Spatial Deformations

Casey Davis, Sophie Nguyen, Staci White
Advisors: Catherine Calder, William Notz, Elizabeth Stasny

Ohio State University

General idea

- The assumption of nonstationary and isotropy is not realistic in various applications.
- Sampson and Guttorp (1992) first proposed deformation method in modeling nonstationary process.
- Essentially, deformation is about a nonlinear transformation that maps points in G-space into D-space such that the spatial structure is stationary and isotropic in D .
- Interpolation to ungauged sites is then done in D space.
- Difficulties include choosing the best function, accounting for uncertainty, ensuring bijectiveness (folding D space).
- Numerous additions/changes to the original model have been proposed. We will focus on the full Bayesian model by Schmidt and O'Hagan (2003).

The setup

- G is the region of interest. $Y(\mathbf{x}, t)$ is a spatiotemporal process defined for all $\mathbf{x} \in G$ at any time t.
- Over G, we have n monitoring stations (gauged locations).
- At each location, repeated measurements were taken at time $t=1, \ldots, T$.
- Observed data $Y\left(\mathbf{x}_{\mathbf{i}}, t\right)$ for $i=1, \ldots, n$ and $t=1, \ldots, T$.
- The main goal is to predict $Y(\mathbf{x}, t)$ at any ungauged location and time.

The model assumptions

- All temporal effects have been removed and any correlation induced by the removal is ignored.
- The data are normally distributed (after suitable transformation).
- Let $\mathbf{Y}_{t}=\left(Y_{1 t}, \ldots, Y_{n t}\right)^{T}$ denote the set of data collected from all gauged sites at time t.
- $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{T}$ are iid $N_{n}(\mu, \Sigma)$.

Likelihood of Σ

- An $n \times n$ estimated covariance matrix \mathbf{S} is calculated from the data.
- Assigning uniform prior and integrating out the mean μ, we obtain the likelihood for Σ

$$
\begin{equation*}
f(S \mid \Sigma) \propto|\Sigma|^{-(T-1) / 2} \exp \left\{-\frac{T}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)\right\} \tag{1}
\end{equation*}
$$

Σ element model

- For $i=1, \ldots, n$ and $j=1, \ldots, n$,

$$
\begin{align*}
\Sigma_{i j} & =\operatorname{cov}\left\{Y\left(\mathbf{x}_{\mathbf{i}}, t\right), Y\left(\mathbf{x}_{\mathbf{j}}, t\right)\right\} \\
& =\sqrt{v\left(\mathbf{x}_{\mathbf{i}}\right) v\left(\mathbf{x}_{\mathbf{j}}\right)} c_{d}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right) \tag{2}
\end{align*}
$$

where for all t,

$$
\begin{aligned}
v(\mathbf{x}) & =\operatorname{Var}\{Y(\mathbf{x}, t)\}, \\
c_{d}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right) & =\operatorname{corr}\left\{Y\left(\mathbf{x}_{\mathbf{i}}, t\right), Y\left(\mathbf{x}_{\mathbf{j}}, t\right)\right\}
\end{aligned}
$$

- Prior for $v(\mathbf{x})$,

$$
\begin{aligned}
v(\mathbf{x}) \mid \tau^{2}, f & \sim I G\left\{\tau^{2}(f-2), f\right\}, \mathbf{x} \in G \\
\pi\left(\tau^{2}\right) & \propto \tau^{-2}
\end{aligned}
$$

Σ element model (cont.): the spatial correlation

- d(•) denotes the mapping from G-space to D-space, i.e.

$$
\mathbf{d}(\mathbf{x}): G \rightarrow D, \quad G \subset \mathbb{R}^{2} \text { and } D \subset \mathbb{R}^{2} .
$$

- $\mathbf{d}(\cdot)$ is embedded in the correlation $c_{d}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)$ through

$$
c_{d}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=g\left(\left\|\mathbf{d}\left(\mathbf{x}_{\mathbf{i}}\right)-\mathbf{d}\left(\mathbf{x}_{\mathbf{j}}\right)\right\|\right)
$$

where $\|\cdot\|$ denotes Euclidean distance

- g is a mixture of K Gaussian correlation functions

$$
g(h)=\sum_{k=1}^{K} a_{k} \exp \left(-b_{k} h^{2}\right)
$$

subjected to $\sum_{k=1}^{K} a_{k}=1, b_{1}>\ldots>b_{K}$ and, $\forall k, a_{k}, b_{k}>0$.

Latent Process d(•)

Recall: $\mathbf{d}(\cdot)$ maps the gauged sites to the stationary and isotropic D-space.

- If the underlying spatial process is isotropic, then $\mathbf{d}(\cdot)$ is the identity function.
- In the case of elliptical anisotropy, $\mathbf{d}(\cdot)$ is a linear transformation $\mathbf{d}(\mathbf{x})=\mathbf{A x}$.

Elliptical Anisotropy Illustration

$$
\mathbf{d}(\mathbf{x})=\mathbf{A} \mathbf{x} \text {, where } \mathbf{A}=\left(\begin{array}{cc}
0.1905 & -0.0476 \\
-0.1429 & 0.2857
\end{array}\right)
$$

Figure : (Left) Spatial process on the G-space. (Right) G-space locations in blue, D-space locations in red.

