5.7. Transfinite induction, comprehension, indiscernibles, infinity, Π_1^0 correctness.

We now fix $M\# = (D, <, \in, \text{NAT}, 0, 1, +, -, \cdot, \uparrow, \log, d_1, d_2, \ldots)$ as given by Lemma 5.6.18.

While working in $M\#$, we must be cautious.

a. The linear ordering $<$ may not be internally well ordered. In fact, there may not even be a $a <$ minimal element above the initial segment given by NAT.

b. We may not have extensionality.

Note that we have lost the internally second order nature of M^* as we passed from M^* to the present $M\#$ in section 5.6. The goal of this section is to recover this internally second order aspect, and gain internal well foundedness of $<$.

To avoid confusion, we use the three symbols $=, \equiv, \approx$. Here $=$ is the standard identity relation we have been using throughout the book.

DEFINITION 5.7.1. We use \equiv for extensionality equality in the form

$$x \equiv y \iff (\forall z)(z \in x \iff z \in y).$$

DEFINITION 5.7.2. We use \approx as a special symbol in certain contexts.

DEFINITION 5.7.3. We write $x \approx \emptyset$ if and only if x has no elements.

We avoid using the notation $\{x_1, \ldots, x_k\}$ out of context, as there may be more than one set represented in this way.

DEFINITION 5.7.4. Let $k \geq 1$. We write $x \approx \{y_1, \ldots, y_k\}$ if and only if

$$(\forall z)(z \in x \iff (z = y_1 \lor \ldots \lor z = y_k)).$$

LEMMA 5.7.1. Let $k \geq 1$. For all y_1, \ldots, y_k there exists $x \approx \{y_1, \ldots, y_k\}$. Here x is unique up to \equiv.

Proof: Let $y = \max(y_1, \ldots, y_k)$. By Lemma 5.6.18 iv),
\[(\exists x) (\forall z) (z \in x \leftrightarrow (z \leq y \land (z = y_1 \lor \ldots \lor z = y_k))).\]

The last claim is obvious. QED

DEFINITION 5.7.5. We write \(x = <y, z>\) if and only if there exists \(a, b\) such that

i) \(x = \{a, b\}\);

ii) \(a = \{y\}\);

iii) \(b = \{y, z\}\).

LEMMA 5.7.2. If \(x = <y, z> \land w \in x\), then \(w = \{y\} \lor w = \{y, z\}\). If \(x = <y, z> \land x = <u, v>\), then \(y = u \land z = v\). For all \(y, z\), there exists \(x = <y, z>\).

Proof: For the first claim, let \(x, y, z, w\) be as given. Let \(a, b\) be such that \(x = \{a, b\}\), \(a = \{y\}\), \(b = \{y, z\}\). Then \(w = a \lor w = b\). Hence \(w = \{y\} \lor w = \{y, z\}\).

For the second claim, let \(x = <y, z>, x = <u, v>\). Let

\(x = \{a, b\}, a = \{y\}, b = \{y, z\}\)

\(x = \{c, d\}, c = \{u\}, d = \{u, v\}\).

Then

\((a = c \lor a = d) \land (b = c \lor b = d) \land (c = a \lor c = b) \land (d = a \lor d = b)\).

Since \(a = c \lor a = d\), we have \(y = u \lor (y = u = v)\). Hence \(y = u\).

We have \(b = \{y, z\}, d = \{y, v\}\). If \(b = d\) then \(z = v\). So we can assume \(b \neq d\). Hence \(b = c, d = a\). Therefore \(u = y = z, y = u = v\).

For the third claim, let \(y, z\). By Lemma 5.7.1, let \(a = \{y\}\) and \(b = \{y, z\}\). Let \(x = \{a, b\}\). Then \(x = <y, z>\). QED

DEFINITION 5.7.6. Let \(k \geq 2\). We inductively define \(x = <y_1, \ldots, y_k>\) as follows. \(x = <y_1, \ldots, y_{k+1}>\) if and only if

\((\exists z) (x = <z, y_3, \ldots, y_{k+1}> \land z = <y_1, y_2>)\).

In addition, we define \(x = <y>\) if and only if \(x = y\).

LEMMA 5.7.3. Let \(k \geq 1\). If \(x = <y_1, \ldots, y_k>\) and \(x = <z_1, \ldots, z_k>\), then \(y_1 = z_1 \land \ldots \land y_k = z_k\). For all \(y_1, \ldots, y_k\), there exists \(x\) such that \(x = <y_1, \ldots, y_k>\).
Proof: The first claim is by external induction on \(k \geq 2 \), the case \(k = 1 \) being trivial. The basis case \(k = 2 \) is by Lemma 5.7.2. Suppose this is true for a fixed \(k \geq 2 \). Let \(x = <y_1, \ldots, y_{k+1}> \), \(x = <z_1, \ldots, z_{k+1}> \). Let \(u, v \) be such that \(x = <u, y_3, \ldots, y_{k+1}>, x = <v, z_3, \ldots, z_{k+1}>, u = <y_1, y_2>, v = <z_1, z_2> \).

By induction hypothesis, \(u = v \land y_3 = z_3 \land \ldots \land y_{k+1} = z_{k+1} \).

By Lemma 5.7.2, since \(u = v \), we have \(y_1 = z_1 \land y_2 = z_2 \).

The second claim is also by external induction on \(k \geq 2 \), the case \(k = 1 \) being trivial. The basis case \(k = 2 \) is by Lemma 5.7.2. Suppose this is true for a fixed \(k \geq 2 \). Let \(y_1, \ldots, y_{k+2} \). By Lemma 5.7.2, let \(z = <y_1, y_2> \). By induction hypothesis, let \(x = <z, y_3, \ldots, y_{k+2}> \). Then \(x = <y_1, \ldots, y_{k+2}> \).

QED

DEFINITION 5.7.7. Let \(k \geq 1 \). We say that \(R \) is a \(k \)-ary relation if and only if \((\forall x \in R)(\exists y_1, \ldots, y_k)(x = <y_1, \ldots, y_k>) \). If \(R \) is a \(k \)-ary relation then we define \(R(y_1, \ldots, y_k) \) if and only if

\[
(\exists x \in R)(x = <y_1, \ldots, y_k>).
\]

Note that if \(R \) is a \(k \)-ary relation with \(R(y_1, \ldots, y_k) \), then there may be more than one \(x \in R \) with \(x = <y_1, \ldots, y_k> \).

We use set abstraction notation with care.

DEFINITION 5.7.8. We write

\[x = \{y: \varphi(y)\} \]

if and only if

\[
(\forall y)(y \in x \iff \varphi(y)).
\]

If there is such an \(x \), then \(x \) is unique up to \(\equiv \).

Let \(R, S \) be \(k \)-ary relations. The notion \(R \equiv S \) is usually too strong for our purposes.

DEFINITION 5.7.9. We define \(R \equiv' S \) if and only if

\[
(\forall x_1, \ldots, x_k)(R(x_1, \ldots, x_k) \iff S(x_1, \ldots, x_k)).
\]

DEFINITION 5.7.10. We define \(R \subseteq' S \) if and only if
We now prove comprehension for relations. To do this, we need a bounding lemma.

LEMMA 5.7.4. Let \(n, k \geq 1 \), and \(x_1, \ldots, x_k \leq d_n \). There exists \(y = \{ x_1, \ldots, x_k \} \) such that \(y \leq d_{n+1} \). There exists \(z = <x_1, \ldots, x_k> \) such that \(z \leq d_{n+1} \).

Proof: Let \(k, n, x_1, \ldots, x_k \) be as given. By Lemmas 5.7.1 and 5.7.3,

\[
(\exists y) (y = \{ x_1, \ldots, x_k \}) . \\
(\exists z) (z = <x_1, \ldots, x_k>).
\]

By Lemma 5.6.18 iii), let \(r > n \) be such that

\[
(\exists y \leq d_r) (y = \{ x_1, \ldots, x_k \}) . \\
(\exists z \leq d_r) (z = <x_1, \ldots, x_k>).
\]

By Lemma 5.6.18 v),

\[
(\exists y \leq d_{n+1}) (y = \{ x_1, \ldots, x_k \}) . \\
(\exists z \leq d_{n+1}) (z = <x_1, \ldots, x_k>).
\]

QED

LEMMA 5.7.5. Let \(k, n \geq 1 \) and \(\varphi(v_1, \ldots, v_{k+n}) \) be a formula of \(L^# \). Let \(y_1, \ldots, y_n, z \) be given. There is a \(k \)-ary relation \(R \) such that \((\forall x_1, \ldots, x_k) (R(x_1, \ldots, x_k) \leftrightarrow (x_1, \ldots, x_k \leq z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n))) \).

