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General idea

» The assumption of nonstationary and isotropy is not realistic in
various applications.

» Sampson and Guttorp (1992) first proposed deformation method in
modeling nonstationary process.

> Essentially, deformation is about a nonlinear transformation that
maps points in G-space into D-space such that the spatial structure
is stationary and isotropic in D.

> Interpolation to ungauged sites is then done in D space.

» Difficulties include choosing the best function, accounting for
uncertainty, ensuring bijectiveness (folding D space).

» Numerous additions/changes to the original model have been
proposed. We will focus on the full Bayesian model by Schmidt and
O'Hagan (2003).



The setup

» G is the region of interest. Y (x,t) is a spatiotemporal process
defined for all x € G at any time t.

» Over G, we have n monitoring stations (gauged locations).

» At each location, repeated measurements were taken at time
t=1,...,T.

> Observed data Y (x;,t) fori=1,...,nand t=1,..., T.

» The main goal is to predict Y (x,t) at any ungauged location and

time.



The model assumptions

v

All temporal effects have been removed and any correlation induced
by the removal is ignored.

v

The data are normally distributed (after suitable transformation).

Let Y; = (Yiey- .-, Ynt)T denote the set of data collected from all
gauged sites at time t.

> Yi,..., Y7 areiid N, (i, ).

v



Likelihood of X

» An n X n estimated covariance matrix S is calculated from the data.

» Assigning uniform prior and integrating out the mean pu, we obtain
the likelihood for

F(S|T) o ||~ (T71/2 exp{—;—tr (5:1)} (1)



> element model

» Fori=1,...,nand j=1,...,n,

Y, = cov{Y(xi,t),Y(x,t)}
= \/v(x)v(x)ea (xi,%;) (2)
where for all t,
v(x) = Var{Y(x, 1)},
ca(xix) = corr {Y (xi,t),Y (x,t)}
» Prior for v (x),
v, f ~ IG{r?(f-2),f},x€G,

f
7T(7'2) x 772



Y element model (cont.): the spatial correlation

» d(-) denotes the mapping from G-space to D-space, i.e.
d(x):G— D, GCR? and D C R2
» d(-) is embedded in the correlation ¢4 (xi, X;) through

ca (%, %) = g(lld(xi) —d (%))

where ||-|| denotes Euclidean distance
> g is a mixture of K Gaussian correlation functions

K
g(h) = Z ax exp (—bkh?)
k=1

subjected to Zszl axr =1, by > ... > bk and, Vk, ax, b > 0.



Latent Process d(-)

Recall: d(-) maps the gauged sites to the stationary and isotropic
D-space.

» If the underlying spatial process is isotropic, then d(-) is the identity
function.

> In the case of elliptical anisotropy, d(-) is a linear transformation
d(x) = Ax.



Elliptical Anisotropy lllustration
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Figure : (Left) Spatial process on the G-space. (Right) G-space locations in
blue, D-space locations in red.

d(x) = Ax, where A = < 0.1905 —0.0476)

2

o

3




Elliptical Anisotropy lllustration

Figure : Spatial process after transforming to the D-space.



Nonstationary lllustration
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Figure : (Left) Spatial process on the G-space. (Right) G-space locations in
blue, D-space locations in red.



Nonstationary lllustration
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Figure : (Top) Spatial process on the D-Space. (Bottom) Observed
correlations between locations versus their distance on the G-space (blue) and
D-space (green).



The d(+) Process

What if you don't know the functional form of the deformation?

Schmidt & O'Hagan (2003) suggest using a Gaussian process.

d()Im(-), 03, Ra(-,) ~ GP(m(-), o5Ra(:, ")),
where
» m(-) is the prior mean function
» o2 = Var(d(x)) is a 2 x 2 diagonal matrix

» Ry(-,-) measures prior correlation of the gauged sites in D-space.

Let D = (dy,...,d,;) be the 2 x n matrix whose elements are the
coordinates of the gauged sites in D-space:

vec(D)|vec(m), 0%, Ry ~ Nap(vec(m), o3 @ Ry).



Gaussian Process Specification

» If there is no prior information on how D and G differ, m(x) = x.

> The elements of Ry(:,-) are modeled as

1
Ry(x,x") = exp (—2a||x — x’||2> ,

where a is the square of a typical distance among locations in G.

» o2 controls the amount of distortion in mapping G to D,

o ~IG(Bi, ), i =1,2.



The Posterior Distribution

T
> Let = [v,D,a,b, 72,07
» Then the posterior distribution is:

m(0|S)  f (S|Z) x 7 (D|m, o3, Ry) x 7 (v|7?)

X T (7’2) X T (0311) X T (0‘2122) x 7 (b)
where

O(ku { /Og(;;%) Mb)}

» This is an analytically intractable distribution so MCMC methods
are used to obtain samples from this distribution.



Prediction

» One goal is to predict Y* at a new, ungauged location, x* at some
time t € {1,..., T}, conditioned on the observations Y of the n
gauged sites.

» Augment the parameter vector 6 such that 8" = [0, v*, d*]T, where
v* is the variance of the process at the ungauged location, and d* is
its position in D-space.

» The predictive distribution of Y*|Y is

PV = [ p(Y7IY.0%) (0" V) do"



Prediction

From usual multivariate normal theory we have
(YIY,6%) ~ N (5" + 5 1Y = o), v* =TT M)
where ¥ = (¢1,...,1,)" with

K
Ui = Vv acep (—be(d = d ()])?)

k=1



Prediction

Note

p(6°1Y) = p(6.v".d"[Y)
— (v, d'16,Y)p(6]Y)
— p(v.d(6) p(61Y)
= p(v"|0) p(d*0) p(0]Y)
where v*|0 ~ IG {72 (f — 2), f} and
d*|0 ~ N(md*,):d*)

where
mg- =m* + (L®R;'R™) (D — m)

Y4- =05 (1-R;'R'R})



Prediction

» Now MCMC algorithms can be used to obtain a sample from the
posterior distribution of @ and then for each m=1,..., nmeme

1 Sample v*|0I™ ~ IG {72“"] (f —2), f}
2 Sample d*|0!™ ~ N (mg~, Zq+)

3 Compute
S0 = VT ) VT () I M exp (=7 (1 () — d ()7
» You now have a sample, £, ... Ylmmemel  from the posterior

distribution of this covariance matrix with the new location involved.

» To make a prediction, a Rao-Blackwellized point prediction would
then be

Y*=E(Y*|Y)
= Eg-s (E(Y7|Y,67))

1 Nmeme

T
S+ gl ETY )

nmcmc m=1

Q



Comments

» Similarly to Sampson and Guttorp, this model maps the space of
interest to a latent space where stationarity and isotropy hold.

» This model is an improvement on Sampson and Guttorp in that it
takes into account the uncertainty in the mapping into the latent
space.

» This model is very computationally expensive and uses a
complicated MCMC algorithm.
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