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Nonstationary Spatial Modeling
A GENERAL MODELING FRAMEWORK

I Let Z (·) be a realization of a spatial stochastic process defined for
all s ∈ D ⊂ Rd , where d is typically equal to 2 or 3

I We observe the value of Z (·) at a finite set of locations
s1, . . . , sn ∈ D and wish to learn about the underlying process

I For all s ∈ D, let

Z (s) = µ(s) + Y (s) + ε(s)

where
- µ(·) is a deterministic mean function

- Y (·) is a mean-zero latent spatial (Gaussian) process

- ε(·) is a spatially independent error process, which is assumed to be
independent of Y (·)
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Definition A process is said to be second-order stationary if

E[Y (s)] = E[Y (s + h)] = constant

and

cov[Y (s),Y (s + h)] = cov[Y (0),Y (h)] = C(h)

where the function C(h), h ∈ Rd is called the covariance
function



Nonstationary Spatial Modeling
I Is second-order stationarity a “reasonable” assumption?

→ E[Y (s)] = E[Y (s + h)] = constant?

→ cov[Y (s),Y (s + h)] = cov[Y (0),Y (h)] = C(h)?



Nonstationary Spatial Modeling
I How might one check whether the assumption is reasonable?



Nonstationary Spatial Modeling
I Here, Y (·) is a nonstationary spatial process with covariance

function C(s1, s2) = cov(Y (s1),Y (s2))

I We focus on modeling C(s1, s2):
1. has to be a valid covariance function

2. has to be estimable (perhaps from only a single realization of the
process)

I Following Sampson (2010)’s categorization, the following are a few
approaches in the literature:

1. Smoothing and weighted-average methods

2. Basis function methods

3. Process convolutions / spatially-varying parameters

4. Deformations

... and possibly others?
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1. SMOOTHING / WEIGHTED-AVERAGE METHODS

Idea: Construct a nonstationary spatial process by smoothing several
locally stationary processes

An example: (Fuentes, 2001):
- Divide the spatial region D into k disjoint subregions Si , for

i = 1, . . . , k, such that D = ∪k
i=1Si

- Let Y1(·),Y2(·), . . . ,Yk(·) be stationary spatial processes associated
with each of the subregions, with covariance functions estimated
using the observations in each subregion
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- Construct a global nonstationary process as a weighted average of

the locally stationary processes:

Y (s) =
k∑

i=1
wi (s)Yi (s),

where wi (s) is weight function based on the distance between s and
the ‘center’ of region Si

- The number of subregions is chosen using BIC
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Some other approaches:

- Fuentes and Smith (2002) propose a continuous extension of the
original model where

Y (s) =

∫
D

w(s − u)Yθ(u)(s)du

- Nott and Dunsmuir (2002) propose letting

C(Y (s1),Y (s2)) = Σ0 +
k∑

i=1
wi (s1)wi (s2)Cθi (s1 − s2)︸ ︷︷ ︸

local residual covariance structure

- Guillot et al. (2001) propose a nonparametric kernel estimator of a
nonstationary covariance matrix

- Kim, Mallick, and Holmes (2005)’s approach automatically
partitions the spatial domain into disjoint regions and then fits a
piecewise Gaussian process model



Nonstationary Spatial Modeling
2. BASIS FUNCTION MODELS

Idea: decompose the spatial covariance function in terms of basis
functions

An example: EOFs
- The Karhunen-Loéve (K-L) expansion of a covariance function is

CY (s1, s2) =
∞∑

k=1
λkφk(s1)φk(s2)

where {φk(·) : k = 1, . . . ,∞} and {λk : k = 1, . . . ,∞} are the
eigenfunctions and eigenvalues, respectively, of the Fredholm
integral equation:∫

D
CY (s1, s2)φk(s)ds = λkφk(s2)
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- Using this expansion, we can write the process as

Y (s) =
∞∑

k=1
akφk(s).

- It can be shown that the truncated decomposition

Yp(s) =
p∑

k=1
akφk(s)

is optimal in the sense that it minimizes the variance of the
truncation error among all sets of basis function representations of
Y (·) of order p.

- The φk(s)s can be obtained numerically by solving the Fredholm
integral equation (can be difficult).
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- An alternative solution when repeated observations of the spatial

process (e.g., over time) are available: perform a principal
components analysis of the empirical covariance matrix

That is, if S is the empirical covariance matrix, we can solve the
eigensystem

SΦ = ΦΛ,

where
- Φ is the matrix of eigenvectors → called the “empirical orthogonal

functions” or EOFs

- Λ is the diagonal matrix with corresponding eigenvalues on the
diagonal
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- We can use Φα in place of Y = (Y (s1), . . . ,Y (sn))′, where

α = (α1, . . . , αn)′ are a collection of unknown parameters

→ a truncated version of this representation is used for dimension
reduction

Advantages of using EOFs:
1. naturally nonstationary

Disadvantages of using EOFs:
1. prediction

2. measurement error
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Some other examples:

