Dynamics of Neo-Tropical Arachnids

Today’s post is a guest post by Andrew Mularo,  an undergraduate student in the Department of Evolution, Ecology and Organismal Biology. He is currently doing his Tropical Behavior Evolution and Ecology research project under Dr. Rachelle M. M. Adams and Dr. Jonathan Shik.

You may love them or you may fear them, but no one can deny the incredible ecological importance of spiders and scorpions. As an aspiring biologist, I have chosen to study the interactions between arachnids and their environment in the tropical rainforests of Panama for the 2017 Tropical Behavioral Evolution and Ecology course. The tropics are a biodiversity hotspot for the majority of the world’s organisms, so there are plenty of creatures to look at. From the smallest spiderling to the largest tarantula, I am curious to see how these cryptic and intriguing animals interact with their ecosystem.

For my project, I am doing an observational study where I am assessing the relationship between leaf litter and arachnid diversity and abundance. I am accomplishing this by creating several 50 meter transects in the Panamanian rainforest, sampling leaf litter with 1 square meter quadrants along each transect. For each quadrant, I take a measurement of leaf litter depth, and sift through the leaves to extract any organisms out of the area. Back at the lab, I sort through the organisms, first finding any arachnids in the sample, and then any other insect or invertebrate, such as ants, beetles, millipedes, snails, mites and many others. With these data, I hope to make a correlation between leaf litter abundance and arachnid diversity and abundance, as well as a correlation between the diversity of potential prey items and arachnid predators.

Naturally, the majority of the organisms that I have been assessing have been very small, from the size of a thumbnail to not even being visible to the human eye. However, there

Wandering Spider (Photo by A. Mularo)

are several occasions where I have observed some extremely imposing arachnids in the tropical forest. One of these includes the huntsman spider, an extremely large nocturnal species that does not rely on a web to capture its prey. This family of spiders is very poorly researched, and is largely unknown how dangerous the venom is for the majority of species. However, they are quite shy, and often scurry away at the sight or sound of a human.

Another fascinating group of organisms I see occasionally are scorpions. The two pictured below are from the genus Tityus, whose venom is very potent. I found the two in the picture below, which we believe to be different species, huddled in close quarters in the water well of a bromeliad. While potentially dangerous, these are a relatively uncommon sight in the rainforest. Nevertheless, it is always good to be careful where you step.

Tityus scorpions (photo by A. Mularo)

While many of them are feared, arachnids are some of the most fascinating organisms on the planet. They come in all shapes and sizes, and have a wide array of interesting characteristics that are of great interest to scientists. Being interested in biology since I was a child, I have always dreamed of coming to the tropics so I could study the vast diversity of organisms, and I could not have picked a better group of organisms to focus on!

Ain’t No Mountain High Enough .. To Stop Tree Squirrels From Hybridizing

The Chavez Lab will be going to the North Cascades of Washington this summer to do field work in the Tamiasciurus tree squirrel hybrid zone. We have been studying hybrid zone dynamics between Douglas squirrels (T. douglasii) and red squirrels (T. hudsonicus) for 10 years using mostly genetic and phenotypic data. Now is the time to start some observational field research to better document hybrid dysfunction and behavioral interactions between species and their hybrids.

This study contains a richness in questions as to the role that ecological divergence has in the maintenance of isolating barriers and ultimately speciation between these two species. These parapatric species, separated by an extreme change in habitat, meet each other in the different mountain ranges in the Pacific Northwest. Both species live primarily in coniferous forests and have diets and lifestyles that are specialized for feeding on seeds from conifer cones. In the North Cascades region, Douglas squirrels are mostly found on the west side of the Cascade Mountains in a mesic forest environment with a moderate coastal climate. Red squirrels on the other hand are mostly found in the rain-shadow of the Cascade Mountains on the eastside and live in a drier forest with a more seasonally variable climate. Due to the higher fire frequencies in the eastside forest communities, some of the conifer species that red squirrels depend on produce cones with very hard scales or are serotinous (only open during extreme heat from fires). As a result, red squirrels in this region have very strong jaw muscles and bite force in comparison with Douglas squirrels that only feed from trees that produce softer cones. There are many other environmental differences between the westside and eastside environments and thus strong potential for adaptive divergence between these species.

