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ABSTRACT
The timing and causes of the transition to an icehouse climate in the Late Ordovician

are controversial. Results of an integrated d13C and sequence stratigraphic analysis in
Nevada show that in the Late Ordovician Chatfieldian Stage (mid-Caradoc) a positive
d13C excursion in the upper part of the Copenhagen Formation was closely followed by
a regressive event evidenced within the prominent Eureka Quartzite. The Chatfieldian
d13C excursion is known globally and interpreted to record enhanced organic carbon
burial, which lowered atmospheric pCO2 to levels near the threshold for ice buildup in
the Ordovician greenhouse climate. The subsequent regressive event in central Nevada,
previously interpreted as part of a regional tectonic adjustment, is here attributed in part
to sea-level drawdown from the initiation of continental glaciation on Gondwana. This
drop in sea level—which may have contributed to further cooling through a reduction in
poleward heat transport and a lowering of pCO2 by suppressing shelf-carbonate
production—signals the transition to a Late Ordovician icehouse climate ;10 m.y. before
the widespread Hirnantian glacial maximum at the end of the Ordovician.
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INTRODUCTION
The Late Ordovician glacial episode (Crow-

ell, 1999) is anomalous in comparison with
the late Paleozoic and late Cenozoic ice ages
in that models and proxy data indicate high
levels of atmospheric pCO2 at the time of gla-
ciation (;14–16 times preindustrial levels;
Crowley and Baum, 1995; Berner and Ko-
thavala, 2001). However, it has also been rec-
ognized that because the precise timing and
duration of ice buildup in the Ordovician re-
main uncertain, prior analyses may have
missed a brief or earlier episode of pCO2

drawdown (Kump et al., 1995). A short-lived
Late Ordovician glaciation (;1 m.y.) was pro-
posed on the basis of correlation of a global
eustatic drop with positive shifts in d13C and
d18O in the terminal Hirnantian Stage (Bren-
chley et al., 1994). A more prolonged episode
(;10 m.y.) beginning earlier in the Ordovi-
cian (Chatfieldian Stage) was argued on the
basis of glaciogenic sediments from polar
Gondwana (Hamoumi, 1999) and indicators of
upwelling and moderate-amplitude, high-
frequency sea-level fluctuations in low-
latitude carbonate settings (Pope and Read,
1998; Pope and Steffen, 2003).

A long-lived Late Ordovician glaciation is
consistent with recognition of a significant
positive d13C excursion during the Chatfiel-
dian Stage that preceded the well-known Hir-
nantian shift by ;10 m.y. The Chatfieldian
d13C shift of ;13‰ is smaller than the Hir-
nantian shift, but appears to likewise have
global significance (Fig. 1; Ainsaar et al.,
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1999). Furthermore, the Chatfieldian excur-
sion in marine carbonate also corresponds to
a shift in the d13C of organic matter (Patz-
kowsky et al., 1997) and may signal a critical
drop in pCO2 values to threshold levels for
ice-sheet growth in the Late Ordovician green-
house climate (Herrmann et al., 2003, 2004).
In contrast, d13C evidence during the Hirnan-
tian glacial maximum suggests that pCO2 be-
gan to rise again as land area available for
silicate weathering was covered in ice (Kump
et al., 1999).

A key test of the hypothesis of a prolonged
(pre-Hirnantian) period of ice-sheet buildup is
unresolved: is there evidence for a glacio-
eustatic drop that coincides with the Chatfiel-
dian d13C excursion and other sedimentary
proxy indicators of global cooling (Hamoumi,
1999; Pope and Steffen, 2003)? A drop in sea
level could provide a positive feedback for
further cooling and ice buildup by reducing
poleward oceanic heat transport (Herrmann et
al., 2004) or by lowering pCO2 through sup-
pression of shallow-water carbonate produc-
tion (cf. Ridgwell et al., 2003). We present an
integrated isotopic and sequence-stratigraphic
study from central Nevada that suggests a
prominent regressive event within the Eureka
Quartzite, previously interpreted to represent
local tectonic adjustments, was likely a re-
sponse to glacio-eustasy.