Proof: Let \(k, n, m, \varphi, y_1, \ldots, y_n, z \) be as given. By Lemma 5.6.18 iii), let \(r \geq 1 \) be such that \(y_1, \ldots, y_n, z \leq d_r \). By Lemma 5.6.18 iv), let \(R \) be such that

1) \((\forall x) (x \in R \leftrightarrow (x \leq d_{r+1} \land (\exists x_1, \ldots, x_k \leq z \land (x = <x_1, \ldots, x_k> \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n))))). \)

Obviously \(R \) is a \(k \)-ary relation. We claim that

\[
(\forall x_1, \ldots, x_k) (R(x_1, \ldots, x_k) \leftrightarrow (x_1, \ldots, x_k \leq z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n))).
\]

To see this, fix \(x_1, \ldots, x_k \). First assume \(R(x_1, \ldots, x_k) \). Let \(x = <x_1, \ldots, x_k>, x \in R \). By 1),

\[
(\forall x_1, \ldots, x_k) (R(x_1, \ldots, x_k) \leftrightarrow (x_1, \ldots, x_k \leq z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n))).
\]
\[x \leq d_{r+1} \land (\exists x_1^*, \ldots, x_k^* \leq z) (x = <x_1^*, \ldots, x_k^*> \land
\varphi(x_1^*, \ldots, x_k^*, y_1, \ldots, y_n)). \]

Let \(x_1^*, \ldots, x_k^* \) be as given by this statement. By Lemma 5.7.3, \(x_1^* = x_1, \ldots, x_k^* = x_k \). Hence \(x_1, \ldots, x_k \leq z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n). \)

Now assume
\[x_1, \ldots, x_k \leq z \land \varphi(x_1, \ldots, x_k, y_1, \ldots, y_n). \]

By Lemma 5.7.4, let
\[x = <x_1, \ldots, x_k> \land x \leq d_{r+1}. \]

By 1), \(x \in R \). Hence \(R(x_1, \ldots, x_k) \). QED

Lemma 5.7.6. If \(x \approx \{y_1, \ldots, y_k\} \) then each \(y_1 < x \). If \(x = <y_1, \ldots, y_k>, k \geq 2 \), then each \(y_1 < x \). If \(x = <y_1, \ldots, y_k>, k \geq 1 \), then each \(y_1 \leq x \). If \(R(x_1, \ldots, x_k) \) then each \(x_i < R \).

Proof: The first claim is evident from Lemma 5.6.18 ii). The second claim is by external induction on \(k \geq 2 \). For the basis case \(k = 2 \), note that if \(x = <y, z> \) then \(y, z \) are both elements of elements of \(x \), and apply Lemma 5.6.18 ii). Now assume true for fixed \(k \geq 2 \). Let \(x = <y_1, \ldots, y_{k+1}>, \) and let \(z = <y_1, y_2>, x = <z, y_3, \ldots, y_{k+1}>, \) By induction hypothesis, \(z, y_3, \ldots, y_{k+1} < x, \) and also \(y_1, y_2 < x \).

The third claim involves only the new case \(k = 1 \), which is trivial.

For the final claim, let \(R(x_1, \ldots, x_k) \). Let \(x = <x_1, \ldots, x_k>, x \in R \). By the second claim and Lemma 5.6.18 iii), \(x_1, \ldots, x_k \leq x < R \). QED

Definition 5.7.11. A binary relation is defined to be a 2-ary relation. Let \(R \) be a binary relation. We "define"
\[
\begin{align*}
\text{dom}(R) & = \{x: (\exists y) (R(x, y))\}. \\
\text{rng}(R) & = \{x: (\exists y) (R(y, x))\}. \\
\text{fld}(R) & = \{x: (\exists y) (R(x, y) \lor R(y, x))\}.
\end{align*}
\]

Note that this constitutes a definition of \(\text{dom}(R) \), \(\text{rng}(R) \), \(\text{fld}(R) \) up to \(= \).
LEMMA 5.7.7. For all binary relations \(R \), \(\text{dom}(R) \) and \(\text{rng}(R) \) and \(\text{fld}(R) \) exist.

Proof: Let \(R \) be a binary relation. By Lemma 5.6.18 iv), let \(A, B, C \) be such that

\[
(\forall x)(x \in A \iff (x \leq R \land (\exists y)(R(x,y))).
\]

\[
(\forall x)(x \in B \iff (x \leq R \land (\exists y)(R(y,x))).
\]

\[
(\forall x)(x \in C \iff (x \leq R \land (\exists y)(R(x,y) \lor R(y,x))).
\]

By Lemma 5.7.6,

\[
(\forall x)(x \in A \iff (\exists y)(R(x,y)).
\]

\[
(\forall x)(x \in B \iff (\exists y)(R(y,x)).
\]

\[
(\forall x)(x \in C \iff (\exists y)(R(x,y) \lor R(y,x))).
\]

QED

DEFINITION 5.7.12. A pre well ordering is a binary relation \(R \) such that

i) \((\forall x \in \text{fld}(R))(R(x,x));\)

ii) \((\forall x,y,z \in \text{fld}(R))(R(x,y) \land R(y,z)) \rightarrow R(x,z));\)

iii) \((\forall x,y \in \text{fld}(R))(R(x,y) \lor R(y,x));\)

iv) \((\forall x \subseteq \text{fld}(R))(\neg(x = \emptyset) \rightarrow (\exists y \in x)(\forall z \in x)(R(y,z))).\)

Note that \(R \) is a pre well ordering if and only if \(R \) is reflexive, transitive, connected, and every nonempty subset of its field (or domain) has an \(R \) least element.

Note that all pre well orderings are reflexive. Clearly for pre well orderings \(R \), \(\text{dom}(R) = \text{rng}(R) = \text{fld}(R).\)

Let \(R \) be a reflexive and transitive relation.

DEFINITION 5.7.13. It will be convenient to write \(R(x,y) \) as \(x \leq_R y \), and write \(x =_R y \) for \(x \leq_R y \land y \leq_R x \). We also define \(x \geq_R y \leftrightarrow y \leq_R x, x <_R y \leftrightarrow x \leq_R y \land \neg y \leq_R x, x >_R y \leftrightarrow y <_R x, \) and \(x \neq_R y \leftrightarrow \neg x =_R y.\)

DEFINITION 5.7.14. Let \(R \) be a pre well ordering and \(x \in \text{fld}(R) \). We "define" the binary relations \(R|<x \) by

\[
(\forall y,z)(R|<x(y,z) \iff y \leq_R z <_R x)).
\]
Note that $R|<x$ is unique up to \equiv'. Also note that by Lemma 5.7.5, $R|<x$ exists. Furthermore, it is easy to see that $R|<x$ is a pre well ordering.

When we write $R|<x$, we require that $x \in \text{fld}(R)$.

DEFINITION 5.7.15. Let R, S be pre well orderings. We say that T is an isomorphism from R onto S if and only if

i) T is a binary relation;
ii) $\text{dom}(T) \equiv \text{dom}(R)$, $\text{rng}(T) \equiv \text{dom}(S)$;
iii) Let $T(x, y)$, $T(z, w)$. Then $x \leq_R z \iff y \leq_S w$;
iv) Let $x =_R u$, $y =_S v$. Then $T(x, y) \iff T(u, v)$.

LEMMA 5.7.8. Let R, S be pre well orderings, and T be an isomorphism from R onto S. Let $T(x, y)$, $T(z, w)$. Then $x <_R z \iff y <_S w$, and $x =_R z \iff y =_S w$.

Proof: Let R, S, T, x, y, z, w be as given. Suppose $x <_R z$. Then $y \leq_S w$. If $w \leq_S y$ then $z \leq_R x$. Hence $y <_R w$. Suppose $y <_S w$. Then $x \leq_R z$. If $z \leq_R x$ then $w \leq_S y$. Hence $x <_R z$. Suppose $x =_R z$. Then $y \leq_S w$ and $w \leq_S y$. Hence $y =_S w$. Suppose $y =_S w$. Then $x \leq_R z$ and $z \leq_R x$. Hence $x =_R z$. QED

LEMMA 5.7.9. Let R, S be pre well orderings. Let $a, b \in \text{dom}(S)$. Let T be an isomorphism from R onto $S|<a$, and T^* be an isomorphism from R onto $S|<b$. Then $a =_S b$ and $T \equiv' T^*$.

