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Introduction

I Motivation: estimation of the mean temperature field in the North
Atlantic as a function of spatial location and time (Higdon 1998)

I Advantages over existing methodology:
I Data dictates the amount of spatial smoothing
I Accommodates temporal component
I Adequately deals with large amounts of data
I Allows dependence structure to evolve over space
I Extensions provide multivariate approaches



(Discrete) Process Convolution (PC) Models
Higdon 1998

I Denote the temperature field (a Gaussian Process (GP)) over
space s and time t

y(s, t) = z(s, t) + ε(s, t). (1)

where ε(s, t) is an independent error term and z(s, t) is a smooth
GP as shown in Equation 2:

z(s, t) =
M∑

j=1

κ(s − ωj , t − τj ) · xj . (2)

I The kernel κ is separable so that both spatial and temporal
components can be estimated.

κ(∆s,∆t) = κs(∆s) · κt (∆t) (3)



PC Models
Higdon 1998

Figure : (Left) Temperature measurements taken between 1908 and 1988. The histogram shows the amount of data collected over
time. (Right) Spatial locations of the underlying grid process x are given by the dots. One of the standard deviation ellipses corresponding
to the covariance matrix of the Gaussian smoothing kernels are also shown.



(Discrete) PC Models - Ozone Concentrations
Higdon 2002

Conditional on the latent process values
xt = (x1,t , ..., x27,t )

T , t = 1, ...,30, a model for the data
yt = (y1t , ..., ynt t )

T which are recorded at sites s1t , ..., snt t can be
written as:

yt = K txt + εt (4)

xt = xt−1 + νt (5)

where

K t
ij = κ(sit − ωj )xjt , t = 1, ...,30 (6)

εt
iid∼ N(0, σ2

ε ), t = 1, ...,30 (7)

νt
iid∼ N(0, σ2

ν), t = 1, ...,30 and (8)
x1 ∼ N(0, σ2

x I27) (9)
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Dynamic Process Convolution (DPC) Models
Calder 2007

I A DCP model constructs a space-time process that is continuous
in space, but discrete in time by convolving the latent process, x ,
with a two-dimensional smoothing kernel at each time point.

I It can be represented as a multivariate state-space model that
captures many types of temporal dependence structures, for
example.



DPC Models
Calder 2007

Assume the space-time process is observed at N spatial locations at
each time point. The observation at location sn at time t is modeled as

y(sn, t) = K(n)xt + εn,t , (10)

where the latent process evolves as

xt = G(Dt−1) + νt . (11)

In Equation 10, K(n) = [κ(ω1 − sn), ..., κ(ωM − sn)]. M is the number
of locations where the process is defined. G(·) controls the evolution
of the latent process and is taken to be a function of
Dt = {x(ω1,τ ), ..., x(ωM,τ ) : τ ≤ t}.



DPC Models
Calder 2008

Bivariate DPC model for PM2.5 and PM10 concentrations:(
y2.5

t
y10

t

)
=

(
µ2.5

t
µ10

t

)
+

(
Kfine.2.5

t 0
Kfine.10

t Kcoarse.10
t

)(
xfine

t
xcoarse

t

)
+ εt (12)

where y2.5
t and y10

t are (N2.5
t × 1) and (N10

t × 1) vectors and(
xfine

t
xcoarse

t

)
=

(
xfine

t−1
xcoarse

t−1

)
+ νt ; (13)

and εt ∼ N
(

0,
(
λ2.5
εt

0
0 λ10

εt

))
, νt ∼ N

(
0,
(
λfine
νt

0
0 λcoarse

νt

))



DPC Models
Calder 2008

The Kt matrices perform the convolution of the underlying xt
processes from the Mfine + Mcoarse lattice locations to the N2.5

t + N10
t

monitor locations at time t , so they are determined by the choice of
convolution kernels κfine

t and κcoarse
t . The (i , j)th element of Kfine.2.5

t is

Kfine.2.5
t = κfine

t (u(y2.5
t (i))− u(xfine

t (j)), ν(y2.5
t (i))− ν(xfine

t (j))) (14)

and u(·) and ν(·) return the longitude and latitude, respectively.