GEOLOGIC SETTING AND
BACKGROUND

Upper Ordovician strata in the Great Basin
region represent the mature phase of the Cor-
dilleran passive-margin (miogeoclinal) succes-

sion on the basis of the exponential form of
the tectonic subsidence curve (e.g., Levy and
Christie-Blick, 1991). Passive-margin subsi-
dence was not disrupted on a regional scale
until the Late Devonian Antler orogeny. In
contrast with sections in eastern Laurentia af-
fected by the Taconic orogeny (Holland and
Patzkowsky, 1996), the rate of thermally con-
trolled subsidence in the early Paleozoic of the
Great Basin was continually decreasing, and
eustatic sea level was beginning to play an
increasingly important role in deposition
(Bond et al., 1989). Subsidence was greatest
in the outer-shelf settings of central Nevada
(Finney et al., 1999) examined here (Fig. 1).
Two sections in the Monitor and Antelope
Ranges were selected for study because they
provide key biostratigraphic tie points useful
in global correlation (Harris et al., 1979; Fin-
ney et al., 1999). The presence of the undatus-
tenuis conodont zones in the uppermost Co-
penhagen Formation allows for correlation
with Chatfieldian sections east of the Trans-
continental Arch (Harris et al., 1979).

METHODS AND RESULTS
The d13C values (Appendix DR1 and Table

DR11) were analyzed by using fine-grained
micritic components drilled (;1 mg powder)
from those parts of polished thin-section bil-
lets determined to be least altered, following
standard petrographic examination (e.g., Saltz-
man, 2003). Although brachiopods or marine
cements are considered most reliable, se-
quences examined here did not contain a suit-
able number of horizons with good preserva-
tion of such components. Confidence in
micrite-based d13C curves is seen in compar-
isons with brachiopod-based curves that yield
similar overall trends (e.g., Saltzman et al.,
2000; Brenchley et al., 2003). Furthermore,
d18O values in our sections (Table DR1 and
Fig. DR1, cross plot of d18O and d13C, Fig.
DR2, stratigraphic plot of d18O; see footnote
1) do not covary with d13C in the form ex-
pected if primary d13C values were reset dur-
ing meteoric diagenesis.

The d13Ccarb values for the Antelope Valley

1GSA Data Repository item 2005014, Appendix
DR1, Table DR1, and Figures DR1 and DR2, meth-
ods and stable isotope (d13Ccarb, d13Corg, d18O) data,
is available online at www.geosociety.org/pubs/
ft2005.htm, or on request from editing@geosociety.
org or Documents Secretary, GSA, P.O. Box 9140,
Boulder, CO 80301-9140, USA.
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Figure 1. Paleogeograph-
ic map (after Scotese and
McKerrow, 1990) show-
ing position of study area
in Nevada along with oth-
er localities that record
Chatfieldian (late Mohaw-
kian) positive d13C excur-
sion (Patzkowsky et al.,
1997; Ainsaar et al., 1999;
Saltzman et al., 2003;
Ludvigson et al., 2004).

Figure 2. Plot of d13C and simplified measured section for Monitor Range–Antelope Range
composite. Late Ordovician (sensu Webby et al., 2004) stages and biostratigraphic zones
are based on Harris et al. (1979) and Finney et al. (1999).

Limestone of Whiterockian age are relatively
steady at between 22‰ and 0‰ (Fig. 2). A
positive shift documented in the overlying Co-
penhagen Formation reaches a peak of
13.7‰ in the undatus-tenuis conodont zone
(Harris et al., 1979). We also analyzed 12 Co-

penhagen samples for d13Corg after they were
reacted completely with HCl and combusted
in a furnace attached to a continuous-flow
isotope-ratio mass spectrometer, and although
the conodont alteration indices for central Ne-
vada ($3) indicate high alteration tempera-

tures ($100 8C), our values (;227‰ to
226‰; Table DR1 [see footnote 1]) are with-
in a range consistent with prior work (e.g.,
Patzkowsky et al., 1997).

DISCUSSION
Isotope Stratigraphy

The d13Ccarb data from the Copenhagen
Formation in Nevada record a positive excur-
sion in the Chatfieldian Stage (middle Mo-
hawkian; Fig. 2) that can be correlated with
d13C peaks observed in eastern Laurentian
sections through the use of the undatus-tenuis
conodont zones (Patzkowsky et al., 1997;
Ludvigson et al., 2004). This shift has also
been correlated to sections in Estonia (Ainsaar
et al., 1999), Sweden, and south China by us-
ing the tvaerensis conodont and clingani grap-
tolite zones (Fig. 1; Saltzman et al., 2003).
Global and regional correlations of the Chat-
fieldian d13C excursion are also bolstered by
K-bentonite stratigraphy (Ainsaar et al.,
1999), and its widespread occurrence indicates
a significant paleoceanographic event ;10
m.y. prior to the end of the Ordovician (Fig.
3).