Proof: Let R, S, a, b, T, T^* be as given. Suppose there exists $x \in \text{dom}(R)$ such that for some y, $\neg(T(x, y) \iff T^*(x, y))$. By Lemma 5.6.18 iv), let x be R least with this property.

case 1. $(\exists y)(T(x, y) \land \neg T^*(x, y))$. Let $T(x, y)$, $\neg T^*(x, y)$. Also let $T^*(x, y^*)$. If $y =_S y^*$ then by clause iv) in the definition of isomorphism, $T^*(x, y)$. Hence $\neg y =_S y^*$.

case 1a. $y <_S y^*$. Then $y <_S b$. Let $T^*(x^*, y^*)$.

Suppose $x^* <_R x$. If $\neg T(x^*, y)$, then we have contradicted the choice of x. Hence $T(x^*, y)$. But this contradicts $T(x, y)$ by Lemma 5.7.8.

Suppose $x \leq_S x^*$. By $T^*(x, y^*)$, $T^*(x^*, y)$ and Lemma 5.7.8, $y^* \leq_S y$. This is a contradiction.

case 1b. $y^* <_S y$. Then $y^* <_S a$. Let $T(x^*, y^*)$. By $T(x, y)$ and Lemma 5.7.8, $x^* <_R x$. By the choice of x, since $T(x^*, y^*)$, we
have $T^*(x^*, y^*)$. By Lemma 5.7.8, since $T^*(x, y^*)$, we have $x =_R x^*$. Since $T(x, y)$, by Lemma 5.7.8 we have $y =_S y^*$. This is a contradiction.

case 2. $(\exists y) (\neg T(x, y) \land T^*(x, y))$. Let $\neg T(x, y), T^*(x, y)$. This is the same as case 1, interchanging a, b, and T, T^*.

We have now established that $T \nsimeq T^*$. If $a <_S b$ then $a \in \text{rng}(T^*)$ but $b \notin \text{rng}(T)$. This contradicts $T \nsimeq T^*$. If $b <_S a$ then $b \in \text{rng}(T)$ but $b \notin \text{rng}(T^*)$. This also contradicts $T \nsimeq T^*$. Therefore $a =_S b$. QED

DEFINITION 5.7.16. Let R, S be pre well orderings. Let T be an isomorphism from R onto S. Let $x \in \text{dom}(R)$. We write $T|<x$ for "the" restriction of T to first arguments $u <_R x$. We write $T|<x$ for "the" restriction of T to first arguments $u <_R x$. Note that $T|<x$, $T|<x$ are each unique up to \equiv'.

LEMMA 5.7.10. Let R, S be pre well orderings. Let T be an isomorphism from R onto S, and $T(x, y)$. Then $T|<x$ is an isomorphism from $R|<x$ onto $S|<y$.

Proof: Let R, S, T, x, y be as given. It suffices to show that $\text{rng}(T|<x) = \{ b : b <_S y \}$. Let $b <_S y$. Let $T(a, b)$. By Lemma 5.7.8, $a <_R x$. Hence $b \in \text{rng}(T|<x)$. QED

LEMMA 5.7.11. Let R, S be pre well orderings, T be an isomorphism from R onto S, and T^* be an isomorphism from $R|<x$ onto $S|<y$. Then $T^* \equiv T|<x$ and $T(x, y)$.

Proof: Let R, S, T, T^*, x, y be as given. Let $T(x, y^*)$. By Lemma 5.7.10, $T|<x$ is an isomorphism from $R|<x$ onto $S|<y^*$. By Lemma 5.7.9, $y =_S y^*$ and $T|<x \equiv T^*$. Hence $T(x, y)$. QED

DEFINITION 5.7.17. Let T be a binary relation. We write T^{-1} for the binary relation given by $T^{-1}(x, y) \iff T(y, x)$. By Lemma 5.7.5, T^{-1} exists. Obviously T^{-1} is unique up to \equiv'.

LEMMA 5.7.12. Let R, S be pre well orderings, and T be an isomorphism from R onto S. Then T^{-1} is an isomorphism from S onto R.

Proof: Let R, S, T be as given. Obviously $\text{dom}(T^{-1}) = \text{dom}(S)$ and $\text{rng}(T^{-1}) = \text{dom}(R)$. Let $T^{-1}(x, y), T^{-1}(z, w)$. Then $T(y, x), T(w, z)$. Hence $y =_R z \iff x =_S z$.
Finally, let $T^{-1}(x,y)$, $x =_R u$, $y =_S v$. Then $T(y,x)$, $T(v,u)$, $T^{-1}(u,v)$. QED

Definition 5.7.18. Let R be a pre well ordering. We can append a new point \(\infty \) on top and form the extended pre well ordering R^\prime. The canonical way to do this is to use R itself as the new point. This defines R^\prime uniquely up to \equiv.

Clearly $R^\prime|< \infty \equiv' R$.

Lemma 5.7.13. Let R, S be pre well orderings. Exactly one of the following holds.
1. R, S are isomorphic.
2. R is isomorphic to some $S|< y$, $y \in \text{dom}(S)$.
3. Some $R|< x$, $x \in \text{dom}(R)$, is isomorphic to S.

In case 2, the y is unique up to $=_S$. In case 3, the x is unique up to $=_R$. In all three cases, the isomorphism is unique up to \equiv'.

Proof: We first prove the uniqueness claims. For case 1, let T, T^* be isomorphisms from R onto S. Then T, T^* are isomorphisms from R onto $S^\prime|< \infty$. By Lemma 5.7.9, $T \equiv' T^*$.

For case 2, Let T be an isomorphism from R onto $S|< y$, and T^* be an isomorphism from R onto $S|< y^*$. Apply Lemma 5.7.9.

For case 3, Let T be an isomorphism from $R|< x$ onto S, and T^* be an isomorphism from $R|< x^*$ onto S. By Lemma 5.7.12, T^{-1} is an isomorphism from S onto $R|< x$, and T^*-1 is an isomorphism from S onto $R|< x^*$. Apply Lemma 5.7.9.

For uniqueness, it remains to show that at most one case applies. Suppose cases 1,2 apply. Let T be an isomorphism from R onto S, and T^* be an isomorphism from R onto $S|< y$. Then T is an isomorphism from R onto $S^\prime|< \infty$, and T^* is an isomorphism from R onto $S^\prime|< y$. By Lemma 5.7.9, y is ∞, which is a contradiction.

Suppose cases 1,3 hold. Let T be an isomorphism from R onto S, and T^* be an isomorphism from $R|< x$ onto S. Then T^{-1} is an isomorphism from S onto $R^\prime|< \infty$, and T^*-1 is an isomorphism from S onto $R^\prime|< x$. By Lemma 5.7.9, x is ∞, which is a contradiction.

Suppose cases 2,3 hold. Let T be an isomorphism from R onto $S|< y$ and T^* be an isomorphism from $R|< x$ onto S. By Lemma 5.7.10, $T|< x$ is an isomorphism from $R|< x$ onto $S|< z$, where
T(x,z). Hence T|x is an isomorphism from R|x onto S'|<z.
Also T* is an isomorphism from R|x onto S'|<∞. Hence by Lemma 5.7.9, z is ∞. This is a contradiction.

We now show that at least one of 1-3 holds. Consider all isomorphisms from some R'|<x onto some S'|<y, x ∈ dom(R'), y ∈ dom(S'). We call these the local isomorphisms.

We claim the following, concerning these local isomorphisms. Let T be an isomorphism from R'|<x onto S'|<y, and T* be an isomorphism from R'|<x* onto S'|<y*. If x = R+ x* then y = S+ y* and T ≡ T*. If x < R+ x* then y < S+ y* and T ≡ T*|<x. If x* < R+ x then y* < S+ y and T* ≡ T|<x*.

To see this, let T,T*,x,y be as given.

case 1. x = R+ x*. Apply Lemma 5.7.9.

case 2. x* < R+ x. Suppose y ≤ S+ y*. Let T(x*,z), z ≤ S+ y. By Lemma 5.7.10, T|x* is an isomorphism from R'|<x* onto S'|<z. By Lemma 5.7.9, T* ≡ T|x* and z = S+ y*. This is a contradiction. Hence y* < S+ y. By Lemma 5.7.10, T|x* is an isomorphism from R'|<x* onto S'|<w, where T(x*,w), w < S+ y. By Lemma 5.7.9, T* ≡ T|x*.

case 3. x < R+ x*. Symmetric to case 2.

By Lemma 5.7.5, we can form the union T of all of the local isomorphisms, since the underlying arguments are all in dom(R') or dom(S'), both of which are bounded.

By the pairwise compatibility of the local isomorphisms, T obeys conditions iii), iv) in the definition of isomorphism. It is also clear that the domain of T is closed downward in R', and the range of T is closed downward in S'. Hence dom(T) = {u: u < R+ x}, rng(T) = {v: v < S+ y}, for some x ∈ dom(R'), y ∈ dom(S'). Hence T is an isomorphism from R'|<x onto S'|<y.