DPC Models
Calder 2008

Figure : Underlying lattice locations for the PMfine and PMcoarse processes along with examples of one standard deviation ellipses

of the PMfine smoothing kernel (κfine
t ) and PMcoarse smoothing kernel (κcoarse

t ) (shrunk by a factor of two)
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A derived class of nonstationary covariance functions
Paciorek and Schervish (2004 & 2006)

I The nonstationary Gaussian process

z(x) =

∫
kx(s)x(s) ds

discussed by Higdon, Swall and Kern (1999) has the covariance
function

C(xi ,xj ) =

∫
kxi (s)kxj (s) ds.

I We can evaluate C(xi ,xj ) when the kernels kx(s) are Gaussian.
In that case,

C(xi ,xj ) = σ2 |Σi |
1
4
∣∣Σj
∣∣ 1

4

∣∣∣∣Σi + Σj

2

∣∣∣∣− 1
2

exp
{
−Qij

}
,

where Qij = (xi − xj )
T
(

Σi +Σj
2

)−1
(xi − xj ).



A derived class of nonstationary covariance functions
Paciorek and Schervish (2004 & 2006)

I Having arrived at the nonstationary covariance function

C(xi ,xj ) = σ2 |Σi |
1
4
∣∣Σj
∣∣ 1

4

∣∣∣∣Σi + Σj

2

∣∣∣∣− 1
2

exp
{
−Qij

}
,

Paciorek and Schervish suggest exp{−Qij} could be replaced
with any stationary, isotropic correlation function.

I For example, replacing exp{−Qij} with

1
Γ(ν)2ν−1

(
2
√
νQij

)νKν(2√νQij
)

gives a nonstationary version of the Matèrn covariance.



Covariance estimation and surface fitting
Paciorek and Schervish (2004 & 2006)

Using these Colorado precipitation measurements, Paciorek and
Schervish illustrate two approaches for estimation and spatial
prediction.

1. “Ad-hoc nonstationary kriging”
2. A Bayesian hierarchical model for spatial smoothing



Approach 1: “Ad-hoc nonstationary kriging”
Paciorek and Schervish (2004 & 2006)



Approach 2: A Bayesian hierarchical model
Paciorek and Schervish (2004 & 2006)

The goal is to construct a Bayesian hierarchical model that makes
use of the new nonstationary covariance functions.

In doing so, a kernel matrix process Σ(·) must be defined so that the
kernel matrices vary smoothly across space. This raises (at least)
two questions.

1. How to parametrize Σ(·)?

I Use the spectral decomposition Σ(xi) ≡ Σi = ΓiΛiΓ
T
i , and set

Γi =
1√

γ2
1(xi) + γ2

2(xi)

(
γ1(xi) −γ2(xi)
γ2(xi) γ1(xi)

)
.

2. What is an appropriate prior on those parameters?

{
log(λ2(·))︸ ︷︷ ︸

eigenvalue process

, γ1(·), γ2(·)︸ ︷︷ ︸
eigenvector processes

}
∼ independent G.P. priors
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Multivariate Spatial Models

I Multivariate spatial models are increasingly required in the
geophysical sciences.

I Consider a multivariate process Z (x) = (Z1(x), . . . ,Zp(x))′ with
matrix valued covariance function

C(x ,y) =

 C11(x ,y) · · · C1p(x ,y)
...

. . .
...

Cp1(x ,y) · · · Cpp(x ,y)

 ,

where Cij (x ,y) = Cov(Zi (x),Zj (y)).

I Cross-Covariance function C(·, ·) needs to be nonnegative
definiteness.
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Matérn Cross-Covariance Functions for Multivariate

I Gneiting et al. (2010) developed a multivariate Matérn model
where each constituent component Zi (x) has a stationary
Matérn covariance function.

I Each marginal covariance function,

Cii (h) = σ2
i M(h|νi ,ai ) for i = 1, . . . ,p, (15)

is of the Matérn type with variance parameter σ2
i > 0,

smoothness parameter νi > 0 and scale parameter ai > 0, where
h = ||x − y ||.

