Tar Spot of Corn in Ohio Again this 2019

Source:  Pierce Paul, Felipe Dalla Lana da Silva, OSU Extension

Tar Spot, a new disease of corn caused by the fungus Phyllachora maydis, was reported for the first time in Ohio at the end of the 2018 growing season. At that time, it was found mostly in counties close to the Indiana border, as the disease continued to spread from the middle of country where it was first confirmed in 2015. Over the last few weeks, there have been several new, confirmed report of Tar Spot in Ohio, this time not only in the northwestern corner of the state, but also from a few fields in central and south-central Ohio. As was the case last year, disease onset was late again this year, with the first reports coming in well after R4. However, some of the regions affected last year had more fields affected this year, with much higher levels of disease severity. It could be that Tar Spot is becoming established in some areas of the state due to the fungus overwintering in crop residue from one growing season to another. This is very consistent with the pattern observed in parts of Indiana and Illinois where the disease was first reported. We will continue to keep our eyes out for Tar Spot, as we learn more about it and develop management strategies. You can help by looking for Tar Spot as you walk fields this fall, and please send us samples.

What does it look like? Even though corn is drying down, if Tar Spot is present, you can still detect it on dry, senescent leaves almost as easily as you can on healthy leaves. So, please check your fields to see if this disease is present. “Symptoms of tar spot first appear as oval to irregular bleached to brown lesions on leaves in which raised, black spore-producing structures call stroma are formed… giving the symptomatic areas of the leaf a rough or bumpy feel to the touch… resembling pustules on leaves with rust. Lesions … may coalesce to cause large areas of blighted leaf tissue. Symptoms may also be present on leaf sheaths and husks.” As the name of the disease suggests, symptoms look like the splatter of “tar” on the leaves. In some cases, each black tar-like spot may be surrounded by a necrotic halo, forming what is referred to as “fish-eye” lesions.

What causes Tar Spot and how damaging is it? In the past, the greatest impact of this disease in terms of yield loss were observed when P. maydis-infected plants were co-infected with a second fungus called Monographella maydis. In other words, the damage tended to be much more severe when the two fungi worked together to affect the plant. So far, only the first fungus, P. maydis, has been reported in the US, but based on work done in Illinois, this pathology alone is capable of causing substantial yield reduction on highly susceptible hybrids when conditions are favorable and infections occur early.  

Where did it come from and will it survive and become established? At this point it is still unclear as to how Tar Spot got to the US in the first place and how it continues to spread. The fungus is not known to be seed-borne or infect other plant species, so corn seeds and weeds are unlikely to be the sources of inoculum. However, the fungus can survive and be moved around on fresh and dry plant materials such as leaves and husks. In addition, since spores of the fungus can be carried be wind, it could be blowing in from neighboring states/counties/fields. Although not yet confirmed through survival studies, it appears that the fungus could be overwintering in infected crop stubble between growing seasons.

What should I do if I find Tar Spot? If you see anything that fits the description of, or resembles (Picture) Tar Spot, please inform your state specialist, field specialist, or county extension educator, but most importantly, please send samples to my lab (1680 Madison Ave, Wooster, OH) for confirmation. We will also be using your samples to study the fungus in order to develop effective management strategies.

Read more about Tar Spot of Corn at:




Stalk Quality Concerns

Source: Peter Thomison, Pierce Paul, OSU Extension

2019 may be an especially challenging year for corn stalk quality in Ohio. Stress conditions increase the potential for stalk rot that often leads to stalk lodging (Fig. 1).  This year persistent rains through June caused unprecedented planting delays. Saturated soils resulted in shallow root systems. Corn plantings in wet soils often resulted in surface and in-furrow compaction further restricting root growth. Since July, limited rainfall in much of the state has stressed corn and marginal root systems have predisposed corn to greater water stress.

