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GENERAL OVERVIEW 
 

 Assumption of stationarity implies the statistical association between 2 

points is only a function of the distance between them. 
 

 For nonstationary modeling, we use basis functions to estimate the spatial 

covariance structure         . 
 

 The earliest modeling strategy was based on decomposing the spatial 

process in terms of empirical orthogonal functions (EOFs) (discussed later) 
 

 Holland et. al. (1998) represented the spatial covariance function as the 

sum of stationary isotropic spatial covariance model and a finite 

decomposition in terms of EOFs. 
 

 Nychka et. al. (2002) used wavelet basis function decomposition with 

computational focus on large problems. 
 

 Pintore and Holmes (2004) worked with both Karhunen – Loéve and 

Fourier expansions. 



REPRESENTING FUNCTIONS BY BASIS FUNCTIONS 
 

 A basis function system is a set of known functions    that are 

mathematically independent of each other. 

 

 We can approximate arbitrarily well any function by taking a weighted sum 

or linear combination of a sufficiently large number   of these functions. 

 

 Some familiar basis function systems include the classic orthogonal 

polynomial sequence (Hermite polynomials) 

 

                                
 

 that is used to construct power series, or the Fourier series system 
 

                                                          



REPRESENTING FUNCTIONS BY BASIS FUNCTIONS 
 

 Basis function procedures represent a function   which depends on   by a 

linear expansion 

              
 

   
 

 in terms of    known basis functions. 

 Let  

  denote the vector of length   of the coefficients     and  

  denote the functional vector whose elements are basis functions   . 
  

We can express      in matrix notation as 

          

 Expressing the covariance function in terms of linear basis functions, allows 

us to perform calculations using well known methods of matrix algebra. 



REPRESENTING FUNCTIONS BY BASIS FUNCTIONS 
 

 Thus basis expansion methods represent infinite dimensional functions 

within the finite dimensional framework of vectors. 

 

 Choice of the basis system   is also important. 
 

 The degree to which the data is smoothed as opposed to interpolated is 

determined by the number of basis functions  . 
 

 Accordingly, the basis system is not defined by a fixed number   of 

parameters, but   itself is viewed as a parameter which is chosen 

according to the characteristics of the data. 
 

 Basis functions allow us to store information about functions, and gives us 

the flexibility that is needed for efficient computational algorithms for 

analyzing large spatial data sets. 



REPRESENTING FUNCTIONS BY BASIS FUNCTIONS 
 

 The fundamental principle behind decomposing the spatial covariance 

function for a nonstationary process is to find a suitable parametric setup 

which facilitates us to recover the initial empirical covariance matrix 

obtained from the observations or some smooth edition of it.  
 

 This enables us to evaluate the covariance function between any two 

points outside of the measurement set. 
 

 The Karhunen – Loéve expansion of a covariance function is a spectral 

decomposition using orthogonal basis functions, namely the eigen vectors. 
 

 We can also use non-orthogonal basis function, i.e. wavelet basis in place 

of the eigen functions and relax the condition to allow some correlation 

between the previously assumed independent coefficients of the actual 

process. 



Empirical orthogonal function

A GENERAL MODELING FRAMEWORK

• Let Z (·) be a realization of a spatial stochastic process
defined for all s ∈ D ⊂ Rd, where d is typically equal to 2 or 3

• For all s ∈ D, let

Z (s) = µ(s) + Y (s) + ε(s)

• Y (· ) is a mean-zero latent spatial (Gaussian) process.
• Y (· ) is a nonstationary spatial process with covariance

function C (s1, s2) = cov(Y (s1),Y (s2))

Modeling C (s1, s2) using Empirical orthogonal function (EOF)



Empirical orthogonal function

Idea: decompose the spatial covariance function in terms of basis
functions

Y ∼ Nn(0,Σ)

• Eigendecomposition
Σ = ΦΛΦT,

where Φ is the square (n × n) matrix whose ith column is the
eigenvector φk of Σ and Λ is the diagonal matrix whose
diagonal elements are the corresponding eigenvalues λi .

• In place of Y

Y = ΦΛ1/2α =
n∑

i=1

√
λiαiφi ,

where the αi are iid N (0, 1).



Empirical orthogonal function

• For a process with a given covariance function there exists a
unique orthogonal expansion of the process.

• Karhunen-Loéve expansion

Y (s) =
∞∑
k=1

√
λkαkφk(s)

where, for example, the {αk} are iid N (0, 1).

• φk are the eigenfunctions and λk are the eigenvalues of the
Fredholm integral equation of the second kind:∫

D
C (si , sj)φk(si )dsi = λkφk(sj).



Empirical orthogonal function

Karhunen-Loéve expansion

Y (s) =
∞∑
k=1

√
λkαkφk(s)

where the {αk} are iid N (0, 1).

Covariance function:

CY (si , sj) = cov(Y (si ),Y (sj))

=
∞∑
k=1

∞∑
l=1

√
λkφk(si )

√
λlφl(sj)cov(αk , αl)

=
∞∑
k=1

λkφk(si )φk(sj)



Empirical orthogonal function

In the discrete case, with a finite set of data points (n).