I Each cross-covariance function,

Cij (h) = Cji (h) = ρijσiσjM(h|νij ,aij ) for 1 ≤ i 6= j ≤ p, (16)

is also a Matérn function, with collocated correlation coefficient
ρij , smoothness parameter νij , and scale parameter aij .
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Nonstationary Multivariate Spatial Processes

I Kleiber and Nychka 2012 developed a parametric nonstationary
multivariate spatial model with locally varying parameter
functions.

I Let Σij (x ,y) = 1
2

(
Σi (x) + Σj (y)

)
, νij (x ,y) = 1

2

(
νi (x) + νj (y)

)
,

Qij (x ,y) = (x − y)′Σij (x ,y)(x − y), where βii = 1 and
βij ∈ [−1,1] for i 6= j . Then the matrix with diagonal entries

Cii (x ,y) =
σi (x)σi (y)

|Σii (x ,y)|1/2 M(Qii (x ,y)1/2|νii (x ,y)) for i = 1, . . . ,p.

I and off-diagonal entries

Cij (x ,y) = βij
σi (x)σj (y)

|Σij (x ,y)|1/2 M(Qij (x ,y)1/2|νij (x ,y)) for 1 ≤ i 6= j ≤ p,

is a multivariate covariance function.
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Estimation

I Unless there is a simplifying parametric form for the
nonstationary covariance function parameters Σ(·), σ(·), ν(·), and
β(·), estimation can be difficult.

I Paciorek and Schervish 2006 introduced an approach to local
univariate covariance function estimation. The main concern with
this approach is that there is no way to estimate the locally
varying coefficient β(·).

I Kleiber and Nychka 2012 proposed an estimation approach that
is feasible for large datasets, and only imposes the parametric
assumptions of those contained within the covariance model.
The approach has two steps, first estimating the
cross-ocrrelation β(·), and then the local Matérn parameters.
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Cross-correlation Coefficient: βij(·)

I Kernel smoothed empirical covariance matrix

Ĉij (x ,y) =

∑n
k=1Kλ(||x − sk ||)1/2Kλ(||y − sk ||)1/2Zi (sk )Zj (sk )(∑n

k=1Kλ(||x − sk ||)
)1/2(∑n

k=1Kλ(||y − sk ||)
)1/2

Here, Kλ(·) is a nonnegative kernel function with bandwidth λ,
such as Kλ(h) = exp(−h/λ).

I Then,

γ̂ij (x ,y) =
Ĉij (x ,y)√

Ĉii (x ,x)Ĉjj (y ,y)

for all i 6= j , where they set γ̂ii (x ,y) = 1. To convert from γij (x ,y)
to βij (x ,y), they used

β̂ij (x ,y) = γ̂ij (x ,y)

√
Γ(νi (x))Γ(νj (y))

Γ(νij (x ,y))
.



Marginal Parameter Functions: σi(·), Σi(·), and νi(·)

I To estimate the parameter functions σi (·), Σi (·), and νi (·), they
used a smoothed full empirical covariance matrix Ĉe and
consider a local minimum Frobenius distance, || · ||F .

I The smoothed full empirical covariance matrix is

Ĉe,ij (x ,y) =

∑n
k=1

∑n
l=1Kλ(||x − sk ||)Kλ(||y − sl ||)Zi (sk )Zj (sl )∑n
k=1

∑n
l=1Kλ(||x − sk ||)Kλ(||y − sl ||)

.

I At a fixed location s, the local estimates of σi (s),Σi (s) and νi (s)
are found via

min
σi (s),Σi (s),νi (s),∀i

||Wλ(s)(CM(s)− Ĉe)||F .

Here, CM(s) is the theoretical multivariate Matérn covariance
matrix holding all parameter functions equal to the local function
values, and the matrix Wλ(s) is a weight matrix.



Example



Summary of Nonstationary Multivariate Process

I Kleiber and Nychka 2012 proposed a really flexible model for
nonstationary multivariate spatial processes,

and they introduced an estimation procedure which is
computationally feasible for a large data set.

I But two concerns here (Personally)

1. At each location, it seems like that this model needs many (50)
realizations (replications).

2. How to do the prediction at a new location?
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Thanks for your attention !
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