Continue reading

Managing Corn Harvest this Fall with Variable Corn Conditions

Source:  Jason Hartschuh, Elizabeth Hawkins, James Morris, Will Hamman, OSU Extension

Thanks to the weather we had this year, corn is variable across fields and in some areas we will be harvesting corn at higher moistures than normal. Stalk quality may also be variable by field and amount of stress the plant was under, see the article Stalk Quality Concerns in this weeks CORN Newsletter. This variability and high moisture may require us to look harder at combine settings to keep the valuable grain going into the bin. Each ¾ pound ear per 1/100 of an acre equals 1 bushel of loss per acre. This is one ear per 6, 30 inch rows in 29 feet of length. A pre harvest loss assessment will help with determining if your combine is set properly. Initial settings for different combines can be found in the operator’s manual but here are a few adjustments that can be used to help set all machines. Thanks to the weather we had this year, corn is variable across fields and in some areas we will be harvesting corn at higher moistures than normal. Stalk quality may also be variable by field and amount of stress the plant was under, see the article Stalk Quality Concerns in this weeks CORN Newsletter. This variability and high moisture may require us to look harder at combine settings to keep the valuable grain going into the bin. Each ¾ pound ear per 1/100 of an acre equals 1 bushel of loss per acre. This is one ear per 6, 30 inch rows in 29 feet of length. A pre harvest loss assessment will help with determining if your combine is set properly. Initial settings for different combines can be found in the operator’s manual but here are a few adjustments that can be used to help set all machines.

Corn Head

Continue reading

Corn Grain Test Weight

Source: R.L. Nielsen, Purdue Univ. (edited)

Among the top 10 most discussed (and cussed) topics at the Chat ‘n Chew Cafe during corn harvest season is the grain test weight being reported from corn fields in the neighborhood. Test weight is measured in the U.S. in terms of pounds of grain per volumetric “Winchester” bushel. In practice, test weight measurements are based on the weight of grain that fills a quart container (37.24 qts to a bushel) that meets the specifications of the USDA-FGIS (GIPSA) for official inspection (Fig. 1). Certain electronic moisture meters, like the Dickey-John GAC, estimate test weight based on a smaller-volume cup. These test weight estimates are reasonably accurate but are not accepted for official grain trading purposes.

The official minimum allowable test weight in the U.S. for No. 1 yellow corn is 56 lbs/bu and for No. 2 yellow corn is 54 lbs/bu (USDA-GIPSA, 1996). Corn grain in the U.S. is marketed on the basis of a 56-lb “bushel” regardless of test weight. Even though grain moisture is not part of the U.S. standards for corn, grain buyers pay on the basis of “dry” bushels (15 to 15.5% grain moisture content) or discount the market price to account for the drying expenses they expect to incur handling wetter corn grain.

Growers worry about low test weight because local grain buyers often discount their market bids for low test weight grain. In addition, growers are naturally disappointed when they deliver a 1000 bushel (volumetric bushels, that is) semi-load of grain that averages 52-lb test weight because they only get paid for 929 56-lb “market” bushels (52,000 lbs ÷ 56 lbs/bu) PLUS they receive a discounted price for the low test weight grain. On the other hand, high test weight grain makes growers feel good when they deliver a 1000 bushel semi-load of grain that averages 60 lb test weight because they will get paid for 1071 56-lb “market” bushels (60,000 lbs ÷ 56 lbs/bu).

These emotions encourage the belief that high test weight grain (lbs of dry matter per volumetric bushel) is associated with high grain yields (lbs. of dry matter per acre) and vice versa. However, there is little evidence in the research literature that grain test weight is strongly related to grain yield.

Hybrid variability exists for grain test weight, but does not automatically correspond to differences in genetic yield potential. Grain test weight for a given hybrid often varies from field to field or year to year, but does not automatically correspond to the overall yield level of an environment.

