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Introduction

• A geostatistical process is the stochastic process

{Z(s) : s ∈ D},

where the spatial domain D ⊂ Rp.

• A geostatistical model is a specification or summary of the probabilistic

distribution of a collection of random variables (RVs) {Z(s) : s ∈ D}.

(The observed data is a realization of these RVs).

• Important to model dependence in spatial data correctly:

– If we ignore the dependencies or get them wrong, then we can be led to

incorrect statistical inferences.
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Useful references

• Banerjee, S., Carlin, B.P. and Gelfand, A.E. (2014), Hierarchical modeling

and analysis for spatial data (2nd Edition), Chapman and Hall/CRC Press,

Boca Raton, FL.

• Cressie, N. (1993), Statistics for Spatial Data (Revised edition). Wiley, NY.

• Stein M. L. (1999), Interpolation of spatial data: some theory for kriging,

Springer, NY.

• Gelfand, A.E., Diggle, P., Guttorp, P., and Fuentes, M. (2010), Handbook

of Spatial Statistics, Chapman and Hall/CRC Press, Boca Raton, FL.

•Waller, L.A. and Gotway, C.A. (2004), Applied Spatial Statistics for Public

Health Data, Wiley, NY.
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A simplification: stationary models

• Stationarity means that some characteristic of the distribution of a spa-

tial process does not depend on the spatial location, only the displacement

between the locations.

• If you shift the spatial process, that characteristic of the distribution will

not change.

•While in most spatial data are not stationary,

– there are often ways to either remove or model the non-stationary parts

(the components that depend on the spatial location),

so that we are only left with a stationary component.
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A geostatistical model

• The simplest geostatistical model is IID noise, where {Z(s) : s ∈ D} are

independent and identically distributed random variables.

– There is no dependence in this model.

– We cannot predict at other spatial locations with IID noise as there

are no dependencies between the random variables at different locations.
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The mean function

• The mean function of {Z(s)} is

µZ(s) = E(Z(s)), s ∈ D.

Think of µZ(s) are being the theoretical mean/expectation at location s,

taken over the possible values that could have generated Z(s).
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The covariance function

• The covariance function of {Z(s) : s ∈ D} is

CZ(s, t) = cov(Z(s), Z(t))

= E{[Z(s)− µZ(s)][Z(t)− µZ(t)]}.

• The covariance measures the strength of linear dependence between the two

RVs Z(s) and Z(t).

• Properties:

1. CZ(s, t) = CZ(t, s) for each s, t ∈ D.

2. When s = t we obtain CZ(s, s) = var(Z(s)) = σ2Z(s), the variance

function of {Z(s)}.

3. CZ(s, t) is a nonnegative definite function.
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Why nonnegative definite functions?

• Consider the following weighted average of the geostatistical process {Z(s)}

at n ≥ 1 locations s1, . . . , sn:

Y =

n∑
j=1

ajZ(sj),

where a1, . . . , an are real constants.

• The variance of Y is

var(Y ) = cov(Y, Y ) = cov

 n∑
j=1

ajZ(sj),

n∑
k=1

akZ(sk)


=

n∑
j=1

n∑
k=1

aj ak cov(Z(sj), Z(sk))

=

n∑
j=1

n∑
k=1

aj ak CZ(sj, sk).
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Why nonnegative definite functions?, cont

• A function f (·, ·) is nonnegative definite if
n∑
j=1

n∑
k=1

aj f (sj, sk) ak ≥ 0,

for all positive integers n and real-valued constants a1, . . . , an.

• Thus CZ(s, t) must be a nonnegative definite function.

Why?
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The correlation function

• The correlation function of {Z(s)} is

ρZ(s, t) = corr(Z(s), Z(t))

=
CZ(s, t)√

CZ(s, s)CZ(t, t)
.

• The correlation measures the strength of linear association between the two

RVs Z(s) and Z(t).

• Properties:

1. −1 ≤ ρZ(s, t) ≤ 1 for each s, t ∈ D

2. ρZ(s, t) = ρZ(t, s) for each s, t ∈ D

3. ρZ(t, t) = 1 for each t ∈ D.

4. ρZ(s, t) is a nonnegative definite function.
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Strictly stationary processes

• In strict stationarity the joint distribution of a set of RVs are unaffected

by spatial shifts.

• A geostatistical process, {Z(s) : s ∈ D}, is strictly stationary if

(Z(s1), . . . , Z(sn)) =d (Z(s1 + h), . . . , Z(sn + h))

for all n ≥ 1, spatial locations {sj : j = 1, . . . , n} and a displacement

or spatial lag h.
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Properties of a strictly stationary {Z(s)}

1. {Z(s) : s ∈ D} is identically distributed

• Not necessarily independent!

2. (Z(s), Z(s + h)) =d (Z(0), Z(h)) for all s and h;

3. When µZ is finite, µZ(s) = µZ is independent of spatial location.

4. When the variance function exists,

CZ(s, t) = CZ(s + h, t + h) for any s, t and h.
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(Weakly) stationary processes

• {Z(s) : s ∈ D} is (weakly) stationary if

1. E(Z(s)) = µZ(s) = µZ for some constant µZ which does not depend on

s.