We now argue by cases.

case 1. x,y are ∞. Then T is an isomorphism from R onto S.

case 2. x is ∞, y ∈ dom(S). Then T is an isomorphism from R onto S|<y*, y* defined below.
case 3. $x \in \text{dom}(R)$, y is ∞. Then T is an isomorphism from $R|<x^*$ onto S, x^* defined below.

case 4. $x \in \text{dom}(R), y \in \text{dom}(S)$. Then T is an isomorphism from $R|<x$ onto $S|<y$. Using Lemma 5.7.5, let $T*$ be defined by

$$T^*(u,v) \leftrightarrow T(u,v) \vee (u =_R x \land v =_S y).$$

Then T^* is an isomorphism from $R|<x^*$ onto $S|<y^*$, where x^*,y^* are respective immediate successors of x,y in R^+,S^+. This contradicts the definition of T. QED

Lemma 5.7.14. Let R,S,S^* be pre well orderings. Let T be an isomorphism from R onto S, and T^* be an isomorphism from S onto S^*. Define $T^{**}(x,y) \leftrightarrow (\exists z)(T(x,z) \land T^*(z,y))$, by Lemma 5.7.5. Then T^{**} is an isomorphism from R onto S^*.

Proof: Let R,S,S^*,T,T^*,T^{**} be as given. Note that T^{**} is defined up to \equiv'. Obviously $\text{dom}(T^{**}) \equiv \text{dom}(R)$, $\text{rng}(T^{**}) \equiv \text{dom}(S^*)$.

Suppose $T^{**}(x,y)$, $T^{**}(x^*,y^*)$. Let $T(x,z)$, $T^*(z,y)$, $T(x^*,w)$, $T^*(w,y^*)$. Then $x \leq_R x^* \iff z \leq_S w$, $z \leq_R w \iff y \leq_S y^*$. Therefore $x \leq_R x^* \iff y \leq_S y^*$.

Suppose $T^{**}(x,y)$, $x =_R u$, $y =_S v$. Let $T(x,z)$, $T^*(z,y)$. Then $T(u,z)$, $T^*(z,v)$. Hence $T^{**}(u,v)$. QED

We introduce the following notation in light of Lemma 5.7.13.

Definition 5.7.19. Let R,S be pre well orderings. We define

$$R \equiv S \leftrightarrow R,S \text{ are pre well orderings and } R,S \text{ are isomorphic.}$$

$$R < S \leftrightarrow R \leq S \land R \not\equiv S.$$
equivalence relation on pre well orderings. \(\leq^{**} \) is reflexive and transitive and connected on pre well orderings. Let \(R, S, S^* \) be pre well orderings. (\(R \leq^{**} S \land S <^{**} S^* \)) \(\rightarrow \) \(R <^{**} S^* \). (\(R <^{**} S \land S \leq^{**} S^* \)) \(\rightarrow \) \(R <^{**} S^* \). \(R <^{**} S \lor S \leq^{**} S^* \rightarrow R \leq^{**} S \), with exclusive \(\lor \). \(R \leq^{**} S \lor S \leq^{**} R \). (\(R \leq^{**} S \land S \leq^{**} R \)) \(\rightarrow \) \(R =^{**} S \).

Proof: We apply Lemmas 5.7.13 and 5.7.14. For the first claim, if \(R <^{**} S \) then we are in case 2 of Lemma 5.7.13, and the \(y \) is unique up to \(=_s \).

For the second claim, \(<^{**} \) is irreflexive since \(R <^{**} R \) implies that cases 1, 2 both hold in Lemma 5.7.13 for \(R, R \). Also, suppose \(R <^{**} S, S <^{**} S^* \). Let \(T \) be an isomorphism from \(R \) onto \(S|<y \), and \(T^* \) be an isomorphism from \(S \) onto \(S^*|<z \). By Lemma 5.7.10, Let \(T^{**} \) be an isomorphism from \(S|<y \) onto \(S^*|<w \). By Lemma 5.7.14, there is an isomorphism from \(R \) onto \(S^*|<w \). Hence \(R <^{**} S^* \).

For the third claim, note that \(R =^{**} R \) because there is an isomorphism from \(R \) onto \(R \) by defining \(T(x, y) \leftrightarrow x =_r y \). Now suppose \(R =^{**} S \), and let \(T \) be an isomorphism from \(R \) onto \(S \). By Lemma 5.7.12, \(T^{-1} \) is an isomorphism from \(S \) onto \(R \). Hence \(S =^{**} R \). Finally, suppose \(R =^{**} S, S =^{**} S^* \), and let \(T \) be an isomorphism from \(R \) onto \(S \), \(T^* \) be an isomorphism from \(S \) onto \(S^* \). By Lemma 5.7.14, \(R =^{**} S^* \).

For the fourth claim, since \(R =^{**} R \), we have \(R \leq^{**} R \). For transitivity, let \(R \leq^{**} S, S \leq^{**} S^* \). If \(R <^{**} S, S <^{**} S^* \), then by the second claim, \(R <^{**} S^* \), and so \(R \leq^{**} S^* \). If \(R =^{**} S, S =^{**} S^* \), then by Lemma 5.7.14, \(R =^{**} S^* \), and so \(R \leq^{**} S^* \). The remaining two cases for transitivity follow from the fifth and sixth claims. Connectivity of \(\leq^{**} \) is by Lemma 5.7.13.

For the fifth claim, let \(R \leq^{**} S \) and \(S <^{**} S^* \). By the second claim, we have only to consider the case \(R =^{**} S \). Let \(S \) be isomorphic to \(S^*|<y \). Since \(R \) is isomorphic to \(S \), by the third claim, \(R \) is isomorphic to \(S^*|<y \). Hence \(R <^{**} S^* \).

For the sixth claim, let \(R <^{**} S \) and \(S \leq^{**} S^* \). By the second claim, we have only to consider the case \(S =^{**} S^* \). Let \(R \) be isomorphic to \(S|<y \). By Lemma 5.7.10, \(S|<y \) is isomorphic to \(S^*|<z \), for some \(z \in \text{dom}(S^*) \). By the third claim, \(R \) is isomorphic to \(S^*|<z \). Hence \(R <^{**} S^* \).
The seventh and eighth claims are immediate from Lemmas 5.7.12 and 5.7.13.

For the ninth claim, let \(R \leq S \) and \(S \leq R \). Assume \(R <** S \). By the sixth claim \(R <** R \), which is a contradiction. Assume \(S <** R \). By the sixth claim, \(S <** S \), which is also a contradiction. By the eighth claim, \(R \leq S \lor S \leq R \). Under either disjunct, \(R =** S \). QED

Lemma 5.7.16. Every nonempty set of pre well orderings has a \(\leq ** \) least element.

Proof: Let \(A \) be a nonempty set of pre well orderings, and fix \(S \in A \). We can assume that there exists \(R \in A \) such that \(R <** S \), for otherwise, \(S \) is a \(\leq ** \) minimal element of \(A \).

By Lemma 5.7.5, define

\[B = \{ y \in \text{dom}(S): (\exists R \in A) (T =** S|<y) \}. \]

Let \(y \) be an \(S \) least element of \(B \). Let \(R \in A \) be isomorphic to \(S|<y \).

We claim that \(R \) is a \(\leq ** \) least element of \(A \). To see this, by trichotomy, let \(R^* <** R, R^* \in A \). Then \(R^* <** S|<y \), since \(R \) is isomorphic to \(S|<y \).

Let \(R^* \) be isomorphic to \((S|<y)|<z, z < S \ y \). Then \(R^* \) is isomorphic to \(S|<z, z < S \ y \). This contradicts the choice of \(y \). QED

Definition 5.7.20. For \(x,y \in D \), we define \(x <# y \) if and only if

there exists a pre well ordering \(S \leq y \) such that

for every pre well ordering \(R \leq x \), \(R <** S \).

We caution the reader that the \(\leq \) in the above definition is not to be confused with \(\leq ** \). It is from the \(< \) of \(D \) in the structure \(M# \). In particular, \(x,y \) generally will not be pre well orderings. Thus here we are treating \(R,S \) as points.

Definition 5.7.21. We define \(x \leq # y \) if and only if

for all pre well orderings \(R \leq x \) there exists a pre well ordering \(S \leq y \) such that \(R \leq ** S \).
LEMMA 5.7.17. <# is an irreflexive and transitive relation on D. Let x, y ∈ D. x ≤# y → x ≤ y. (x ≤# y ∧ y <# z) → x <# z. (x <# y ∧ y ≤# z) → x ≤ y. x ≤ y → x <# y. x <# y ⇔ ¬y <# x. x ≤ y ⇔ ¬y ≤ x.