Similarly, grain from high yielding fields does not necessarily have higher test weight than that from lower yielding fields. In fact, test weight of grain harvested from severely stressed fields is occasionally higher than that of grain from non-stressed fields, as evidenced in Fig. 2 for 27 corn hybrids grown at 3 locations with widely varying yield levels in Kansas in 2011. Another example from Ohio with 22 hybrids grown in common in the drought year of 2012 and the much better yielding year of 2013 also indicated no relationship between yield level and grain test weight (Fig. 3).

Conventional dogma suggests that low test weight corn grain decreases the processing efficiency and quality of processed end-use products like corn starch (U.S. Grains Council, 2018), although the research literature does not consistently support this belief. Similarly, low test corn grain is often thought to be inferior for animal feed quality, although again the research literature does not support this belief (Rusche, 2012Simpson, 2000Wiechenthal Pas et al., 1998). Whether or not low test weight grain is inferior to higher test weight grain may depend on the cause of the low test weight in the first place.

Common Causes of Low Grain Test Weight

Continue reading

Converting Wet Corn Weight to Dry Corn Weight

Source: Bob Nielsen, Purdue University

Corn is often harvested at grain moisture contents higher than the 15% moisture typically desired by grain buyers. Wetter grain obviously weighs more than drier grain and so grain buyers will “shrink” the weight of “wet” grain (greater than 15% moisture) to the equivalent weight of “dry” grain (15% moisture) and then divide that weight by 56 to calculate the market bushels of grain they will purchase from the grower.

The two sources of weight loss due to mechanical drying are 1) the weight of the moisture (water) removed by the drying process and 2) the anticipated weight loss resulting from the loss of dry matter that occurs during the grain drying and handling processes (e.g., broken kernels, fines, foreign materials). An exact value for the handling loss, sometimes called “invisible shrink”, is difficult to predict and can vary significantly from one grain buyer to another. For a lengthier discussion on grain weight shrinkage due to mechanical drying, see Hicks & Cloud, 1991.

The simple weight loss due to the removal of grain moisture represents the greatest percentage of the total grain weight shrinkage due to drying and is easily calculated using a handheld calculator or a smartphone calculator app. In general terms, you first convert the “wet” weight (greater than 15% moisture) to absolute dry weight (0% moisture). Then you convert the absolute dry weight back to a market-standard “dry” weight at 15% grain moisture.


  1. The initial percent dry matter content depends on the initial grain moisture content. For example, if the initial grain moisture content is 20%, then the initial percent dry matter content is 80% (e.g., 100% – 20%).
  2. If the desired ending grain moisture content is 15% (the typical market standard), then the desired ending percent dry matter content is 85% (100% – 15%).
  3. Multiply the weight of the “wet” grain by the initial percent dry matter content, then divide the result by the desired ending percent dry matter content.


  1. 100,000 lbs of grain at 20% moisture = 80,000 lbs of absolute dry matter (i.e., 100,000 x 0.80).
  2. 80,000 lbs of absolute dry matter = 94,118 lbs of grain at 15% moisture (i.e., 80,000 / 0.85).
  3. 94,118 lbs of grain at 15% moisture = 1681 bu of grain at 15% moisture (i.e., 94,118 / 56).

One take-home reminder from this little exercise is the fact that the grain trade allows you to sell water in the form of grain moisture… up to a maximum market-standard 15% grain moisture content (or 14% for long term storage). Take advantage of this fact and maximize your “sellable” grain weight by delivering corn grain to the elevator at moisture levels no lower than 15% moisture content. In other words, if you deliver corn to the elevator at grain moisture contents lower than 15%, you will be paid for fewer bushels than you otherwise could be paid for.


Will Late Planted Corn Reach Black Layer Before a Killing Frost?

Source:  Allen Geyer, Rich Minyo, Peter Thomison, OSU

Early morning frost on corn Source: Purdue Univ.

Ohio saw record late corn planting in 2019.  According to the Agricultural Statistics Service, only 33% of Ohio’s corn was planted by June 2.  The question being asked now is will the June planted corn reach physiological maturity (black layer) before a killing frost?  Corn is killed when temperatures are near 32°F for a few hours and when temperatures are near 28°F for a few minutes.