• Karhunen-Loéve expansion is equivalent to a principal
component analysis

• Fredholm equation is the analog of the matrix eigenvector
equation.

SΦ = ΦΛ

where Φ = (φk(si ))i ,k=1,...,n is the matrix of eigenvectors, and Λ is
a diagonal matrix of eigenvalues λi .

Y (si ) =
n∑

k=1

√
λkαkφk(si )

CY (si , sj) =
n∑

k=1

λkφk(si )φk(sj)



Empirical orthogonal function

In the discrete case, with a finite set of data points (n).

• The eigenvalues λk are a non-parametric function of k .

• To allow for the spectrum (eigenvalues) to evolve over space,
we tempering it by taking it to some power η(s) at each
location s, where η(s) is some smooth function of s.

• By heating or cooling the spectrum at each location, one is
able to control the amount of smoothness induced by the
model.

Y (s) =
n∑

k=1

λk
η(s)/2αkφk(s)

CY (si , sj) =
n∑

k=1

λk
η(si )/2λk

η(sj )/2φk(si )φk(sj)



Empirical orthogonal function

Prediction

• Evaluate the covariance function between any two points in
the space.

• Extend the eigenvectors {φi = (φi (s1), . . . , φi (sn))}i=1,...,n to
eigenfunctions {φ̃(s)}i , i = 1, ..., n defined for all s ∈ D.

The integration formulae methodology:

φ̃i (s) = 1/λi

n∑
j=1

C (s, sj)φi (sj)

where C (·, ·) is the stationary matrix.

Compute the covariance between any two points using φ̃i (·),
i = 1, ..., n.



Empirical orthogonal function

Dimension reduction

• Select m << n points from the initial data set and fit a
non-stationary model to these m points using only p < m
eigenvectors.

• Obtain m locations ci , i = 1, ...,m in the field using k-means
clustering on the full data set.

• For each cluster i , choose the data point which is closest to ci .

• Approximating the full stationary covariance matrix to extend
the p eigenvectors.

Advantages of using EOFs:

• naturally nonstationary

Disadvantages of using EOFs:

• prediction

• measurement error



Non-orthogonal basis functions

Recall: a Gaussian process can be written in terms of
eigenvalue/eigenfunction decomposition of the covariance function
C as

Y (s) =
∞∑
k=1

√
λkαkφk(s)

where, for example, the {αk} are iid N (0, 1).

New idea (Nychka et al., 2002):

1 Use (non-orthogonal) basis functions in place of the
eigenfunctions

2 Allow some correlation among the {αk}



Discretized model (Nychka et al., 2002)

Let Y ∈ Rm by the values of the spatial field on a fine, rectangular
grid, such that

Cov(Y) = Σ = ΨDΨ′ ←→ Y = ΨHa

where H = D1/2.

• The columns of Ψ are individual basis functions evaluated on the grid but
stacked as a single vector.

Eigen-decomposition hints at an alternative way of building the
covariance: specify basis functions (which define Ψ) and H.

Details:

• If Ψ is not orthogonal and D is not diagonal, this is a problem: Σ is
m ×m; m2 ≈ 1, 000, 000

• Solution: Choose a multi resolution basis for Ψ to allow for fast recursive
algorithms in calculating Ψ−1; restrict H to be sparse



Multiresolution bases (Nychka et al., 2002)

Generate a basis for expanding the covariance using repeated
translations of a few fixed functions. Rewrite

Y (s) =
∑
i

∑
j

√
λijαijφij(s)

where i refers to a scaling and j a shift (grid locations). For
example, in one dimension, for fixed constants {ai} and {bj}:

φij(s) =
1
√
ai
φ

(
s − bj
ai

)

• The “parent” function φ(·) could be any wavelet function with local
support.

• These basis functions lend well to nonstationary fields because stochastic
properties can be controlled locally.



Multiresolution bases



Multiresolution bases (Nychka et al., 2002)

In two dimensions: use four “parent” functions:

(a) (b)

(c) (d)

Figure 3: Two dimensions: tensor products of continuous versions of father and mother
associated with the W-transform
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Estimating Σ

Assume we have independent replicates over t = 1, . . . ,T time
points; collect into a m × T matrix

Y = [ Y1 Y2 · · · YT ]

such that each Yt has covariance Σ. Then

Σ̂ = ΨD̂Ψ′ = (1/T )YY′ ←→ D̂ = (1/T )(Ψ−1Y)(Ψ−1Y)′

• D̂ is the sample covariance of the basis function coefficients



Estimating Σ

Recall: we want sparse D and H = D1/2

Solve for Ĥ through a singular value decomposition of Ψ−1Y. Let

VΛU′ = (1/
√
T )(Ψ−1Y) ←→ Ĥ = VΛ1/2V

Enforce sparsity in Ĥ: for all k 6= l ,

Ĥkl =

{
Ĥkl , if |Ĥkl | > δ

0 otherwise.

This gives a good approximation even if Ĥ has only 5-10% nonzero elements.



Summary

Pros: fast way to estimate a nonstationary covariance structure

Cons: problems when

1 data is not observed on a complete grid

2 data is located at irregularly spaced locations

Replicates are required
What about prediction?
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