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General idea

I The assumption of nonstationary and isotropy is not realistic in
various applications.

I Sampson and Guttorp (1992) first proposed deformation method in
modeling nonstationary process.

I Essentially, deformation is about a nonlinear transformation that
maps points in G-space into D-space such that the spatial structure
is stationary and isotropic in D.

I Interpolation to ungauged sites is then done in D space.

I Difficulties include choosing the best function, accounting for
uncertainty, ensuring bijectiveness (folding D space).

I Numerous additions/changes to the original model have been
proposed. We will focus on the full Bayesian model by Schmidt and
O’Hagan (2003).



The setup

I G is the region of interest. Y (x, t) is a spatiotemporal process
defined for all x ∈ G at any time t.

I Over G, we have n monitoring stations (gauged locations).

I At each location, repeated measurements were taken at time
t = 1, . . . ,T .

I Observed data Y (xi, t) for i = 1, . . . , n and t = 1, . . . ,T .

I The main goal is to predict Y (x, t) at any ungauged location and
time.



The model assumptions

I All temporal effects have been removed and any correlation induced
by the removal is ignored.

I The data are normally distributed (after suitable transformation).

I Let Yt = (Y1t , . . . ,Ynt)
T denote the set of data collected from all

gauged sites at time t.

I Y1, . . . ,YT are iid Nn (µ,Σ).



Likelihood of Σ

I An n × n estimated covariance matrix S is calculated from the data.

I Assigning uniform prior and integrating out the mean µ, we obtain
the likelihood for Σ

f (S |Σ) ∝ |Σ|−(T−1)/2 exp
{
−T

2
tr
(
SΣ−1

)}
(1)



Σ element model

I For i = 1, . . . , n and j = 1, . . . , n,

Σij = cov {Y (xi, t) ,Y (xj, t)}

=
√
v (xi) v (xj)cd (xi, xj) (2)

where for all t,

v (x) = Var {Y (x, t)} ,
cd (xi, xj) = corr {Y (xi, t) ,Y (xj, t)}

I Prior for v (x),

v (x)| τ 2, f ∼ IG
{
τ 2 (f − 2) , f

}
, x ∈ G ,

π
(
τ 2
)
∝ τ−2



Σ element model (cont.): the spatial correlation

I d (·) denotes the mapping from G-space to D-space, i.e.

d (x) : G → D, G ⊂ R2 and D ⊂ R2.

I d (·) is embedded in the correlation cd (xi, xj) through

cd (xi, xj) = g (‖d (xi)− d (xj)‖)

where ‖·‖ denotes Euclidean distance

I g is a mixture of K Gaussian correlation functions

g (h) =
K∑

k=1

ak exp
(
−bkh2

)
subjected to

∑K
k=1 ak = 1, b1 > . . . > bK and, ∀k, ak , bk > 0.



Latent Process d(·)

Recall: d(·) maps the gauged sites to the stationary and isotropic
D-space.

I If the underlying spatial process is isotropic, then d(·) is the identity
function.

I In the case of elliptical anisotropy, d(·) is a linear transformation
d(x) = Ax.



Elliptical Anisotropy Illustration

d(x) = Ax, where A =

(
0.1905 −0.0476
−0.1429 0.2857

)

Figure : (Left) Spatial process on the G -space. (Right) G -space locations in
blue, D-space locations in red.



Elliptical Anisotropy Illustration

Figure : Spatial process after transforming to the D-space.



Nonstationary Illustration

d(x) =

(
0.1x21 + 0.75x2

0.75x2

)

Figure : (Left) Spatial process on the G -space. (Right) G -space locations in
blue, D-space locations in red.



Nonstationary Illustration

Figure : (Top) Spatial process on the D-Space. (Bottom) Observed
correlations between locations versus their distance on the G -space (blue) and
D-space (green).



The d(·) Process

What if you don’t know the functional form of the deformation?

Schmidt & O’Hagan (2003) suggest using a Gaussian process.

d(·)|m(·),σ2
d ,Rd(·, ·) ∼ GP(m(·),σ2

dRd(·, ·)),

where

I m(·) is the prior mean function

I σ2
d = Var(d(x)) is a 2× 2 diagonal matrix

I Rd(·, ·) measures prior correlation of the gauged sites in D-space.