So, you may ask, what does all this ecology have to do with hybridization and speciation? Well, these species may be producing hybrids that have phenotypes that are not well adapted to either type of forest and thus are at a selective disadvantage. Our goal for this study is to examine more directly whether hybrids have lower fitness and dysfunctional traits that decrease their chances of surviving and reproducing. We plan to do this by live-trapping squirrels in a hybrid zone location where I know from previous genetic research that both parental species and hybrids occur. We expect all squirrel types to be living in close proximity with each other and thus we should have good opportunities to study behavioral interactions, as well as document differences in various performance behaviors, such as feeding, mating, vocalization, territorial defense, anti-predator defense, etc…

Stephanie Malinich with bird crownStephanie Malinich is going to be the lead field technician and she will supervise a crew of eager field assistants. Since this is our first field season, we expect a lot of surprises, hopefully more pleasant than difficult ones. This is an exciting time for our lab and we will update you on our findings on this blog later in the year.

 

Andreas ChavezAbout the Author: Andreas Chavez is Assistant Professor in EEOB as of Fall 2016. He is also Director of Mammals in the Tetrapod Collection at the Museum of Biological Diversity. This is his first blog post for the Chavez Lab on the MBD website.

*** Leave a comment to welcome Andreas Chavez ***

We Break for Science

A few weeks ago, I highlighted the artistic and scientific variety of illustrations of Metridium senile. These images were on my desk because Metridium is on our minds a lot these days as the focus of the dissertation research of EEOB PhD student Heather Glon. Heather aims to address one of the persistent problems with this widespread and highly variable anemone: whether the name Metridium senile is being used for a constellation of related but distinct species or whether it represents a single, cohesive circumpolar species.

Answering this question requires sampling across the broad range of this species, analyzing DNA from multiple individuals within populations, and comparing morphology and micro-anatomy. Although our partner museums, like the Smithsonian National Museum of Natural History, American Museum of Natural History, and California Academy of Sciences, hold collections that can help solve this puzzle, none of these collections have sampled at the depth we require and the vast majority of the samples in museums are preserved in ways that complicate DNA analysis. With only a few years to amass the data needed for a dissertation, we have no choice but to spend spring break on the road, searching for Metridium along the California coast.

After nearly 10 weeks in classes, this chance to be outside in the field, focusing on research is a welcome change of pace for both me and Heather. The recent rains in California and generally high low tides of the coming week means that we’ll work mostly from floating docks, searching for small pink anemones among the sea squirts, hydroids, and worm tubes coating the floats and pilings. Our travels will take us from Bodega Head to Morro Bay, with detours through Monterey, Half Moon Bay, and Marin. Follow us on Facebook and Instagram, or check back here on Friday for a wrap up of our efforts.

 

OSU Professor Meg DalyAbout the Author: Dr. Meg Daly is Professor in the department of Evolution, Ecology and Organismal Biology, director of the Museum of Biological Diversity and leads the laboratory of marine invertebrate diversity at OSU. She and her students study systematics of cnidaria, sea anemones, jellyfish and their like.

Why describing new species is exciting and important!

For many researchers describing a new species seems like a tedious task. The differences between species might not be obvious, and the language confusing and foreign. This fact became apparent to me when I first presented my work to the Ant Lab at the Museum of Biological Diversity (MBD). As I described subtle differences in morphology, a little spine here and the shape of a hair there, I could tell that I had lost my audience by the dulled looks on my lab mates faces. How could they not see the differences in these two species?

comparison of Trachymyrmex new species and T. zeteki

Fig. 1 – Trachymyrmex new species on the left and T. zeteki on the right

“Some key differentiating characters: The integument is granulose, spatulate bi-colored setae occur between the frontal carina, the scape extends past the occipital corners. This is compared to a weakly irrorate integument, simple bi-colored setae between the frontal carina, and the scape reaching the occipital corners.”

Fig. 2 – In case you are not familiar with the some terms used in describing ant species


Totally clear, right?

While the differences in characters that separate Trachymyrmex new species and T. zeteki, are exciting for me, it seems to bore people to death. After my presentation, I received very helpful constructive criticism from my lab group. They thought it was interesting but a lot of my presentation went over their heads. My advisor, Dr. Rachelle Adams (Assistant Professor in the Department of Evolution, Ecology and Organismal Biology), encouraged me to find a way to turn the jargon into something people can digest and appreciate. I am still working on that, and it is a challenge many researchers face.