The ;13‰ Chatfieldian shift in d13Ccarb

was interpreted to reflect a period of enhanced
organic carbon burial in (1) rapidly subsiding
foreland basins during the Taconic orogeny by
Patzkowsky et al. (1997) or (2) other oceanic
regions of increased production and preser-
vation (Ainsaar et al., 1999). Although dark
organic-rich shales have also been described
in the Whiterockian (e.g., Finney, 1986), these
older units do not coincide with high d13C val-
ues and may represent condensed sections
rather than elevated carbon burial on a global
scale. In the expanded section in eastern Lau-
rentia sampled by Patzkowsky et al. (1997) for
both d13Ccarb and d13Corg, the Chatfieldian
d13Ccarb excursion is also associated with a de-
crease in the difference between carbonates
and organic matter (D13C), which suggests
that enhanced Corg burial resulted in draw-
down of pCO2 (Fig. 3; Kump and Arthur,
1999). Furthermore, Patzkowsky et al. (1997)
observed the decrease in D13C in the late stag-
es of the d13Ccarb excursion and proposed that
organic burial began under highly elevated
pCO2 levels and gradually fell to near ;8–10
times current levels and into the range of sen-
sitivity for phytoplankton. Such low levels are
near the likely threshold in pCO2 necessary to
initiate glaciation in an Ordovician green-
house climate (Herrmann et al., 2003, 2004).
Available d13Corg data from Nevada are con-
sistent with the results of Patzkowsky et al.
(1997) in that the preexcursion (bicornis zone)
values in Jacobson et al. (1995) average
229‰ to 230‰, whereas our data from the
Copenhagen Formation yield 13C-enriched
values of ;226‰ (Fig. DR2 and Table DR1;
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Figure 3. Generalized
time chart depicting Mid-
dle to Late Ordovician
greenhouse to icehouse
transition, and relative
timing of isotopic and
stratigraphic events. Gla-
cial deposits (Frakes et
al., 1992) and upwelling
(Pope and Steffen, 2003)
are plotted alongside
simplified eustatic curve
and d13Ccarb excursions
(black bars). Period of
rising and falling pCO2
(striped bars) are based
on d13Ccarb-d13Corg data in
Patzkowsky et al. (1997)
and Kump et al. (1999).
Chatfieldian fall in pCO2
reflects organic carbon
burial, and Hirnantian
rise signals decreased
silicate weathering rates
due to ice-sheet expan-
sion (‘‘weathering hy-
pothesis’’). Sr isotope
drop is after Shields et al.
(2003).

see footnote 1). However, the relatively high
degree of thermal alteration in the Great Basin
region makes detailed reconstructions of the
timing of changes in D13C less reliable, and
future study and comparison with the results
of Patzkowsky et al. (1997) from eastern Lau-
rentia should focus on less deeply buried
sections.

A decline in pCO2 brought about by organ-
ic carbon burial during the Chatfieldian d13C
excursion (Fig. 3) would have augmented any
initial drawdown in the Ordovician associated
with the Taconic uplift (e.g., Kump et al.,
1999). Indirect evidence for rapid weathering
of young basaltic rocks during the early phas-
es of the Taconic may be found in the Sr iso-
tope curve of Shields et al. (2003), which
shows a prominent shift toward nonradiogenic
values in the several million years (late
Whiterockian and early Mohawkian) that led
up to the Chatfieldian d13C excursion (Fig. 3).
A pre-Hirnantian cooling step is a likely con-
sequence of enhanced silicate weathering and
high organic carbon burial and may explain
the pronounced sedimentologic (i.e., wide-
spread chert and phosphorite deposition; Pope
and Steffen, 2003) and faunal changes (Hol-
land and Patzkowsky, 1996) beginning in the
early Chatfieldian (Fig. 3). Does the regressive
event within the Eureka Quartzite that follows
the Chatfieldian d13C excursion in central Ne-
vada represent the initiation of continental ice
buildup during this cooling episode?