2. cov(Z(s), Z(s+h)) = CZ(s, s+h) = CZ(h), a finite constant that can

depend on h but not on s.

• The quantity h is called the spatial lag or displacement.

• Other terms for this type of stationarity include second-order, covari-

ance, wide sense.
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Relating weak and strict stationarity:

1. A strictly stationary process {Z(s)} is also weakly stationary as long as

σ2Z(s) is finite for all s.

2. Weak stationarity does not imply strict stationarity! (unless we have a

Gaussian process – see later).
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What suffices to be a valid covariance or correlation function?

Bochner’s theorem:

A real-valued function CZ(·) defined on Rp is the covariance function of a

stationary process

if and only if

it is even and nonnegative definite, OR

A real-valued function ρZ(·) defined on Rp is the correlation function of a

stationary process

if and only if

it is even and nonnegative definite AND ρZ(0) = 1.

•We can use Bochner’s theorem to construct stationary processes, using the

literature of what is known about nonnegative definite functions.
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Norms

• Let || · || be some norm.

– The most common norm is the Euclidean norm in Rp,

||x|| =

√√√√ p∑
j=1

x2j ,

where x = (x1, . . . , xp)
T .

– See Banerjee [2005] for a discussion of distances in different coordinate

systems.
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Isotropic and anisotropic processes

• A stationary process for which CZ(s, t) only depends on the distance be-

tween the locations, ||s− t||, is called an isotropic process.

– With a spatial lag h, the covariance function of an isotropic process can

be written in terms of its length ||h||:

CZ(s, s + h) = CZ(||h||).

• If the covariance of a stationary process depends on the direction and

distance between the locations, then the process is called anisotropic.
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Gaussian processes

• {Z(s) : s ∈ D} is a Gaussian process if the joint distribution of any col-

lection of the RVs has a multivariate normal (Gaussian) distribution;

the distribution is completely characterized by µZ(·) and CZ(·, ·).

• The joint probability density function of Z = (Z(s1), . . . , Z(sn))T at a

finite set of locations is

fZ(z) = (2π)−n/2 det(Σ| )−1/2 exp

(
−1

2
(z − µ)TΣ| −1(z − µ)

)
,

where µ = (µ(s1), . . . , µ(sn))T and the (j, k) element of the covariance

matrix Σ| is CZ(sj, sk).

• If the Gaussian process {Z(s) : s ∈ D} is (weakly) stationary then the

process is also strictly stationary with mean µZ and covariance CZ(·).
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The variogram

• Another commonly-used measure of spatial dependence is the variogram,

which measures the variance of the difference of a geostatistical process

{Z(s) : s ∈ D} at two spatial locations s and t:

2γZ(s, t) = var(Z(s)− Z(t)).

•When E[Z(s)− Z(t)] = 0, we have that

2γZ(s, t) = E([Z(s)− Z(t)]2).

• Terminology: 2γZ(s, t) is called the variogram; γZ(s, t) is called the

semi-variogram.
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The variogram

• Interpretation:

– When there is little variability in the difference, Z(s)−Z(t), then Z(s)

and Z(t) are more similar (more dependent);

– When there is greater variability in Z(s)−Z(t), then Z(s) and Z(t) are

less similar (less dependent).
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Intrinsic stationarity

• A geostatistical process {Z(s) : s ∈ D} is intrinsic (stationary) when

2γZ(s + h, s) = var(Z(s + h) − Z(s)) only depends on the displacement

h for all s.

•When the process is intrinsic stationary we can denote the variogram by

2γZ(h).

• As with stationary processes we can have intrinsic stationary processes that

are isotropic. Such processes are called homogeneous, and we can denote

the variogram by γZ(||h||) for some norm || · ||.

•Weakly stationary implies intrinsic stationary (but not vice versa).
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Writing the variogram in terms of covariances

• Using rules for covariances we can relate the variogram to the covariance

function:

2γZ(s, t) = var(Z(s)− Z(t))

= cov(Z(s)− Z(t), Z(s)− Z(t))

= CZ(s, s) + CZ(t, t)− 2CZ(s, t).

•When the process is weakly stationary we can simplify to

γZ(h) = CZ(0)− CZ(h).

• Thus, given the covariance function (when it exists), we can calculate the

variogram.
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Writing the covariance in terms of the variogram?

• This is possible when a stationary geostatistical process {Z(s) : s ∈ D} is

ergodic: the mean of a finite area of a geostatistical process tends to the

mean of the entire area as the finite area gets larger and larger.

• In that case CZ(h)→ 0, as ||h|| → ∞.

• Then

lim
||h||→∞

γZ(h) = lim
||h||→∞

[CZ(0)− CZ(h)]

= CZ(0)− 0 = CZ(0).

•With this result we get that

CZ(h) = lim
||u||→∞

γZ(u)− γZ(h).
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Properties of variograms

• Properties of the variogram for an intrinsic stationary process {Z(s) : s ∈

D}:

1. γZ(0) = 0.

