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Towards the Abstract

ARNOLD E. ROSS
Ohio State University

1. Our plan ,
We propose to consider a very basic kind of human experience, namely, the

experience of dealing with sets (classes) of objects. We shall show that out of the
study of such simple surroundings mathematics grows by the process of
observation, experimentation, discovery and invention. -

We shall construct a kind of algebra whose elements are sets (of objects) and we
shall study in detail the properties of such an algebra. We shall then introduce other
examples of algebraic systems, and we shall propose a way of comparing such
systems. We shall discover that mathematical systems can resemble each other in
some fundamental way, and we shall be led to a discussion of the process of

_abstraction (the algebra of sets, the algebra of divisors and the algebra of logic, all
leading to the abstract system called Boolean algebra).

2. Some basic questions concerning sets

In each discussion we select a set / of objects which we agree to consider and which
we call our universe of discourse. As the elements of our mathematical system we
~ shall take the subsets of our universe of discourse.

We say that a set 4 is a subset of a set B or that 4 is contained in B if and only if
every element of 4 is an element of B. This does not exclude the case when 4 = B. If
Aiscontained in Bwewrite 4 < B. If pisanelement of 4 we write pe A. Weindicate
implication (if, then) by the double arrow = and equivalence (if and only if) or
twofold implication by <. Thus, in shorthand,

Ac Bs(peA=peB).

A set may be described by exhibiting its elements or the names of these elements.
‘Thus we may describe the set of all students in the freshman mathematics class by
“referring to the full list 7, where 7 consists of all students in our college. If the
universe of discourse / is taken to be the set of all integers, we may speak of the set

A4={1,2,5, 10},
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or the set
B={1,3,7, 9}

A set may also be described by indicating the characteristic properties of its

elements, i.e. the properties which are possessed by all the elements of the given set
and by no other elements. Thus the last two sets may be described as follows:

= {all positive integral divisors of 10}, _
= {all x such that x is integral, 1 < x < 10, x is relatively prime to 10},

or, in shorthand,

A = {x:x positive integer, x | 10},
= {x:x integral, | < x < 10, (x, 10) = 1}.

Here {x:x has property P} is read as all x such that x has thevproperty P,

Problem 1. The following sets are described in terms of the characteristic
properties of their elements. Describe these sets by exhibiting their elements. In each
case a suitable universe of discourse is presupposed.

= {x:x a prime number, 1 < ‘x v< 50},
= {z:z a complex number, z* = 1},
= {all right triangles with integral sides m, n, k and with the area 4 < 200},

= {c.c¢ a coefficient in the expansion of (x + y)“}

-Problem 2. Describe the followmg sets by giving the characteristic properties of
their elements: .
A=1{1,2,3,5,6, 10, 15, 30},

B={1,7,11,13,17, 19, 23, 29},
= {6, 28, 496, 8128},

Given two sets 4 and B (in our chosen universe of discourse /) it is natural to
inquire about the set of elements which 4 and B have in common (the intersection of
A and B) and also about the totality of all elements contained in at least one of the
two sets A, B (the union of A and B). We denote the intersection of 4 and Bby 4 N B
and their union by 4 U B. The complement of a set 4 is the set A’ of all the elements
in I but not in 4. In shorthand,

D=AnB<«(peD<>pedandpeB),
U=AUB<«(peU<pedorpeB),
C=A"<(peCepédy=>A4uAd=1

We should note that the disjunction ‘or’ is used by mathematicians in the sense of
“one or the other or both.’ In common parlance the last alternative is most often
excluded. The inquiry ‘Are you a man or a mouse? excludes the possibility of both
alternatives holding true simultaneously.
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" 3.  The algebra of sets
We are well on the way to constructing our mathematical system. We have on
hand the elements of our system. These are the subsets of our universe of discourse /.
The operations of taking the union and the intersection of two sets remind one of the
familiar binary operations of arithmetic. However, we still have.some subtle
adjustments to make before we can achieve our end. .
We recall that a binary operation in a set S is given by a rule which dSSlgnS a
- unique element of S'to every pair of elements of S. We see that the taking of the union
determines a binary operation in S, where S is the set of all the subsets of I having at
least one element. Taking the intersection of two sets 4 and Bin S yields another set
in S only when A and B have elements in common. To provide two disjoint sets with
an intersection we introduce a fictitious subset g called the null set (popularly
referred to as the set without elements) and write 4 N B = gif 4 and B are disjoint.
With this convention the taking of the intersection is a binary operation in the set S
= P(I) of all subsets of  including the null subset . The real mathematical meaning
of the null set will become clearer as our discussion develops. We shall find it
- convenient to take 4 U gy = 4 = U A for every 4 € #(]). Then the unionisalsoa
binary operation in 2(1).
If we agreethat &' = Iand I' = g, then taking the complement of a set is a unary
operationin 2(1),i.e. to every element A of P(1) it assigns a unique element of 2(1).

