivariate Analysis*, 102(3):506-520.

Calder, C.A. (2007). Dynamic factor process convolution models for multivariate space-time data with application to air quality assessment. *Environmental and Ecological Statistics*, 14, 229-247.

Calder, C. A. (2008). A dynamic process convolution approach to modeling ambient particulate matter concentrations. *Environmetrics*, 19, 39-48.

Fuentes, M. (2001). A high frequency kriging approach for non-stationary environmental processes. *Environmetrics*, 12(5):469-483.

Fuentes, M. (2002a). Spectral methods for nonstationary spatial processes. *Biometrika*, 89(1):197-210.

Fuentes, M. (2002b). Interpolation of nonstationary air pollution processes: A spatial spectral approach. *Statistical Modelling*, 2, 281?298.

Fuentes, M. (2005). A formal test for nonstationarity of spatial stochastic processes. *Journal of Multivariate Analysis*, 96, 30-54.

Fuentes, M. and Smith, R.L. (2001). A new class of nonstationary spatial models. Technical report, North Carolina State University, Institute of Statistics Mimeo Series #2534, Raleigh, NC.

Gelfand, A.E., Schmidt, A.M., Banerjee, S., and Sirmans, C.F. (2004). Nonstationary multivariate process modeling through spatially varying coregionalization. *Test*, 13, 263-312.

Heaton, M. J., Katzfuss, M., Berrett, C., and Nychka, D.W. (2014). Constructing valid spatial processes on the sphere using kernel convolutions, *Environmetrics*, 25, 2-14.

Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic ocean, *Environmental and Ecological Statistics*, 5, 173-190.

Higdon, D. (2002). Space and space-time modeling using process convolutions. In *Quantitative Methods for Current Environmental Issues*, editors: Anderson, C., Barnett, V., Chatwin, P., and El-Shaarawi, A., 37-56. Springer London.

Higdon, D., Swall, J., and Kern, J. (1998). Non-stationary spatial modeling. Bayesian Statistics, 6.

Katzfuss, M. (2013). Bayesian nonstationary spatial modeling for very large datasets. *Environmetrics*, 24, 189-200.

Kim, H.M., Mallick, B.K., and Holmes, C.C. (2005). Analyzing nonstationary spatial data using piecewise Gaussian processes. *Journal of the American Statistical Association*, 100, 653-658.

Kleiber, W. and Nychka, D. (2012). Nonstationary modeling for multivariate spatial processes. *Journal of Multivariate Analysis*, 112, 76-91.

Matsuo, T., Nychka, D. W., and Paul, D. (2011). Nonstationary covariance modeling for incomplete data: Monte Carlo EM approach. *Computational Statistics & Data Analysis*, 55, 2059-2073.

Nott, D.J. and Dunsmuir, W.T.M. (2002). Estimation of nonstationary spatial covariance structure. *Biometrika*, 89, 819-829.

Nychka, D., Wikle, C., and Royle, J. A. (2002). Multiresolution models for nonstationary spatial covariance functions. *Statistical Modelling*, 2, 315-331.

Paciorek, C. J. and Schervish, M. J. (2006). Spatial modeling using a new class of nonstationary covariance functions. *Environmetrics*, 17, 483-506.

Reich, B. J., Eidsvik, J., Guindani, M., Nail, A. J., and Schmidt, A. M. (2011). A class of covariate- dependent spatiotemporal covariance functions for the analysis of daily ozone concentration. *Annals of Applied Statistics*, 5, 2425-2447.

Sampson, P.D. (2010). Constructions for nonstationary processes. In *Handbook of Spatial Statistics*, editors: Gelfand, A.E., Diggle, P., Guttorp, P., Fuentes, M., CRC Press.

Sampson, P.D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. *Journal of the American Statistical Association* 87(417), 108-119.

Schmidt, A.M. and O'Hagan, A. (2003). Bayesian inference for non-stationary spatial covariance structure via spatial deformations. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 65(3), 743-758.

Stein, M. L. (2005). Nonstationary spatial covariance functions. Unpublished technical report.