Let D = (d1, ...,dn) be the 2× n matrix whose elements are the
coordinates of the gauged sites in D-space:

vec(D)|vec(m),σ2
d ,Rd ∼ N2n(vec(m),σ2

d ⊗ Rd).



Gaussian Process Specification

I If there is no prior information on how D and G differ, m(x) = x.

I The elements of Rd(·, ·) are modeled as

Rd(x, x′) = exp

(
− 1

2a
||x− x′||2

)
,

where a is the square of a typical distance among locations in G .

I σ2
d controls the amount of distortion in mapping G to D,

σ2
dii ∼ IG (βi , αi ), i = 1, 2.



The Posterior Distribution

I Let θ =
[
v,D, a,b, τ 2,σ2

d

]T
I Then the posterior distribution is:

π(θ|S) ∝ f (S |Σ)× π
(
D|m,σ2

d ,Rd

)
× π

(
v|τ 2

)
× π

(
τ 2
)
× π

(
σ2
d11

)
× π

(
σ2
d22

)
× π (b)

where

π (b) ∝
K∏
i=1

1

bk
exp

{
− (log(bk)− µb)

2σ2
b

}
I This is an analytically intractable distribution so MCMC methods

are used to obtain samples from this distribution.



Prediction

I One goal is to predict Y ∗ at a new, ungauged location, x∗ at some
time t ∈ {1, . . . ,T}, conditioned on the observations Y of the n
gauged sites.

I Augment the parameter vector θ such that θ∗ = [θ, v∗,d∗]T , where
v∗ is the variance of the process at the ungauged location, and d∗ is
its position in D-space.

I The predictive distribution of Y ∗|Y is

p (Y ∗|Y) =

∫
θ∗

p (Y ∗|Y,θ∗) p (θ∗|Y) dθ∗



Prediction

From usual multivariate normal theory we have

(Y ∗|Y,θ∗) ∼ N
(
µ∗ +ψTΣ−1(Y − µ), v∗ −ψTΣ−1ψ

)
where ψ = (ψ1, . . . , ψn)T with

ψi =
√
v∗vi

K∑
k=1

ak exp
(
−bk (‖d∗ − d (xi)‖)2

)



Prediction

Note

p (θ∗|Y) = p (θ, v∗,d∗|Y)

= p (v∗,d∗|θ,Y) p (θ|Y)

= p (v∗,d∗|θ) p (θ|Y)

= p (v∗|θ) p (d∗|θ) p (θ|Y)

where v∗|θ ∼ IG
{
τ 2 (f − 2) , f

}
and

d∗|θ ∼ N (md∗ ,Σd∗)

where
md∗ = m∗ +

(
I2 ⊗ R∗Td R−1

)
(D−m)

Σd∗ = σ2
d

(
1− R∗Td R−1R∗d

)



Prediction

I Now MCMC algorithms can be used to obtain a sample from the
posterior distribution of θ and then for each m = 1, . . . , nmcmc

1 Sample v∗|θ[m] ∼ IG
{
τ 2

[m]

(f − 2) , f
}

2 Sample d∗|θ[m] ∼ N (md∗ ,Σd∗)
3 Compute

Σ
[m]
ij =

√
v [m] (xi ) v [m] (xj)

∑K
k=1 a

[m]
k exp

(
−b[m]

k (‖d (xi)− d (xj)‖)2
)

I You now have a sample, Σ[1], . . . ,Σ[nmcmc ], from the posterior
distribution of this covariance matrix with the new location involved.

I To make a prediction, a Rao-Blackwellized point prediction would
then be

Ŷ ∗ = E (Y ∗|Y )

= Eθ∗|S (E (Y ∗|Y ,θ∗))

≈ 1

nmcmc

nmcmc∑
m=1

µ∗ +ψ[m]T Σ[m]−1(Y − µ)



Comments

I Similarly to Sampson and Guttorp, this model maps the space of
interest to a latent space where stationarity and isotropy hold.

I This model is an improvement on Sampson and Guttorp in that it
takes into account the uncertainty in the mapping into the latent
space.

I This model is very computationally expensive and uses a
complicated MCMC algorithm.
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