I Holland et al. (1998) represents a nonstationary spatial covariance
function as the sum of a stationary model and a finite sum of EOFs

I Nychka (2002) uses multiresolution wavelets instead of EOFs for
computational reasons. More recent work by Matsuo, Nychka, and
Paul (2008) has extended the approach to handle irregularly spaced
data

I Pintore and Holmes (2004) and Stephenson et al. (2005) induce
nonstationarity by evolving the stationary power spectrum with a
latent spatial power process

I Katzfuss (2014) propose a model with a low-rank representation of
a nonstationary Matérn (with covariance tapering) model for
computational considerations
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3. PROCESS CONVOLUTION MODELS / SPATIALLY-VARYING

PARAMETERS

Idea: use a constructive specification of a (Gaussian) process to
introduce nonstationarity

An example: (Higdon, 1998)

- Let k(·) : Rd → R be a function satisfying∫
Rd

k(u)du <∞ and
∫
Rd

k2(u)du <∞

and W (·) denote d-dimensional Brownian motion.
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- It can be shown that the process

Y (s) =

∫
Rd

ks (u)W (du)

is Gaussian with E[Y (s)] = 0 and

CY (s1, s2) = cov[Y (s1),Y (s2)] =

∫
Rd

ks1(u)ks2(u)du

for s ∈ D ⊂ Rd
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- Higdon (1998) proposes a discrete approximation to a nonstationary

Gaussian process:

Y (s) =
k∑

i=1
ks (u i ) xi

where the xi ’s are i.i.d. N(0, λ2) random variables associated with
each knot location u i .
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- Higdon (1998) proposes using this model for North Atlantic ocean

temperatures. In this model, the kernels were weighted averages of
fixed ‘basis kernels’

Y (s) =
k∑

i=1

ks (u i) xi

where

ks (ui) =

8∑
j=1

wj(s)ks∗
j
(u i)

wj(s) ∝ exp
(
−1

2 ||s − s∗j ||2
)

ks∗
j
(u i) =

1√
2π
|Σs∗

j
|−1 exp

(
−1

2 (s
∗
j − u i)

′Σ−1
s∗

j
(s∗j − u i)

)(Higdon, 1998)
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Some other examples:

I Kernel parameters can vary smoothly in space (Higdon, Swall, and
Kern, 1999; Paciorek and Schervish, 2006):
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I Paciorek and Schervish (2006) use this idea to develop a general

class of nonstationary covariance functions (including the Matérn
model):

C(s1, s2) = σ2|Σ1|1/4|Σ2|1/4
∣∣∣∣Σ1 + Σ2

2

∣∣∣∣−1/2
g(−

√
Q12)

where
Q12 = (s1 − s2)′

(
Σ1 + Σ2

2

)−1
(s1 − s2)

and g(·) is a valid isotropic correlation function

This model allows locally-varying geometric anisotropies →more on
this model in the practicum



Nonstationary Spatial Modeling
I Stein (2005) and Anderes and Stein (2011) extend the Paciorek and

Schervish (2006) model to allow spatially-varying variance and
smoothness parameters

I Kleiber and Nychka (2012) further extend this model to the
multivariate setting

I Calder (2007, 2008) proposes space-time versions of the Hidgon
model

I Heaton (2014) extends process convolution models to spherical
spatial domains
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3. DEFORMATIONS

Idea: (Sampson and Guttorp, 1992): Map the geographic locations of
observations to a deformed space where stationarity holds

A Bayesian example: (Schmidt and O’Hagan, 2003)
- Consider the n × n sample covariance matrix, S, of a spatial process

observed at n locations independently at T time points. The goal is
to learn the true covariance matrix of the Gaussian process, Σ, from
S.

- Likelihood function:

f (S|Σ) ∝ |Σ|−(T−1)/2) exp
(
−T

2 tr(SΣ−1)

)
- The diagonal elements of Σ are given conditionally independent

inverse gamma priors.
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- The off diagonal elements of Σ are modeled as follows:

Cd (si , sj) = g(||d(x i )− d(x j)||)

where g(·) is a monotone function of the form

g(h) =
k∑

i=1
ak exp(−bkh2)

with the ak ’s and bk ’s unknown.

- The d(·) process:

d(·) ∼ GP(µ(·),σ2
d Rd (·, ·))
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- Schmidt and O’Hagan claim that Gaussian process prior on the

deformation process tends to eliminate the non-injective mappings
noted by Sampson and Guttorp (1992).

(Schmidt and O’Hagan, 2003)
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SUMMARY

- lots of models → some have been well studied, some haven’t

- very little work on model comparison

- with the exception of the basis function models, computation is a
BIG challenge

- no general software

- recent work has focused on understanding the reasons for
nonstationarity (e.g., covariates)

- nonstationary versus non-Gaussian models
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