Elliptical Anisotropy Illustration

Figure: Spatial process after transforming to the D-space.

Nonstationary Illustration

$$
\mathbf{d}(\mathbf{x})=\binom{0.1 x_{1}^{2}+0.75 x_{2}}{0.75 x_{2}}
$$

Figure: (Left) Spatial process on the G-space. (Right) G-space locations in blue, D-space locations in red.

Nonstationary Illustration

Figure : (Top) Spatial process on the D-Space. (Bottom) Observed correlations between locations versus their distance on the G-space (blue) and D-space (green).

The $\mathbf{d}(\cdot)$ Process

What if you don't know the functional form of the deformation?
Schmidt \& O'Hagan (2003) suggest using a Gaussian process.

$$
\mathbf{d}(\cdot) \mid \mathbf{m}(\cdot), \sigma_{d}^{2}, R_{d}(\cdot, \cdot) \sim G P\left(\mathbf{m}(\cdot), \sigma_{d}^{2} R_{d}(\cdot, \cdot)\right)
$$

where

- $\mathbf{m}(\cdot)$ is the prior mean function
- $\boldsymbol{\sigma}_{\boldsymbol{d}}^{2}=\operatorname{Var}(\mathbf{d}(\mathbf{x}))$ is a 2×2 diagonal matrix
- $R_{d}(\cdot, \cdot)$ measures prior correlation of the gauged sites in D-space.

Let $\mathbf{D}=\left(\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right)$ be the $2 \times n$ matrix whose elements are the coordinates of the gauged sites in D-space:

$$
\operatorname{vec}(\mathbf{D}) \mid \operatorname{vec}(\mathbf{m}), \boldsymbol{\sigma}_{d}^{2}, \mathbf{R}_{d} \sim N_{2 n}\left(\operatorname{vec}(\mathbf{m}), \boldsymbol{\sigma}_{d}^{2} \otimes \mathbf{R}_{d}\right) .
$$

Gaussian Process Specification

- If there is no prior information on how D and G differ, $\mathbf{m}(\mathbf{x})=\mathbf{x}$.
- The elements of $R_{d}(\cdot, \cdot)$ are modeled as

$$
R_{d}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2 a}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

where a is the square of a typical distance among locations in G.

- σ_{d}^{2} controls the amount of distortion in mapping G to D,

$$
\sigma_{d_{i j}}^{2} \sim I G\left(\beta_{i}, \alpha_{i}\right), i=1,2
$$

The Posterior Distribution

- Let $\boldsymbol{\theta}=\left[\mathbf{v}, \mathbf{D}, \mathbf{a}, \mathbf{b}, \tau^{2}, \boldsymbol{\sigma}_{d}^{2}\right]^{T}$
- Then the posterior distribution is:

$$
\begin{aligned}
\pi(\boldsymbol{\theta} \mid S) \propto & f(S \mid \Sigma) \times \pi\left(\mathbf{D} \mid \mathbf{m}, \boldsymbol{\sigma}_{d}^{2}, \mathbf{R}_{d}\right) \times \pi\left(\mathbf{v} \mid \tau^{2}\right) \\
& \times \pi\left(\tau^{2}\right) \times \pi\left(\sigma_{d_{11}}^{2}\right) \times \pi\left(\sigma_{d_{22}}^{2}\right) \times \pi(\mathbf{b})
\end{aligned}
$$

where

$$
\pi(\mathbf{b}) \propto \prod_{i=1}^{K} \frac{1}{b_{k}} \exp \left\{\frac{-\left(\log \left(b_{k}\right)-\mu_{b}\right)}{2 \sigma_{b}^{2}}\right\}
$$

- This is an analytically intractable distribution so MCMC methods are used to obtain samples from this distribution.

Prediction

- One goal is to predict Y^{*} at a new, ungauged location, \mathbf{x}^{*} at some time $t \in\{1, \ldots, T\}$, conditioned on the observations \mathbf{Y} of the n gauged sites.
- Augment the parameter vector $\boldsymbol{\theta}$ such that $\boldsymbol{\theta}^{*}=\left[\boldsymbol{\theta}, v^{*}, \mathbf{d}^{*}\right]^{T}$, where v^{*} is the variance of the process at the ungauged location, and \mathbf{d}^{*} is its position in D-space.
- The predictive distribution of $Y^{*} \mid \mathbf{Y}$ is

$$
p\left(Y^{*} \mid \mathbf{Y}\right)=\int_{\boldsymbol{\theta}^{*}} p\left(Y^{*} \mid \mathbf{Y}, \boldsymbol{\theta}^{*}\right) p\left(\boldsymbol{\theta}^{*} \mid \mathbf{Y}\right) d \boldsymbol{\theta}^{*}
$$