4. Conjecture, counterexample, proof

Problem 3. Let1=4{1,2,3,4,5,6,7,8,9,10},4=11,2,3},B= {3,4,5},C
={1,3,5,7},D = {7,8,9,10}, E= {1, 2,3,4, 5, 6}. What sets are determined by
the following algebraic expressions: (4 UB) N C, (AN CYU(BNC),AuB,BUA,
ANC, (AnD)uC, CnA4, (BNCYUA, (BUA)N(CUA), A'~B, (AU BY,
CuD, (AnB)nC, (CnD)Y, An(BnC), Bu(CuD), BUE, (BuC)uD,
‘E n E? Here the parentheses indicate, as usual, the order in which the operatlons are
to be carried out.

Would the reader venture any guesses regarding the properties of the operations
of our new algebra on the basis of the above calculations?

Figure 1

Problem 4. Let I consist of all points in the left-hand square in Figure I and let
‘A, B, C, D, E be the subsets of I indicated by the shading. In a separate figure for
each expression indicate by shading. the sets determined by each algebraic
expression given in Problem 3. Do the results of the new ‘calculations’ give
‘additional support to the guesses suggested by the results in Problem 37
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. Weobserve that in Problem 3, En B = {3,4,5} = B. Also in Problem4 E~ B
= B. We conjecture that Xn Y = Y for every pair of sets X and Y. That is, we
conjecture that the last equality is an identity. However, substituting the sets 4 and B _
in Problem 3 for X and Y respectively we find that 4 n B = {3} ¢ B. Thus we have
found an example which is contrary to our conjecture (g counterexample) and have
shown through this that X n Y = Y is not an identity.

We see that in order to disprove the truth of a universal assertion we need to find
but one counterexample. _ '

[t does not suffice, however, to find a number of instances for which our assertion
~ holds true in order to be sure that it holds universally. Consider the equality (12)°
X' VY =(XnY) for example. This equality is verified by every pair of sets in
Problem 3. This fact does not serve as a guarantee that greater perseverance will not
produce a counterexample. To show that (12) is indeed an identity we must resort to
‘a detailed analysis of its meaning. , ;

To arrange our discussion in a neat manner we observe that the very definition of
the equality of two sets as sets having exactly the same elements may be written in the v

form .

U=V<[(peU=peV)and (peV=pe U)]
which means that :
' U=V UcVand UDV. : (%)

- We next observe that our basic definitions yield the following chain of
implications for every X and Y: '

peX' VY wpeX orpel wpé¢Xorp¢YepéXnYeope(XnY).

Reading this argument from left to right we see that X' U ¥’ < (Xm Y)'. Reading
from right to left shows that X' U Y’ > (X A Y)'. That (12) is an identity follows
then from ( %). : - :

Problem 5. Which of the following equalities are identical equalities
(identities)? In each case either find a counterexample or give an ‘clementwise’ proof
such as the one given for (12).'*

() XnX=X,2) XuY=YUX, 3 XuY)Y=XuY, _
@D Xn(YNnZ)=(XnNnZ, H(XnNUZ= (XuZ)yn(Yuz),
0) gNX =g, (MNIVX =1, B)XUX =109 XnX =g
(1) XoY=Y, (1) Xu(¥YnZ)=(XuY)nZ (12) (X N=XvuY,
I XYY =XnY,(l4) Xn(XUuY)= X, '
(15) (XYur)yuXuY)y =X (16 Xu(Xn¥) =%, (17) XuX=JX,
(18) XnY=YnX, (19 Xu(YuZ)=(XuY)uzZ
20) (XuNNZ=(XNnZ)u(Yn2Z), 2l) guX=X, ) InX=1X,
23) (XY = X. ’ '
T The numbers in round brackets here and below refer to the lists in Problems 5 and 6.
1 We suggest that at a first reading, it is sufficient to look in- detail at (say) the odd-
numbered examples only. '
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Problem 6. Which of the following statements hold true universally?