Proof: For the first claim, <# is irreflexive since <** is irreflexive. Suppose x <# y and y <# z. Let S ≤ y be a pre well ordering such that for all pre well orderings R ≤ x, R <** S. Let S* ≤ z be a pre well ordering such that for all pre well orderings R ≤ y, R <** S*. Then S <** S*. Hence for all pre well orderings R ≤ x, R <** S <** S*. Hence for all pre well orderings R ≤ x, R <** S*, by the transitivity of <**. Since S* ≤ z, we have x ≤# z.

For the second claim, x ≤# x since ≤** on pre well orderings is reflexive. Suppose x ≤# y and y ≤# z. Let R ≤ x. Let S ≤ y, R ≤** S. Let S* ≤ z, S ≤** S*. By the transitivity of ≤**, R ≤** S*.

For the third claim, let ¬(x ≤# y). Let R ≤ x be a pre well ordering such that for all pre well orderings S ≤ y, we have ¬R ≤** S. We claim that y <# x. To see this, let S ≤ y be a pre well ordering. Then ¬R ≤** S. By Lemma 5.7.15, S <** R.

For the fourth claim, let x <# y. Let S ≤ y be a pre well ordering such that for all pre well orderings R ≤ x, R <** S. Let R ≤ x be a pre well ordering. Then R ≤** S. Hence x ≤# y.

For the fifth claim, let x ≤# y and y <# z. Let S ≤ z be a pre well ordering such that for all pre well orderings R ≤ y, R <** S. Let R ≤ x be a pre well ordering. Let S* ≤ y be a pre well ordering such that R ≤** S*. Then S* <** S. By Lemma 5.7.15, R <** S. We have verified that x <# z.

For the sixth claim, let x <# y and y ≤# z. Let S ≤ y be a pre well ordering such that for all pre well orderings R ≤ x, R <** S. Let S* ≤ z be a pre well ordering such that S ≤** S*. By Lemma 5.7.15, for all pre well orderings R ≤ x, R <** S*. Hence x <# z.

The seventh claim is obvious.

For the eight claim, let x <# y. Let S ≤ y be a pre well ordering, where for all pre well orderings R ≤ x, we have R
<** S. If \(y \leq x \) then \(S \leq x \), and so \(S <** S \). This is a contradiction. Hence \(x < y \).

For the ninth claim, the converse is the first claim. Suppose \(x \# y \land y <# x \). By the third claim, \(x <# x \), which is impossible.

For the tenth claim, the converse is the first claim. Suppose \(x <# y \land y \leq # x \). By the third claim, \(y <# y \), which is impossible. QED

We now define \(x =# y \) if and only if \(x \leq # y \land y \leq # x \).

LEMMA 5.7.18. =# is an equivalence relation on D. Let \(x, y \in D \). \(x \leq # y \iff (x <# y \lor x =# y) \). \(x <# y \lor y <# x \lor x =# y \), with exclusive \(\lor \).

Proof: For the first claim, reflexivity and symmetry are obvious, by Lemma 5.7.17. Let \(x =# y \) and \(y =# z \). Then \(x \leq # y \) and \(y \leq # z \). Hence \(x \leq # z \). Also \(z \leq # y \) and \(y \leq # x \). Hence \(z \leq # x \). Therefore \(x =# z \).

For the second claim, let \(x, y \in D \). By Lemma 5.7.17, \(x \leq # y \lor y <# x \). By the first claim, \(x <# y \lor y <# x \lor x =# y \).

To see that the \(\lor \) is exclusive, suppose \(x <# y \), \(y <# x \). By Lemma 5.7.17, \(x <# x \), which is a contradiction. Suppose \(x <# y \), \(x =# y \). By Lemma 5.7.17, \(x <# x \), which is a contradiction. Suppose \(y <# x \), \(x =# y \). By Lemma 5.7.17, \(y <# y \), which is a contradiction. QED

DEFINITION 5.7.22. We say that \(S \) is \(x \)-critical if and only if

i) \(S \) is a pre well ordering;
ii) for all pre well orderings \(R \leq x \), \(R <** S \);
iii) for all \(y \in \text{dom}(S) \), \(S|<y \leq** \) some pre well ordering \(R \leq x \).

LEMMA 5.7.19. Assume \((\forall y \in x)(y \text{ is a pre well ordering})\). Then there exists a pre well ordering \(S \) such that \((\forall R \in x)(R <** S) \land (\forall u \in \text{dom}(S))(\exists R \in x)(S|<u <** R)\).

Proof: Let \(x \) be as given. Let \(x < d_r, r \geq 1 \). By Lemma 5.7.20 iv), define

\[E = \{ y \leq d_{r+1} : \]
\[(\exists R, z)(R \in x \land y \text{ is an } R|<z)\].

By Lemma 5.7.5, we define
\[S(u,v) \leftrightarrow u, v \in E \land u \leq^* v.\]

Then \(S\) is uniquely defined up to \(\equiv\'). By Lemmas 5.7.15, 5.7.16, \(S\) is a pre well ordering.

Let \(R \in x\) and \(z \in \text{dom}(R)\). By Lemma 5.6.18 iv),
\[(\exists y)(y \text{ is an } R|<z).\]

By Lemma 5.6.18 iii), let \(p \geq r+1\) be such that
\[(\exists y < d_p)(y \text{ is an } R|<z).\]

By Lemma 5.7.20 v),
\[(\exists y < d_{r+1})(y \text{ is an } R|<z).\]

Hence every \(R|<z, R \in x,\) is isomorphic to an element of \(E\).

We claim that we can define an isomorphism \(T_R\) from any given \(R \in x,\) onto \(S\) or a proper initial segment of \(S,\) as follows. \(T_R\) relates each \(z \in \text{dom}(R)\) to the elements of \(E\) that are isomorphic to \(R|<z.\) Note that each \(z \in \text{dom}(R)\) gets related by \(T_R\) to something; i.e., all of the \(R|<z\) lying in \(E.\)

To verify the claim, we first show that \(\text{rng}(T_R)\) is closed downward under \(\leq^*\) in \(E.\) Fix \(T_R(z,w).\) Let \(w^*\) be an \(S\) least element of \(E,\) \(w^* <^* w,\) which is not in \(\text{rng}(T_R)\). Then \(T_R\)
must act as an isomorphism from some proper initial segment \(J\) of \(R|<z\) onto \(S|<w^*\). We can assume \(J \in E\) (by taking an isomorphic copy). Hence \(T_R(J,w^*),\) contradicting that \(w^* \notin \text{rng}(T_R)\).

Since \(\text{rng}(T_R)\) is closed downward under \(\leq^*\) in \(E,\) we see that \(\text{rng}(T_R) = E,\) or \(\text{rng}(T_R) = S|<v,\) for some \(v \in E.\) From the definition of \(T_R,\) \(T_R\) is an isomorphism from \(R\) onto \(S\) or a proper initial segment of \(S.\) Hence \(R \leq^* S.\)

Now let \(u \in \text{dom}(S).\) Then \(u\) is some \(R|<z, R \in x.\) Therefore \(u <^* R,\) for some \(R \in x.\) QED
LEMMA 5.7.20. Assume $(\forall y \in x)(y \text{ is a pre well ordering}). Then there exists a pre well ordering S such that $(\forall R \in x)(R \prec S) \land (\forall R \prec S)(\exists y \in x)(R \preceq y)$.

Proof: Let x be as given.

case 1. x has a \preceq greatest element R. Set $S \equiv R^\dagger$.

case 2. Otherwise. Set S to be as provided by Lemma 5.7.19 applied to x.

QED

LEMMA 5.7.21. For all x, there exists an x-critical S. If S is x-critical then $x \prec S$.

Proof: Let x be given. By Lemma 5.6.18 iv), define

$$x^* = \{R: R \leq x \land R \text{ is a pre well ordering}\}.$$

Let S be as provided by Lemma 5.7.20. Then S is x-critical.

Now let S be x-critical. If $S \leq x$ then $S \prec S$, which is impossible by ii) in the definition of x-critical. QED

LEMMA 5.7.22. For all x, all x-critical S are isomorphic. For all x,y, $x \prec# y$ if and only if $(\exists R,S)(R \text{ is } x\text{-critical} \land S \text{ is } y\text{-critical} \land R \prec S)$.

Proof: Let R,S be x-critical. Suppose $R \prec S$, and let $R = S\prec y$. By clause iii) in the definition of x-critical, let $S\prec y \preceq S$, $R \text{ a pre well ordering}. By clause ii) in the definition of R is x-critical, $R \prec S$. Hence $R \preceq S$. This is a contradiction. Hence $(R \prec S)$. By symmetry, we also obtain $(S \prec R)$. Hence R,S are isomorphic.