Prediction

From usual multivariate normal theory we have

$$
\left(Y^{*} \mid \mathbf{Y}, \boldsymbol{\theta}^{*}\right) \sim N\left(\mu^{*}+\boldsymbol{\psi}^{T} \Sigma^{-1}(\mathbf{Y}-\boldsymbol{\mu}), v^{*}-\boldsymbol{\psi}^{T} \Sigma^{-1} \boldsymbol{\psi}\right)
$$

where $\boldsymbol{\psi}=\left(\psi_{1}, \ldots, \psi_{n}\right)^{T}$ with

$$
\psi_{i}=\sqrt{v^{*} v_{i}} \sum_{k=1}^{K} a_{k} \exp \left(-b_{k}\left(\left\|\mathbf{d}^{*}-\mathbf{d}\left(\mathbf{x}_{\mathbf{i}}\right)\right\|\right)^{2}\right)
$$

Prediction

Note

$$
\begin{aligned}
p\left(\boldsymbol{\theta}^{*} \mid \mathbf{Y}\right) & =p\left(\boldsymbol{\theta}, v^{*}, \mathbf{d}^{*} \mid \mathbf{Y}\right) \\
& =p\left(v^{*}, \mathbf{d}^{*} \mid \boldsymbol{\theta}, \mathbf{Y}\right) p(\boldsymbol{\theta} \mid \mathbf{Y}) \\
& =p\left(v^{*}, \mathbf{d}^{*} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta} \mid \mathbf{Y}) \\
& =p\left(v^{*} \mid \boldsymbol{\theta}\right) p\left(\mathbf{d}^{*} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta} \mid \mathbf{Y})
\end{aligned}
$$

where $v^{*} \mid \boldsymbol{\theta} \sim I G\left\{\tau^{2}(f-2), f\right\}$ and

$$
\mathbf{d}^{*} \mid \boldsymbol{\theta} \sim N\left(\mathbf{m}_{\mathbf{d}^{*}}, \Sigma_{\mathbf{d}^{*}}\right)
$$

where

$$
\begin{gathered}
\mathbf{m}_{\mathbf{d}^{*}}=\mathbf{m}^{*}+\left(\mathbf{I}_{2} \otimes \mathbf{R}_{d}^{* T} \mathbf{R}^{-1}\right)(\mathbf{D}-\mathbf{m}) \\
\Sigma_{\mathbf{d}^{*}}=\sigma_{d}^{2}\left(1-\mathbf{R}_{d}^{* T} \mathbf{R}^{-1} \mathbf{R}_{d}^{*}\right)
\end{gathered}
$$

Prediction

- Now MCMC algorithms can be used to obtain a sample from the posterior distribution of $\boldsymbol{\theta}$ and then for each $m=1, \ldots, n_{m c m c}$

1 Sample $v^{*} \mid \boldsymbol{\theta}^{[m]} \sim I G\left\{\tau^{2^{[m]}}(f-2), f\right\}$
2 Sample $\mathbf{d}^{*} \mid \boldsymbol{\theta}^{[m]} \sim N\left(\mathbf{m}_{\mathbf{d}^{*}}, \boldsymbol{\Sigma}_{\mathbf{d}^{*}}\right)$
3 Compute

$$
\sum_{i j}^{[m]}=\sqrt{v^{[m]}\left(\mathbf{x}_{i}\right) v^{[m]}\left(\mathbf{x}_{j}\right)} \sum_{k=1}^{K} a_{k}^{[m]} \exp \left(-b_{k}^{[m]}\left(\left\|\mathbf{d}\left(\mathbf{x}_{\mathbf{i}}\right)-\mathbf{d}\left(\mathbf{x}_{\mathbf{j}}\right)\right\|\right)^{2}\right)
$$

- You now have a sample, $\Sigma^{[1]}, \ldots, \Sigma^{\left[n_{m c m c}\right]}$, from the posterior distribution of this covariance matrix with the new location involved.
- To make a prediction, a Rao-Blackwellized point prediction would then be

$$
\begin{aligned}
\widehat{Y}^{*} & =E\left(Y^{*} \mid Y\right) \\
& =E_{\boldsymbol{\theta}^{*} \mid S}\left(E\left(Y^{*} \mid Y, \boldsymbol{\theta}^{*}\right)\right) \\
& \approx \frac{1}{n_{m c m c}} \sum_{m=1}^{n_{m c m c}} \mu^{*}+\boldsymbol{\psi}^{[m]^{T}} \Sigma^{[m]-1}(\mathbf{Y}-\boldsymbol{\mu})
\end{aligned}
$$

Comments

- Similarly to Sampson and Guttorp, this model maps the space of interest to a latent space where stationarity and isotropy hold.
- This model is an improvement on Sampson and Guttorp in that it takes into account the uncertainty in the mapping into the latent space.
- This model is very computationally expensive and uses a complicated MCMC algorithm.

References I

R
Schmidt ,A. M. , O'Hagan , A.
Bayesian Inference for Nonstationary Spatial Covariance Structure via Spatial Deformations.
Journal Of The Royal Statistical Society, Series B, 65, 745-758 2009.
R
Sampson, P. D. and Guttorp, P.
Nonparametric Estimation of Nonstationary Spatial Covariance Structure.
Journal of the American Statistical Association, Vol. 87, No. 417:108-119, 1992.