A useful tool is available from the Midwestern Regional Climate Center (the U2U tool, available at:  https://mrcc.illinois.edu/U2U/gdd/) that uses current and historical weather data to predict when corn will reach black layer.  The user selects the geographic location that they are interested in, actual planting date and the adjusted relative maturity of the planted hybrid.

Previous studies have indicated that the GDD requirement of late planted corn to reach black layer from planting is less than the requirement of corn planted on a “normal” date.  Keeping this in mind, Dr. Bob Nielsen from Purdue University has developed an adjustment to the GDD requirements for late planted corn.  This calculator can be found at:  https://www.agry.purdue.edu/ext/corn/news/timeless/hybridmaturitydelayedplant.html  Using this calculator, enter the adjusted GDD value in the U2U tool in the “Black Layer GDDs” line.

We have used the U2U tool to predict whether our corn research will accumulate enough GDDs before a killing frost.  Table 1 shows the results of using these tools for the 2019 Ohio Corn Performance Test sites (OCPT) as well as a late planted demo plot that was planted at Hoytville.  These results are based on a 109-day (2618 GDD) hybrid.  The table indicates the planting date, adjusted GDD requirement for the 109 day hybrid, whether physiological maturity (black layer) will be achieved before frost, the predicted black layer date and the average 32° and 28° frost dates.  Because of the adjusted GDD requirements with later planting dates, the predicted GDD accumulations will exceed or just meet the required GDDs before the average frost date for all 10 OCPT sites, including the 5 sites that were planted in June.  We hope that these predictions come true!  Note that the demo plots at Hoytville that were planted on June 27 will not reach black layer before a killing frost based on the U2U tool.

Table 1.  Planting date, Adjusted Hybrid GDD Requirement, Reach BL Before Frost, Predicted Black Layer (BL) Date, and Average Frost Dates for 2019 Ohio Corn Performance Test sites.


Drydown In Corn – What To Expect?

Source: Dr. Peter Thomison, OSU

Many corn growers may encounter slower than normal drydown this fall due to late crop development associated with June planting dates. Much of Ohio’s late-planted corn may not achieve black layer until mid-October or later when drying conditions are less favorable for drydown.  Once corn achieves physiological maturity (when kernels have obtained maximum dry weight and black layer has formed), it will normally dry approximately 3/4 to 1% per day during favorable drying weather (sunny and breezy) during the early warmer part of the harvest season from mid‑September through late September. By early to mid‑October, dry-down rates will usually drop to ½ to 3/4% per day. By late October to early November, field dry‑down rates will usually drop to 1/4 to 1/2% per day and by mid-November, probably zero to 1/4% per day. By late November, drying rates will be negligible.

Estimating dry‑down rates can also be considered in terms of Growing Degree Days (GDDs). Generally, it takes about 30 GDDs to lower grain moisture each point from 30% down to 25%. Drying from 25 to 20 percent requires about 45 GDDs per point of moisture. In October, we typically accumulate about 5 to 10 GDDs per day. However, note that the above estimates are based on generalizations, and it is likely that some hybrids may vary from this pattern of drydown. Some seed companies indicate considerably lower GDDs for grain moisture loss, i.e. 15 to 20 GDDs to lower grain moisture each point from 30% down to 25% and 20 to 30 GDDs per point from 25% to 20%.

Past Ohio research evaluating corn drydown provides insight on effects of weather conditions on grain drying. During a warm, dry fall, grain moisture loss per day ranged from 0.76 to 0.92%. During a cool, wet fall, grain moisture loss per day ranged from 0.32 to 0.35%. Grain moisture losses based on GDDs ranged from 24 to 29 GDDs per percentage point of moisture (i.e., a loss of one percentage point of grain moisture per 24 to 29 GDDs) under warm dry fall conditions, whereas under cool wet fall conditions, moisture loss ranged from 20 to 22 GDDs. The number of GDDs associated with grain moisture loss was lower under cool, wet conditions than under warm, dry conditions.