() XNnY=XesXcYesXuY=Y,025XcAX, :

(20) XcYandYeZ=>XcZ 2QT) gc X, (28) X = I,

(2N ANnX=AnYand AuX =AuY=>X=Y,(30) Xc XU,

BN XoXnY,32)T=XnTHu X nDeX=g,.

BN XcAoXnA=g, (G4 Yo A =A40Y =1,

B XNY =ZNnZXnY=X,36) XcY=X>Y,

BN XcYand XcZ=>Xc¥YNnZ (38)XcZanchZ=>XchZ
(39) X =Y« Xc Y and YoX,(40) XcYXuY=1

@ XcY=>XuZcYUZ (42)XcY=>XchYnZ

The student should test his powers of observation and his capacity for initiative
on the examples in Problems 3-6. He should go through the various stages involved
in the process of mathematical discovery, viz. 1) experimentation and observation,’
2) making a conjecture, 3) testing for possible counterexamples 4) justification.

5. Interdependence of properties of a mathematical system

Problem 7. Show that for every two sets X and Y in /, the four sets XN ¥,
XAY, X Y, X ~nYform a partition of /, i.e. these sets are pairwise disjoint.
(which means that no two of them have elements in common) and their union is /.

It can be shown directly without resorting to an elementwise argument that some
universal statements are consequences of one or more other universal statements.
Thus (1) is a consequence of (31), (37) and (39). On the other hand (29) can be
deduced from (31), (18), (24), (2) and (5). '

Problem 8. Justify fhe steps in the above derivation of (1) and (29).

We shall speak of this type of derivation as a relative argument, to distinguish it
from the elementwise method of proof. The relative argument brings out (indeed is
based on) the pattern of dependence which exists among various true statements ina
given mathematical system. It is the study of these patterns that a mathematician
has in mind when he speaks of the study of the structure of such systems.

6. The game of a ‘reduced inventory’: the first step towards abstraction

Let us list all the statements in Problems 5 and 6 (or, say, the odd-numbered
" ones) which can be proved to hold true by an elementwise argument. Then let us play
the following game. We shall allow ourselves to drop a statement from this list if its
truth follows by a relative argument from a number of other true statements in our
listing. From what i$ left we'can again drop a true statement provided it is derivable
from others which have not yet been dropped from the list, and so on. This process
will tefminate either when the remaining statements can no longer be derived from
each other or through the limitations of the player’s ingenuity.

We may, as an example, start our game as follows: We drop (29) from our initial
list since it follows from (31) (24), (2), (5) and (18). Since (1) is a consequence of (31),
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(37) and (39), none of which has been dropped, we may drop (1) in addmon to (29).
Next, we note that (8) follows from (25), (2) and (40), all ofwhlch still remain in our
listing. Hence (8) can also be dropped. .

Proceeding in this manner we can go as far as our ingenuity will take us.

We should note that if every statement in the reduced list which is left at the end
of the game is proved by an elementwise argument, then all other statements on the
original list can be deduced from those on the reduced list by the usually less
cumbersome relative argument.

Different players are likely to arrive at different though equally useful reduced
lists. Birkhoff and MacLane (reference 1) use (1), (17), (2), (18), (4), (19), (5), (20),
(24), (7) (28), (21), (22), (6), (27), (8), (9), (12), (13), (23). Rosenbloom (reference 3)

" essentially uses (18) (4), (35). and Courant and Robbins (reference 2) suggest (2),
- (19), (15).

A relative argument involving only the 1dent1t1es in a reduced hst of statements is
called algebraic manipulation. .

_ Problem 9. Show using algebraic manipulation that
(AN B)Y =(AnBYyu(4'nB)u (4~ B')is an identity.

Proof. (AhB)’ = AV = A nnHuBnlI = [(A'nBYyu(AnB)lu
(BnA)UB nA)=AnB)u(A nBu(dnB) - :

' Justify each step of the above proof by references to appropriate identities in
Problem 5. Comment on the identity just proved in the light of the partition
descnbed in Problem 7.

7. Systems with identical reduced inventories of propertles the second step toward
abstraction

Let us now make what will seem, at first glance, to be a digression but which will
prove to be the promised thought-provoking surprise of our discussion.