For the second claim, let $x,y \in D$. First assume $x \prec# y$. Let R be x-critical and S be y-critical. Let $S^\dagger \leq y$ be a pre well ordering such that for all pre well orderings $R^\dagger \leq x$, we have $R^\dagger \prec S^\dagger$.

We claim that $R \preceq S^\dagger$. To see this, suppose $S^\dagger \prec R$, and let S^\dagger be isomorphic to $R\prec z$. Since R is x-critical, let $R\prec z \preceq R \preceq x$, where R is a pre well ordering. Then $S^\dagger \preceq R^\dagger$. Since $R^\dagger \preceq x$, we have $R^\dagger \prec S^\dagger$, which is a contradiction. Thus $R \preceq S^\dagger$.
Note that $S^* <** S$ since $S^* \leq y$ and S is y-critical. Hence $R <** S$.

For the converse, assume R is x-critical, S is y-critical, and $R <** S$. Let R be isomorphic to $S|<z$. Since S is y-critical, let $S|<z S^* \leq y$, where R^* is a pre well ordering. Then $R \leq** R^* \leq y$.

We claim that for all pre well orderings $S^* \leq x$, $S^* <** R^*$. To see this, let $S^* \leq x$ be a pre well ordering. Since R is x-critical, $S^* <** R \leq** R^* \leq y$.

We have shown that $x <\# y$ using $R^* \leq y$, as required. QED

Lemma 5.7.23. Let $n \geq 1$. For all $x \leq d_n$ there exists x-critical $S < d_{n+1}$. $d_n <\# d_{n+1}$.

Proof: Let $n \geq 1$ and $x \leq d_n$. By Lemmas 5.7.21 and 5.6.18 ii), there exists $m > n$ such that the following holds.

$$\exists S < d_m)(S \text{ is } x\text{-critical}).$$

By Lemma 5.6.18 v),

$$\exists S < d_{n+1})(S \text{ is } x\text{-critical}).$$

For the second claim, by the first claim let $R < d_{n+1}$, where R is d_n-critical. Let S be d_{n+1}-critical. Then $R <** S$. By Lemma 5.7.22, $d_n <\# d_{n+1}$. QED

Lemma 5.7.24. If $y \in x$ then x has a $<\#$ least element. Every first order property with parameters that holds of some x, holds of a $<\#$ least x. 0 is a $<\#$ least element.

Proof: Let $y \in x$. By Lemma 5.6.18 ii), let $n \geq 1$ be such that $x \leq d_n$. By Lemma 5.7.23, for each $y \in x$ there exists a y-critical $S < d_{n+1}$. By Lemma 5.6.18 iv), we can define

$$B = \{S < d_{n+1} : (\exists y \in x)(S \text{ is } y\text{-critical})\}$$

uniquely up to $=$.

By Lemma 5.7.16, let S be a $<**$ least element of B. Let S be y-critical, $y \in x$. We claim that y is a $<\#$ minimal element of x. Suppose $z <\# y$, $z \in x$. By Lemma 5.7.23, let R be z-critical, $R \in B$. By the choice of S, $S \leq** R$. By Lemma
5.7.22, let R^*, S^* be such that R^* is z-critical, S^* is y-critical, and $R^* <\leftrightarrow^* S^*$. By the first claim of Lemma 5.7.22, $R <\leftrightarrow^* S$. This is a contradiction.

For the second claim, let $\varphi(y)$. By Lemma 5.6.18 ii), let $y < d_n$. By Lemma 5.6.18 iv), let $x = \{y < d_{n+1}: \varphi(y)\}$. By the first claim, let y be a $<_\#$ minimal element of x. Suppose $\varphi(z), z <\# y$. Since $z \notin x$, we have $z \geq d_{n+1}$. Since $z <\# y$, we have $z < y$ (Lemma 5.7.17). This contradicts $y < d_{n+1} \wedge z \geq d_{n+1}$.

The third claim follows immediately from the last claim of Lemma 5.7.17. QED

Lemma 5.7.25. If $x \leq y$ then $x \leq\# y$. If $x \leq y \leq z$ and $x =\# z$, then $x =\# y =\# z$.

Proof: The first claim is trivial.

For the second claim, let $x \leq y \leq z$, $x =\# z$. Using the first claim and Lemmas 5.7.17, 5.7.18, $x \leq\# y \leq\# z \leq\# x$. Hence $x =\# y =\# z$. QED

From Lemma 5.7.25, we obtain a picture of what $<_\#$ looks like.

Lemma 5.7.26. $=\#$ is an equivalence relation on D whose equivalence classes are nonempty intervals in D (not necessarily with endpoints). These are called the intervals of $=\#$, $x <\# y$ if and only if the interval of $=\#$ in which x lies is entirely below the interval of $=\#$ in which y lies. There is no highest interval for $=\#$. The d’s lie in different intervals of $=\#$, each entirely higher than the previous.

Proof: For the first claim, $=\#$ is an equivalence relation by Lemma 5.7.18. Suppose $x < y$, $x =\# y$. By Lemma 5.7.25, any $x < z < y$ has $x =\# z =\# y$. So the equivalence classes under $=\#$ are intervals in $<$.

For the second claim, let $x <\# y$. Let z lie in the same interval of $=\#$ as x. Let w lie in the same interval of $=\#$ as y. Then $x =* z, y =* w$. By Lemma 5.7.18, $z <\# w$. By Lemma 5.7.17, $z < w$.

Conversely, assume the interval of $=\#$ in which x lies is entirely below the interval of $=\#$ in which y lies. Then $\neg(x <\# y)$.
By Lemma 5.7.18, \(x <# y \lor y <# x \). The later implies \(y < x \), which is impossible. Hence \(x <# y \).

For the final claim, by Lemma 5.7.23, each \(d_n <# d_{n+1} \). By the second claim, the intervals of \(=# \) in which \(d_n \) lies is entirely below the interval of \(=# \) in which \(d_{n+1} \) lies. QED

Recall the component NAT in the structure \(M# \).

Lemma 5.7.27. There is a binary relation RNAT (recursively defined natural numbers) such that

i) \(\text{dom}(\text{RNAT}) = \{x: \text{NAT}(x)\} \);

ii) \((\forall y)(\text{RNAT}(0, y) \leftrightarrow y \text{ is a } <# \text{ least element}) \);

iii) \((\forall x)(\text{NAT}(x) \rightarrow (\forall w)(\text{RNAT}(x+1, w) \leftrightarrow (\exists z)(\text{RNAT}(x, z) \land w \text{ is an immediate successor of } z \text{ in } <#))) \);

iv) \(\text{RNAT} < d_2 \).

Any two RNAT’s (even without iv) are \(\equiv' \). If \(\text{NAT}(x) \) then \(\{y: \text{RNAT}(x, y)\} \) forms an equivalence class under \(=# \).

Proof: We will use the following facts. The set of all \(<# \) minimal elements exists and is nonempty. For all \(y \), the set of all immediate successors of \(y \) in \(<# \) exists and is nonempty. These follow from Lemmas 5.7.24, 5.7.26, and 5.6.18 iv).

Definition 5.7.23. We say that a binary relation \(R \) is \(x \)-special if and only if

i) \(\text{NAT}(x) \);

ii) \(\text{dom}(R) = \{y: y \leq x\} \);

iii) \((\forall y)(R(0, y) \leftrightarrow y \text{ is a } <# \text{ minimal element}) \);

iv) \((\forall y \leq x)(\forall w)(R(y+1, w) \leftrightarrow (\exists z)(R(y, z) \land w \text{ is an immediate successor of } z \text{ in } <#))) \).

We claim that for all \(x \) with \(\text{NAT}(x) \), there exists an \(x \)-special \(R \). This is proved by induction, which is supported by Lemma 5.6.18 iv), vi), vii), and Lemma 5.7.5. The basis case \(x = 0 \) is immediate.