Weather related crop stress may affect drydown this year. Dr. Bob Nielsen at Purdue University notes, “When areas of fields die prematurely due to stresses like drought, spatial variability for grain moisture at harvest can be dramatic and often creates challenges with the management of the grain dryer operation. This is especially true early in the harvest season when grain moistures of healthier areas of the field are in the low 20’s. The spatial variability for grain moisture decreases later in the harvest season as grain moistures throughout the field settle to an equilibrium level (15% or less).”

Agronomists generally recommend that harvesting corn for dry grain storage should begin at about 24 to 25% grain moisture. Allowing corn to field dry below 20% risks yield losses from stalk lodging, ear drop, ear rots, insect feeding damage and wildlife damage.

For more on grain drydown, check out the following article by Dr. Nielsen.

Nielsen, R.L. 2018. Field Drydown of Mature Corn Grain. Corny News Network, Purdue Univ.
URL: http://www.kingcorn.org/news/timeless/GrainDrying.html [URL accessed Sept. 23, 2019].

It’s that time of year … Don’t forget to calibrate your yield monitor!

Remember the old adage … Garbage in = Garbage out. Many of us use our yield data to make additional management decisions on our farms such as hybrid or variety selection, fertilizer applications, marketing, etc. Data from an uncalibrated yield monitor can haunt us for many years by leading us into improper decisions with lasting financial affects. In today’s Ag economy we can ill afford any decision with adverse financial implications.

The two biggest reasons I usually hear for not calibrating a yield monitor are 1) I just don’t have time to do it or 2) I can’t remember how to do it without getting my manual out.  While I know it’s easy to criticize from “the cheap seats”, I would argue that this could be some of the most important time you spend in your farming operation each year.  Like many other tasks on our farm, the more we do it, the easier it gets.  Yield monitor data has so much value!  This data provides a summary (in term of yield) of every single decision you made on your farm during the past year.

Below is a calibration checklist created by Dr. John Fulton and Dr. Elizabeth Hawkins.

Continue reading

Assessing The Risk of Frost Injury to Late Planted Corn

Source:  Peter Thomison, OSU

Lately I have received questions as to whether corn at various stages of development, especially the blister (R2) and dough (R4) stages, will mature before the 50% average frost date. According to the National Agricultural Statistics Service, as of August 18, 37 percent of Ohio’s corn acreage was in the dough stage (R4) compared to 70 percent for the five year average, and three percent of the corn acreage was in the dent stage (R5) compared to 21 percent for the five-year average. Many areas of the state corn are considerably behind the five-year average because of late planting. Late maturation of the corn crop had led to questions about the likelihood for frost damage and whether more fuel will be needed to dry corn.

Physiological maturity (R6), when kernels have obtained maximum dry weight and black layer has formed, typically occurs about 65 days after silking. At physiological maturity (kernel moisture approximately 30-35%), frosts have little or no effect on the yield potential of the corn crop.

Dr. Bob Nielsen has summarized research findings from Purdue University and Ohio State University that provide insight into both the calendar days and thermal time (growing degree days, GDDs)  typically required for grain at various stages of development to achieve physiological maturity (kernel black layer, R6). This research was conducted at two locations in Indiana (west central and southeast) and two locations in Ohio (northwest and southwest) with three hybrids representing 97, 105, and 111-day relative maturities planted in early May, late May, and mid-June. The calendar days and thermal time from silking to black layer for the 111-day hybrid maturity are shown in Table 1 from http://www.agry.purdue.edu/ext/corn/news/timeless/RStagePrediction.html. The calendar days and thermal time from silking to black layer for the 97-day hybrid and 105 maturity are also available from this Purdue webpage.