Problem 10. Show that the taking of the greatest common divisor (a, b) of two
integers a and b is a binary.operation in the set S if 1) Sis the set of positive integers;
2) S = S, isthe set of all positive divisors of n = 6, or of n = 12, or of n = 30 or of an
arbitrary integer n. Show that for each of the above sets S, the taking of the Iowest
common multlple [a, b] of two mtegers a and b is also a binary operatlon

Problem 11. To conform with the usual custom of placmg the symbol for
binary operations between the two elements involved, we shall write a A b = (a, b)
'=gcd. ofaand b,anda v b = [a, b] = l.c.m. of aand b. If a divides ¢, we write a
< ¢. Show that the following statements hold truein S, S, ,, S, (n an integer) and S:

(DxAax=x,2)xvy=yvux, BDxAr@Aaz)=(xAy) Az, B)xap)vz
=(xvz)a(yvz), (20) (xvy)az=xAz)v(pAaz), 24 xAy=x<x
<y<xv y=y. Observe the similarity with the like numbered statements in _
Problems 5 and 6.
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What identities in our present systems correspond to (21) and (22) in Problem 57
In other words, what elements in our system behave like g and / in the algebra of
sets? In what way is this behaviour the same as that of zero relative to addition and
unity relative to multiplication in ordinary arithmetic in the set of all integers Z?

What statements in Problems 5 and 6 have a bearing on the conditions

anx=1av x=n(inS,)? (% %)

Does (% %) have a solution x for every aeS,,? Show that (% %) does have a
solution x for every ae S,. Show that the same is true for S;,. Can one generalize
this? In view of this discussion, how will you define a' in S, in S;,?

Show (the second step toward abstraction) that all the statements involving A,
v, <,and ' in S, (also in S;,) which correspond to true statements in Problems 5
and 6 are also true. For what integers n can this be said of S, ?(The answer is given at

‘the end of the article.) Note that in order to prove our assertion it su; ﬁces to compare
corresponding reduced systems.

If we do not inquire into the nature of the elements (sets of objects in Problems 5
and 6, positive divisors of an integer n in the example above) but are concerned only -
with the properties of binary or unary operations and of some bmary relations such
as < or <, and if these have the same properties as the operations and relations in
our two examples, viz., the algebra of sets and the ‘algebra of divisors’, which we
introduced, then we say that we study Boolean® algebras and that we deal with an

"abstract theory of which our examples serve as realizations.

All1 2 36 vil 2 3 6 ala
1l 111 1{1 236 16 6
‘ VRN
201 21 2 212 2 6 6 2|3 2 3
N/
311 3 3 33 6 3 6 302 1
611 2 3 6 6|6 6 6 6 611
Figure 2

It is said that Boolean algebras are obtained by the process of generalization.
The question arises as to how general is ‘general’. It is interesting to note that for
each Boolean algebra of a finite number of elements one can obtain a realization as
an algebra of sets which gives a true (faithful) representation of our Boolean algebra.
We shall try to convey this subtle idea by means of an example. .

To bring out clearly the meaning of what we have in mind, we make use of the
familiar representation of operations through the use of tables, in the same way in
which multiplication in arithmetic is represented by the multiplication tables.

Thus, the tables for A, v , the table for ' and the charts for < in the case of S are
given in Figure 2.

t After the English logician George Boole (1815-1864). .
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On the other hand, the tables for N, v, the table for complementation, and the

chart for < for I = {1, 2} are given in Figure 3.

a (y 23 1,2 v ay @2

.8 B 2 & z {1y 2y (L2
ay g myo gy ay o2y fa2r 2)
2y lg o 2b 12 2y | oy o2y 2 (L2 @23 | 1
2 g o2y 2 .2y (L2 22y L2 g

Figure 3

We notice that the two systems are “identical except for notation’. More precisely
we can establish a ‘one-to-one’ correspondence [l < &, 26 {1},3e{2},6< I]so
thatif 4 «>a, B b, thenAnBean b, Av Beoav b Aead, Ac B<>a < b.
Hence the corresponding statements in the two systems either both hold true ot both
are false. :

Problem 12. Show that the Boolean algebra of the positive divisors of 30 (the

case Syo) 1S faithfully represented by the algebra of subsets of / = {1, 2, 3}

We say that two systems which are faithful replicas of each other represent one
and the same abstract mathematical system. _

Note that the algebra of sets with = 1{1,2,3}is essentially different from the
algebra of positive divisors of 6, in the sense of not being faithful replicas of each
other. :

Other realizations of Boolean algebras are used in logic and, through that, in the
design of the high-speed digital computers (reference 4). 1t is primarily this last
application that shifted the position of Boolean algebras away from ‘pure

mathematics’ to make it one of the more popular subjects in ‘applied mathematics’.’

{The answer to the question on p. 94 is that n must contain no repeated factor.)
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