For the induction case, let \(R \) be \(x \)-special. By Lemma 5.7.5, define

\[
S(y, w) \leftrightarrow R(y, w) \lor (y = x+1 \land (\exists z)(R(x, z) \land w \text{ is an immediate successor of } z \text{ in } <#))).
\]

uniquely up to \(\equiv' \). We claim that \(S \) is \(x+1 \)-special. It is clear that \(\text{dom}(S) = \{y: y \leq x+1\} \) since \(\text{dom}(R) = \{y: y \leq x\} \).
and we can find immediate successors in <#. Also the conditions

\[(\forall y)(S(0,y) \leftrightarrow y \text{ is a } <\# \text{ minimal element}).\]
\[(\forall y \leq x)(\forall w)(S(y+1,w) \leftrightarrow (\exists z)(R(y,z) \land w \text{ is an immediate successor of } z \text{ in } <\#)).\]

are inherited from R. To see that

\[(\forall w)(S(x+1,w) \leftrightarrow (\exists z)(S(x,z) \land w \text{ is an immediate successor of } z \text{ in } <\#))\]

we need to know that \(\{z: R(x,z)\}\) forms an equivalence class under \(=\). This is proved by induction on \(x\) from 0 through \(x\).

We have thus shown that there exists an \(x\)-special \(R\) for all \(x\) with \(\text{NAT}(x)\). Another induction on \(\text{NAT}\) shows that

1) \(\text{NAT}(x) \land \text{NAT}(y) \land x \leq y \land R \text{ is } x\)-special \land
\(S \text{ is } y\)-special \land z \leq x \rightarrow \)
\(R(z,w) \leftrightarrow S(z,w).\)

We also claim that

\(\text{NAT}(x) \rightarrow \)

there exists an \(x\)-special \(R < d_2\).

To see this, let \(\text{NAT}(x)\). By Lemma 5.6.18 iii), let \(n > 1\) be so large that

\((\exists y < d_n)(y \text{ is } x\)-special).\)

By Lemma 5.6.18 vi), \(x < d_1\). Hence by Lemma 5.6.18 v),

\((\exists y < d_2)(y \text{ is } x\)-special).\)

Because of this \(d_2\) bound, we can apply Lemma 5.7.5 to form a union \(\text{RNAT}\) of the \(x\)-special relations with \(\text{NAT}(x)\), uniquely up to \(=\). Claims i)-iii) are easily verified using 1). Thus we have

\((\exists R)(R \text{ is } \text{an RNAT} \land R \text{ obeys clauses i)-iii})).\)

Hence by Lemma 5.6.18 v),

\((\exists R < d_2)(R \text{ is } \text{an RNAT} \land R \text{ obeys clauses i)-iii})).\)
\((\exists R)(R \text{ obeys clauses i)-iv})\).

The remaining claims can be proved from properties i)-iii) by induction. QED

DEFINITION 5.7.24. We fix the RNAT of Lemma 5.7.27, which is unique up to

The limit point provided by the next Lemma will be used to interpret \(\omega\).

LEMMA 5.7.28. There is a \(<#\) least limit point of \(<#\). I.e., there exists \(x\) such that

i) \((\exists y)(y <# x)\);

ii) \((\forall y <# x)(\exists z <# x)(y <# z)\);

iii) for all \(x^*\) with properties i),ii), \(x \leq # x^*\).

All \(<#\) least limit points of \(<#\) are =#, and \(< d_2\).

Proof: We say that \(z\) is an \(\omega\) if and only if \(z\) is a \(<#\) least limit point of \(<#\); i.e., \(z\) obeys i)-iii).

By an obvious induction, if NAT\((x)\) then \(\{z : (\exists y \leq x) (RNAT(y,z))\}\) forms an initial segment of \(<#\). Therefore rng\((RNAT)\) forms an initial segment of \(<#\). Since RNAT \(< d_2\),

rng\((RNAT) \subseteq [0,d_2]\). According to Lemma 5.7.24, let \(z\) be \(<#\) least such that \((\forall x \in \text{rng}(RNAT))(x <# z)\).

It is clear that \(z\) obeys claims i),ii). Suppose \(x^*\) has properties i),ii). By an obvious induction, we see that \((\forall y \in \text{rng}(RNAT))(y <# x^*)\). Hence \(z \leq # x^*\). Thus we have verified claim iii) for \(z\). I.e., \(z\) is an \(\omega\).

Suppose \(z, z^*\) are \(\omega\)'s. By iii), \(z \leq # z^*,\) \(z^* \leq # z\). Hence \(z = # z^*\).

By Lemma 5.6.18 iii), let \(n > 1\) be such that

"there exists an \(\omega < d_n\)."

Hence By Lemma 5.6.18 v),

"there exists an \(\omega < d_2\)."

Finally, we establish that every \(\omega\) is \(< d_2\). Suppose

"there exists an \(\omega > d_2\)."
By Lemma 5.6.18 v),

"there exists an \(\omega > d_3 \)."

Hence the \(\omega \)'s form an interval, with an element \(< d_2 \) and an element \(> d_3 \). Hence \(d_2 = d_3 \). This contradicts Lemma 5.7.26.

QED

We are now prepared to define the system \(M^\).

DEFINITION 5.7.25. \(M^ = (C,<,0,1,+,-,\cdot,↑,log,\omega,c_1,c_2,...,Y_1,Y_2,...), \) where the following components are defined below.

i) \((C,<) \) is a linear ordering;
ii) \(c_1,c_2,... \) are elements of \(C \);
iii) for \(k \geq 1, Y_k \) is a set of \(k \)-ary relations on \(C \);
iv) \(0,1,\omega \) are elements of \(C \);
v) \(+,-,\cdot \) are binary functions from \(C \) into \(C \);
vi) \(↑,log \) are unary functions from \(C \) into \(C \).

DEFINITION 5.7.26. For \(x ∈ D \), we write \([x]\) for the equivalence class of \(x \) under \(=^\). Recall from Lemma 5.7.26 that each \([x]\) is a nonempty interval in \((D,<)\).

DEFINITION 5.7.27. We define \(C = \{[x]; x ∈ D\} \). We define \([x]<[y] ↔ x <^# y\). For all \(n ≥ 1 \), we define \(c_n = [d_{n+1}] \).

DEFINITION 5.7.28. Let \(k ≥ 1 \). We define \(Y_k \) to be the set of all \(k \)-ary relations \(R \) on \(C \), where there exists a \(k \)-ary relation \(S \) on \(D \), internal to \(M^\), (i.e., given by a point in \(D \)), such that for all \(x_1,...,x_k ∈ C \),

\[
R(x_1,...,x_k) ↔ (\exists y_1,...,y_k ∈ D)(y_1 ∈ x_1 ∧ ... ∧ y_k ∈ x_k ∧ S(y_1,...,y_k)).
\]

Since \(k \)-ary relations \(S \) on \(D \) are required to be bounded in \(D \), by Lemma 5.7.26 every \(R ∈ Y_k \) is bounded in \(C \).

DEFINITION 5.7.29. By Lemma 5.7.28, we define the \(ω \) of \(M^\) to be \([z]\), where \(z \) is an \(ω \) of \(M^\), as defined in the first line of the proof of Lemma 5.7.28.

DEFINITION 5.7.30. Define the following function \(f \) externally. For each \(x ∈ D \) such that \(NAT(x) \), let \(f(x) = \{y: RNAT(x,y)\} \). Note that by Lemma 5.7.27, \(f(x) ∈ C \). Note that
the relation \(y \in f(x) \) is internal to \(M^\# \). Also by Lemma 5.7.28 and an internal induction argument, \(f \) is one-one.

DEFINITION 5.7.31. We define 0 to be \(f(0) = [0] \), and 1 to be \(f(1) \).

DEFINITION 5.7.32. For \(x, y \) such that \(\text{NAT}(x), \text{NAT}(y) \), we define

\[
\begin{align*}
 f(x) + f(y) &= f(x+y), \\
 f(x) - f(y) &= f(x-y), \\
 f(x) \cdot f(y) &= f(x \cdot y), \\
 f(x) \uparrow &= f(x \uparrow), \\
 \log(f(x)) &= f(\log(x)).
\end{align*}
\]

Here the operations on the left side are in \(M^\wedge \), and the operations on the right side are in \(M^\# \). Note that the above definitions of \(+, -, \cdot, \log\) on \(\text{rng}(f) \) are internal to \(M^\# \).

DEFINITION 5.7.33. Let \(u, v \in C \), where \(\neg (u, v \in \text{rng}(f)) \). We define

\[
 u + v = u - v = u \cdot v = u \uparrow = \log(u) = [0].
\]

We now define the language \(L^\wedge \) suitable for \(M^\wedge \), without the \(c \)'s.

DEFINITION 5.7.34. \(L^\wedge \) is based on the following primitives.

i) The binary relation symbol \(<\);
ii) The constant symbols \(0, 1, \omega \);
iii) The unary function symbols \(\uparrow, \log \);
iv) The binary function symbols \(+, -, \cdot\);
v) The first order variables \(v_n \), \(n \geq 1 \);
vii) The second order variables \(B^n_m \), \(n, m \geq 1 \);

In addition, we use \(\forall, \exists, \neg, \wedge, \vee, \rightarrow, \leftrightarrow, = \). Commas and parentheses are also used. "B" indicates "bounded set".