Table 1

The study indicated that corn planted in mid-June compared to early May requires 200 to 300 fewer GDDs to achieve physiological maturity.  According to Dr. Nielsen, while slightly different responses among the four locations of the trial existed, there did not seem to be a consistent north/south relationship. Therefore, growers can use the results summarized in the following table to “guesstimate” the number of calendar days or heat units necessary for a late-planted field at a given grain fill stage to mature safely prior to that killing fall freeze.

How many GDDs can be expected from now until an average date of a killing

frost for a 111-day hybrid planted in mid-June?  To answer this question, estimate the expected GDD accumulation from Aug. 19 until the average frost date (50% probability) for different regions of the state (Table 2).  These GDD expectations are based on 30-year historical normals reported by the Ohio Agricultural Statistics Service. The GDD accumulation was calculated using the 86/50 cutoff, base 50 method.

If you want to determine the “youngest stage of corn development” that can safely reach black layer before the average frost date at a given weather station, use the information in Table 2 on remaining GDDs in conjunction with Table 1 which indicates GDDs needed to reach black layer at various stages of grain fill. Compare “GDDs remaining” for the site with the GDDs required to achieve black layer depending on the corn’s developmental stage.

Table 2. Estimated GDDs remaining from Aug. 9 to the first fall frost for Ohio.




Median Frost Date

(50% probability)

Estimated GDDs Remaining

From Aug. 19 to Fall Frost

Northwest Oct 10 – Oct 20 673 – 723
North Central Oct 10 – Oct 25 656 – 741
Northeast Sept 30 – Oct 25 603 – 749
West Central Oct 10 – Oct 15 716 – 773
Central Oct 5 – Oct 15 670 – 796
East Central Sept 30 – Oct 15 645 – 763
Southwest Oct 10 – Oct 15 752 – 815
South Central Oct 15 – Oct 20 841 – 893
Southeast Oct 5 – Oct 15 651 – 774

If your corn is in the milk stage (R3) as of Aug. 19, will it be safe from frost? Table 1 indicates that corn planted in mid – June required about 681 GDDs to reach black layer from R3 and Table 2 indicates that all regions of the state can accumulate that number of GDDs before the 50% frost date.

However, if your corn is in the blister stage (R2) as of Aug. 19, it might be a different story. The kernel development – GDD accumulation relationships in Table 1 indicate that corn planted in mid-June that is at R2 needs about 781 GDDs to reach black layer. Table 2 indicates that three regions of the state, South Central, Central, and Southwest, accumulate that number of GDDs before the 50% frost date. Several other regions, West Central, and Southeast, come close to accumulating this number whereas, the Northeast, Northwest, and North Central regions are least likely to accumulate the GDDs required to achieve physiological maturity.

The research results in Table 1 demonstrate that late-planted corn has the ability to adjust its maturity requirements, and most of this adjustment occurs during the late kernel development stages. In previous growing seasons when GDD accumulation was markedly less than normal, corn planted by mid-June has usually achieved physiological maturity before the first frost occurred.

Corn Growth & Development – R3 Milk

Today managing your corn crop requires knowledge of the different growth stages of the corn plant.  Growth stage identification is critical for scouting and proper timing of fertilizer and pesticide applications.  Throughout the growing season I will discuss the various corn growth stages and management issue at each stage. 

R3 – Milk

The R3 (Milk) stage occurs about 18 – 22 days after silking.  At this stage the outside of the kernel is colored yellow while the inside is white.  The kernel contains a “milky” white fluid that will explode when pressure is applied.  Kernel moisture content is approximately 80% and starch is beginning to accumulate in the kernel.

Management/Scouting: Scout for drought symptoms.  Stress can still cause kernel abortions from the ear tip downward.  Insects: Corn Earworm, Corn Rootworm adults and Japanese Beetles Diseases: Eyespot, Gray Leaf Spot, Norther Leaf Blight, Southern Leaf Blight and Tar Spot

Photo Source: Corn Growth & Development, Iowa State University