Final Solution ECE2000 Autumn 2015

Show all relevant steps. Don’t just write down the answers.

Show your work on these pages, attach additional pages if necessary.

• **Staple** all your work together
• Fill out the following section. **You will lose 5 points if you fail to provide these details**

Your Last Name_____________________________ Your First Name__________________________

1. Lecture Student __________ or Recitation Student__________ (check one)
2. If Recitation then fill out the following
 Name of recitation instructor____________________ Date/time of recitation______________
3. Your Lab Section/Group_____________________________________
Problem 1 (50 points): A circuit has four inputs C1, C2, X1 and X2. The inputs C1 and C2 behave as "control" inputs and X1 and X2 behave as "data" inputs. The circuit has one output Z. The circuit behaves as follows:

If C1 = 0 and C2 = 0 then Z = X1 \cdot X2
If C1 = 0 and C2 = 1 then Z = X1 \oplus X2
If C1 = 1 and C2 = 0 then Z = X1 \cdot X2
If C1 = 1 and C2 = 1 then Z = X1 \bar{\oplus} X2

(a) Derive a truth table for Z
(b) Use a Karnaugh map to express Z as a simplified sum of product terms

Note: The Equivalence Operation is defined as:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X \equiv Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\[Z = C_1 \overline{C_2} X_2 + \overline{C_2} X_1 X_2 + C_1 X_1 X_2 + C_1 \overline{C_2} X_1 + C_1 C_2 \overline{X_1} X_2 + C_1 C_2 X_1 X_2 + \overline{C_1} C_2 X_1 \overline{X_2} + \overline{C_1} C_2 X_1 X_2 \]
Problem 2 (50 points): Design a counter which counts in the sequence,

000 -> 010 -> 110 -> 111 -> 011 -> 001 -> repeat,

using D flip-flops. Simplify the circuit as much as possible using k-maps.

![State Diagram]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>X'</th>
<th>Y'</th>
<th>Z'</th>
<th>D_X</th>
<th>D_Y</th>
<th>D_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\[D_x = Y \overline{Z} \]

\[D_y = \overline{Z} + X \]

\[D_z = X + YZ \]
\[D_x = Y \bar{Z} \]
\[D_y = \bar{Z} + X \]
\[D_z = X + YZ \]
Problem 3 (50 points): Determine and plot the two sided magnitude spectrum (magnitude vs. frequency in Hz) of the signal given below ($f_0 = 20$Hz, $f_c = 100$Hz):

$$v(t) = [1 + \cos(2\pi f_0 t) + \cos(6\pi f_0 t)] \cos(2\pi f_c t)$$

![Spectrum of $v(t)$](image)
spectrum of $\psi(t) \cos(2\pi f_c t)$
Problem 4 (50 points): A signal $x(t)$ given below is sampled at a rate of 90 Hz by using a Continuous-to-Discrete converter. The sampled signal is then passed through a Discrete-to-Continuous converter to get a signal $y(t)$.

- Determine the signal $y(t)$.
- Determine the spectrum of $x(t)$ and $y(t)$.

Note that the spectrum for certain frequencies could be a complex number.

\[x(t) = 4\cos(80\pi t) + 2\cos(100\pi t) + \sin(120\pi t) \]

\[= 4\cos(2\pi x 40 t) + 2\cos(2\pi x 50 t) + \cos(2\pi x 60 t - \frac{\pi}{2}) \]

Black lines are the magnitude spectrum.
The ±50 and ±60 Hz lines need to be folded into the fundamental frequency range

50 Hz \rightarrow 50 - f_s = 50 - 90 = -40 Hz
60 Hz \rightarrow 60 - f_s = 60 - 90 = -30 Hz
-50 Hz \rightarrow -50 + f_s = -50 + 90 = 40 Hz
-60 Hz \rightarrow -60 + f_s = -60 + 90 = 30 Hz

Note that -50 Hz lands on top of 40 Hz therefore the folded spectrum line needs to be added to the already existing spectrum line at 40 Hz (same with the 50 Hz line added to the -40 Hz line)
\[y(t) = \cos\left(2\pi \times 30t + \frac{\pi}{2}\right) + 6 \cos\left(2\pi \times 40t\right) \]

\[= \cos\left(60\pi t + 90^\circ\right) + 6 \cos\left(80\pi t\right) \]
magnitude spectrum of $y(t)$

$$\begin{align*}
3 & \quad 0.5 \\
\frac{f_s}{2} & \quad -40 \text{ to } -30 \\
-45 & \\
0.5 & \quad \frac{f_s}{2} \\
30 \text{ to } 40 \\
45 & \\
\end{align*}$$