DEFINITION 5.7.35. The first order terms of \(L^\wedge \) are inductively defined as follows.

i) The first order variables \(v_n \), \(n \geq 1 \) are first order terms of \(L^\wedge \);
ii) The constant symbols \(0, 1, \omega \) are first order terms of \(L^\wedge \);
iii) If \(s, t \) are first order terms of \(L^\wedge \) then \(s+t, s-t, s \cdot t, t \uparrow, \log(t) \) are first order terms of \(L^\wedge \).
DEFINITION 5.7.36. The atomic formulas of \(L^\) are of the form

\[
\begin{align*}
 s &= t \\
 s &< t \\
 B^n_m(t_1, \ldots, t_n)
\end{align*}
\]

where \(s, t, t_1, \ldots, t_n \) are first order terms and \(n \geq 1 \). The formulas of \(L^\) are built up from the atomic formulas of \(L^\) in the usual way using the connectives and quantifiers.

Note that there is no epsilon relation in \(L^\).

The first order quantifiers range over \(C \). The second order quantifiers \(B^n_k \) range over \(Y_n \).

LEMMA 5.7.29. Let \(k \geq 1 \) and \(R \subseteq C^k \) be \(M^\) definable (with first and second order parameters allowed). Then \(\{(x_1, \ldots, x_k) : R([x_1], \ldots, [x_k])\} \) is \(M^\#$ definable (with parameters allowed). If \(R \) is \(M^\) definable without parameters, then \(\{(x_1, \ldots, x_k) : R([x_1], \ldots, [x_k])\} \) is \(M^\#$ definable without parameters.

Proof: The construction of \(M^\) takes place in \(M^\# \), where equality in \(M^\) is given by the equivalence relation \(=^\# \) in \(M^\# \). Note that \(=^\# \) is defined in \(M^\# \) without parameters. The \(<, 0, 1, \omega \) of \(M^\) are also defined without parameters.

Let \(k \geq 1 \). The relations in \(Y_k \) are each coded by arbitrary internal \(k \)-ary relations \(R \) in \(M^\# \), where the application relation “the relation coded by \(R \) holds at points \(x_1, \ldots, x_k \)” is defined in \(M^\# \) without parameters.

Using these considerations, it is straightforward to convert \(M^\) definitions to \(M^\# \) definitions. QED

LEMMA 5.7.30. There exists a structure \(M^\) = \((C, <, 0, 1, +, -, \cdot, \uparrow, \log, \omega, c_1, c_2, \ldots, Y_1, Y_2, \ldots)\) such that the following holds.

i) \((C, <)\) is a linear ordering;

ii) \(\omega \) is the least limit point of \((C, <)\);

iii) \(\{(x : x < \omega), <, 0, 1, +, -, \cdot, \uparrow, \log\} \) satisfies TR(\(\Pi^0_1, L \));

iv) For all \(x, y \in C \), \(\neg(x < \omega \land y < \omega) \rightarrow x + y = x \cdot y = x - y = x \uparrow = \log(x) = 0; \)

v) The \(c_n \), \(n \geq 1 \), form a strictly increasing sequence of elements of \(C \), all > \(\omega \), with no upper bound in \(C \).
vi) For all $k \geq 1$, Y_k is a set of k-ary relations on C whose field is bounded above;

vii) Let $k \geq 1$, and φ be a formula of L^\wedge in which the k-ary second order variable B^k_n is not free, and the variables B^m_r range over Y_r. Then $(\exists B^k_n \in Y_k)(\forall x_1, \ldots, x_k)(B^k_n(x_1, \ldots, x_k) \iff (x_1, \ldots, x_k \leq y \wedge \varphi))$;

viii) Every nonempty M^\wedge definable subset of C has a $<$ least element;

ix) Let $r \geq 1$ and $\varphi(v_1, \ldots, v_{2r})$ be a formula of L^\wedge. Let $1 \leq i_1, \ldots, i_r$, where (i_1, \ldots, i_r) and $(i_{r+1}, \ldots, i_{2r})$ have the same order type and the same min. Let $y_1, \ldots, y_r \in C$, $y_1, \ldots, y_r \leq \min(c_{i_1}, \ldots, c_{i_r})$. Then $\varphi(c_{i_1}, \ldots, c_{i_r}, y_1, \ldots, y_r) \iff \varphi(c_{i_{r+1}}, \ldots, c_{i_{2r}}, y_1, \ldots, y_r)$.

Proof: We show that the M^\wedge we have constructed obeys these properties. Claim i) is by construction, since $<$ is irreflexive, transitive, and has trichotomy. Claim ii) is by the definition of ω (see Definition 5.7.29).

For claim iii), note that the f used in the construction of M^\wedge defines an isomorphism from the $\langle \{x: \text{NAT}(x)\}, 0, 1, +, -, \cdot, \uparrow, \log \rangle$ of $M#$ onto the $\langle \{x: x < \omega\}, <, 0, 1, +, -, \cdot, \uparrow, \log \rangle$ of M^\wedge. Now apply Lemma 5.6.18 viii).

Claim iv) is by construction.

For claim v), for all $n \geq 1$, $c_n = \lceil d_{n+1} \rceil$. By Lemma 5.7.26, the c_n's are strictly increasing. Let $\lceil x \rceil \in C$. By Lemma 5.6.18 iii), let $x < d_{m+1}$, in $M#$. By Lemma 5.7.17, $\neg(d_{m+1} < \# x)$. Therefore $x \# d_{m+1}$. Hence $\lceil x \rceil \leq [d_{m+1}] = c_m$. Hence the c_n's have no upper bound in C. By Lemma 5.7.27, any ω of $M#$ is $< \# d_2$ in $M#$. Hence $\omega < c_1$ in M^\wedge.

Claim vi) is by construction. This uses that there is no $< \#$ greatest point in $M#$ (Lemma 5.7.26).

For claim vii), it suffices to show that every M^\wedge definable relation R on C whose field is bounded above (\leq on C) lies in Y_k. By Lemma 5.7.29, the k-ary relation S on D given by

$$S(y_1, \ldots, y_k) \iff R([y_1], \ldots, [y_k])$$

is $M#$ definable. Since the field of R is bounded above (\leq on C), the field of S is bounded above (\leq on D). This uses that $<$ on C has no greatest element (Lemma 5.7.26). Hence we can take S to be internal to $M#$; i.e., given by a point in D. Therefore $R \in Y_k$.

For claim viii), let R be a nonempty M^\dagger definable subset of C. By Lemma 5.7.29, $S = \{y: [y] \in R\}$ is nonempty and $M^\#$ definable. By Lemma 5.7.24, let y be a $<$\# least element of S.

We claim that in M^\dagger, $[y]$ is the $<$ least element of R. To see this, let $[z] \in R$, $[z] < [y]$. Then $z <\# y$ and $z \in S$, which contradicts the choice of y.

For claim ix), let $\varphi(x_1, \ldots, x_{2r}, i_1, \ldots, i_{2r}, y_1, \ldots, y_r)$ be as given. Let $i = \min(i_1, \ldots, i_r)$. Since $y_1, \ldots, y_r \leq c_1 = [d_{i+1}]$, every element of the equivalence classes y_1, \ldots, y_r is \leq\# d_{i+1}. Hence we can write $y_1 = [z_1], \ldots, y_r = [z_r]$, where $z_1, \ldots, z_r \leq d_{i+1}$.

By Lemma 5.7.29, the $2r$-ary relation S on D given by

$$
S(w_1, \ldots, w_{2r}) \iff
\varphi([w_1], \ldots, [w_{2r}]) \text{ holds in } M^\dagger
$$

is definable in $M^\#$ without parameters.

Note that $\min(i_1+1, \ldots, i_{2r}+1) = i+1$. Hence by Lemma 5.6.18 v), we have

$$
S(d_{i_1+1}, \ldots, d_{i_r+1}, z_1, \ldots, z_r) \iff
S(d_{i_r+1+1}, \ldots, d_{i_{2r}+1}, z_1, \ldots, z_r).
$$

Hence in M^\dagger,

$$
\varphi(c_{i_1}, \ldots, c_{i_r}, [z_1], \ldots, [z_r]) \iff
\varphi(c_{i_r+1}, \ldots, c_{i_{2r}+1}, [z_1], \ldots, [z_r]).
$$

$$
\varphi(c_{i_1}, \ldots, c_{i_r}, y_1, \ldots, y_r) \iff
\varphi(c_{i_r+1}, \ldots, c_{i_{2r}}, y_1, \ldots, y_r).
$$

QED