2. γZ(h) ≥ 0 for all h.

3. γZ(−h) = γZ(h) for each h (γZ(·) is an even function).

4. γZ(h) is conditional negative definite:

– For any n ≥ 1 consider any spatial locations s1, . . . , sn and constants

a1, . . . , an such that
∑n

j=1 aj = 0.

Then
n∑
j=1

n∑
k=1

ajγZ(sj − sk)ak ≤ 0.
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Visualizing and describing variograms
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The sill is the limiting value of the variogram at t→∞.

The range is the dist. at which the variogram reaches the sill (could be ∞).

The nugget is limiting value of the variogram as t→ 0, from the right.

The partial sill = sill − nugget.
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Visualizing and describing covariances

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

Distance

C
ov

ar
ia

nc
e 

fu
nc

tio
n

●

The sill is the covariance at zero distance.

The range is the distance at which the covariance reaches zero (could be∞).

The partial sill is the limit of the covariance as t→ 0, from the right.

The nugget = sill − partial sill.
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Parametric models for spatial covariances/variograms

• There are many parametric models for the variogram and covariance func-

tion that are used for geostatistical modelling.

• Suppose that the geostatistical process {Z(s) : s ∈ D} is stationary and

isotropic.

• In these models:

– We rewrite the distance ||h|| as just t.

– The parameter τ 2 > 0 is the nugget.

– The parameter σ2 > 0 is the partial sill.

– The range parameter . . .
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The range parameter

• The parameter φ > 0 is a range parameter (not the range, but measures

how quickly the covariance decays to zero). Fixing the distances:

– With a smaller value of φ the covariance function decays to zero quicker.

– With a larger value of φ the covariance function decays to zero slower.

In the upcoming plots we set τ 2 = 1/2 and σ2 = 1. In all examples except the

wave φ = 1; for the wave φ = 1/4.
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1. The exponential covariance/variogram

• Certainly the most commonly used parametric model.

• The exponential covariance function is

CZ(t) =

 σ2 exp(−t/φ), t > 0;

τ 2 + σ2, t = 0,

and the exponential variogram is

γZ(t) =

 τ 2 + σ2(1− exp(−t/φ)), t > 0;

0, t = 0.
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2. The Gaussian covariance/variogram

• The Gaussian covariance function is

CZ(t) =

 σ2 exp(−(t/φ)2), t > 0;

τ 2 + σ2, t = 0,

and the associated variogram is

γZ(t) =

 τ 2 + σ2(1− exp(−(t/φ)2)), t > 0;

0, t = 0.
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3. The power exponential covariance/variogram

• This model is valid for 0 < r ≤ 2.

• The power exponential covariance function is

CZ(t) =

 σ2 exp(−|t/φ|r), t > 0;

τ 2 + σ2, t = 0,

and the associated variogram is

γZ(t) =

 τ 2 + σ2(1− exp(−|t/φ|r)), t > 0;

0, t = 0.

•With r = 1 we get the exponential, and with r = 2 we get the Gaussian.
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4. The Matèrn covariance function

•We say that the mean zero isotropic geostatistical process {Z(s) : s ∈ D}

has a Matèrn covariance function with smoothness parameter ν > 0

if,

CZ(t) =


σ2 + τ 2 t = 0,

σ2
(t/φ)ν

2ν−1Γ(ν)
Kν(t/φ), t > 0,

at distance t.

• In the above expression for the covariance, Γ(·) is the gamma function and

Kν(·) is a modified Bessel function [Abramowitz and Stegun, 1965, Chapter

9].

• As usual, φ is the range parameter, σ2 is the partial sill, and τ 2 is the nugget.
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4. The Matèrn covariance function, cont.

• Special cases of ν:

1. With ν = 1/2 we get the exponential covariance function.

2. As ν → ∞, we approach the Gaussian covariance function, which is

infinitely differentiable.

3. ν = 3/2 is another common choice.
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Smoothness

•What is wrong about having too much smoothness?

– As ν increases we can better predict a geostatistical process at any point

in the domain of interest, based on knowledge from smaller and smaller

regions.

• Not a reasonable assumption in many applications.

(a similar story can be said for having too little smoothness).

• The problem with introducing a smoothness parameter: it can be hard to

estimate based on data. Also, the estimator of the smoothness parameter is

strongly correlated with other parameters in the model for the covariance.
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Nonisotropic and nonstationary covariance modeling

• There is a large interest in modeling nonisotropic and nonstationary geosta-

tistical processes.

• A popular method to introduce nonisotropy:

– Start with an isotropic process, and scale and rotate the coordinate axes

to introduce anisotropy.
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Nonisotropic and nonstationary covariance modeling, cont.

• Some popular methods of introducing nonstationarity (there are others!)

1. Start with a stationary process, and then transform the distances in

some smooth way (we deform the space) to construct a nonstationary

process [Sampson and Guttorp, 1992]

2. Start with a white noise process, and average the process using local

weights that vary spatially – this is called the process convolution

approach [Higdon et al., 1999].

3. Write down covariance functions that include covariates [e.g., Schmidt

et al., 2011].
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