Sequence Stratigraphy
The d13C excursion in the upper Copenha-

gen (Fig. 2) is truncated by a sequence bound-
ary at the contact with the Eureka Quartzite.
This Chatfieldian sequence boundary is re-
gionally represented by an intra-Eureka con-
tact (e.g., Zimmerman and Cooper, 1999) and
likely marks a regressive pulse superimposed
on the long-term (second order) Sauk regres-
sion. The Sauk regression spread vast amounts
of quartz sand over exposed carbonate plat-
forms throughout North America, which
formed the St. Peter Sandstone on the craton
and lower part of the Eureka Quartzite (equiv-
alent to the Copenhagen) elsewhere in the
Great Basin (Ross et al., 1989) during a period
of ;10 m.y. in late Whiterockian and early
Mohawkian time (Mussman and Read, 1986).
However, because interior North America was
reflooded by advancing Tippecanoe seas in the
early Mohawkian (Turinian; Ludvigson et al.,
2004), the Chatfieldian regressive event that
we observe in central Nevada may also be en-
tirely younger than the classically defined
Sauk-Tippecanoe sequence boundary. The
abrupt nature of the progradation of quartz
sand into outer shelf environments represented
by the Copenhagen-Eureka transition thus
seems to require a separate explanation that is

consistent with a third-order sequence bound-
ary. Local tectonic uplift is one possibility,
and Cooper and Keller (2001) documented the
importance of periodic movement on the ‘‘Las
Vegas arch’’ in southern Nevada during the
Early to Middle Ordovician. Glacial eustasy
provides the most plausible alternative, and in
order to determine the relative roles of local
vs. global factors in the Copenhagen-Eureka
transition, correlative sequences must be ex-
amined outside the Great Basin.

Equivalent strata that record the Chatfiel-
dian d13C excursion in eastern Laurentia are
characterized by relative sea-level rise as a re-
sult of flexural subsidence during the Taconic
uplift (Patzkowsky et al., 1997). This subsi-
dence event locally overwhelmed eustatic
drops that formed prominent sequence bound-
aries in less rapidly subsiding basins (Holland
and Patzkowsky, 1996). Farther west in Lau-
rentia, in the continental-margin facies of
Oklahoma, a major Chatfieldian sea-level fall
was also interpreted as eustatic by Finney
(1986). In Baltica, which represents a separate
continental block (Fig. 1) that was undergoing
relative tectonic quiescence at this time (Niel-
sen, 2004), the Chatfieldian d13C excursion in
middle Caradocian strata of Estonia coincides
with a lowstand of sea level that brought fine-
grained siliciclastic materials out over the car-
bonate platform (Ainsaar et al., 1999). In the
Oslo area, a conspicuous lowstand during the

latest Diplograptus foliaceus zone (Nielsen,
2004) can also be correlated with the sea-level
drop in Estonia and the Chatfieldian regressive
event in central Nevada (Fig. 3), consistent
with glacio-eustasy as the driving mechanism.

IMPLICATIONS AND CONCLUSIONS
Study of a Late Ordovician (Chatfieldian)

succession in Nevada shows that a positive
d13C excursion in the upper Copenhagen For-
mation was closely followed by a regressive
event within the prominent Eureka Quartzite.
The Chatfieldian d13C excursion is a global
event and may signal enhanced organic carbon
burial that lowered atmospheric pCO2 to lev-
els near the threshold for ice buildup in the
Ordovician greenhouse climate. If confirmed
to be eustatic in future investigations, the sub-
sequent sea-level fall we observe may have
provided a positive feedback for further cool-
ing and ice buildup either by reducing pole-
ward oceanic heat transport (Herrmann et al.,
2004) or by lowering pCO2 in response to the
suppression of shallow-water carbonate pro-
duction in a Late Ordovician ocean that did
not have a compensating mechanism for buff-
ering ocean carbonate-ion concentrations (cf.
Ridgwell et al., 2003). The evidence for a
widespread Chatfieldian d13C excursion and
eustatic drop further supports the notion that
the transition to an Ordovician icehouse cli-
mate occurred ;10 m.y. before the wide-
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spread Hirnantian glaciation, ending a long
greenhouse period in Earth history that ex-
tended back to the Neoproterozoic (Hoffman
et al., 1998).
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