Species descriptions are important and a necessary part of daily life

Hopefully your parents told you when you were younger, never eat mushrooms you find in the woods. Taxonomy helps us understand what kind of mushroom you found, if it is edible, or if it might seriously hurt you if you eat it. Mushrooms are a great example of why taxonomy is important. Scientists need to describe and name species so that others can learn which characteristics define a species. Then chemists can tell us which are toxic. This information communicated to the public can potentially save lives! Taxonomists donate representations of species in museums so that they can be compared by other scientists in the future. Aside from publishing their species description, they submit the specimen used to describe the new species, a type specimen. Anyone who works with any type of animal or plant should be submitting voucher specimens, physical specimens that serve as a basis of study, as representatives of their work.

Cody working at microscope

Fig. 2 – Photo courtesy of Plain Janell Photography

My Taxonomic Conundrum

While working on my species description, I reviewed all the literature that included T. zeteki. The 30 papers covered a number of areas such as fungus-growing ant genomes, mating systems, alarm pheromones, larvae development, and gut bacteria. Sadly, almost half of the papers do not mention depositing voucher specimens! Two articles deposited their DNA sequences as vouchers to a database for molecular data. Any research that uses DNA sequences has to submit DNA vouchers to that database; without it your work cannot get published. However, they do not have any physical vouchers linked to their sequences! This lack of physical vouchers was quite a surprise to me. The time I spent as an intern at the MBD Triplehorn Insect Collection, my advisors and other mentors strongly advocated the deposition of vouchers. Without being able to link your DNA sequence to a correctly identified organism, that DNA voucher loses its value. You cannot quickly identify an organism from DNA. Using morphology is the easiest way to do so! It seems many researchers don’t recognize the importance of vouchering and most non-taxonomic journals do not demand it. Research published without vouchers lacks reproducibility, an essential component of the scientific method.

In my research project, I am cleaning up the mess left behind from nearly twenty-years’ worth of poor vouchering and misidentification. I’m not only describing a new species and key characters that differentiate two cryptic species, I am listing all of the papers that have been published in the past twenty years using the names Trachymyrmex zeteki and Trachymyrmex cf. zeteki. By linking the new species description to these articles scientists can move forward knowing the proper identification of these hard-to-identify fungus-growing ants.

The deposition of vouchers should be required for all publications, and is crucial for, past, present, and future research in biology. In my undergraduate research, I discovered there is a disconnect between research museums like the MBD and many scientists. While I am still struggling to turn the technical jargon into information that can be swallowed by non-experts, there are discussions to be had about the importance of taxonomy as a cornerstone in biology.

If you want to learn more about fungus-growing ants and the importance of university research collections, come see us at the MBD Open House April 22, 10am – 4pm.

CodyCardenas, undergraduate student ant lab, EEOBAbout the Author: Cody R. Cardenas is a Senior Undergraduate student in Entomology  working in the Adams Ant Lab.

*** We would like to hear from you – Please leave a comment ***

The Science Behind an Ant Sting: Delivery, Function and Chemical Composition

To date, around 71% of all described ant species have been found to sting or spray secretions from their venom glands. Some spray acid such as Formica mound building ants (clip from Life in the Undergrowth – Supersocieties by David Attenborough):

while others inject venom like the red imported fire ant Solenopsis invicta (video by Brave Wilderness channel):

Still other species wipe or paint their victim with poison and can dispense it like a smelly gas into the air. The toxic cocktail of organic compounds that make up ant venom is diverse. The venom of some species contains peptides and proteins, but these molecules typically only constitute 0.1-5% of the total venom extract. Instead, many species of ants depend upon alkaloids, a group of organic compounds defined by a heterocyclic ring containing a nitrogen atom. First discovered in ants in 1970, a diversity of venom alkaloids has been found throughout the subfamily Myrmicinae, with six structural classes represented and various differences in the substituents or side chains attached to the main molecule.

Why study ant venom?

Venoms have been found throughout all major animal phyla and play important roles in a number of ecological interactions, especially in predator-prey relationships where they are used as offensive or defensive chemical weaponry. While the venom alkaloids of many ant species have been identified and characterized, the biological activities of these compounds have only been investigated in a minority of groups. Alkaloids are presently known to have adverse toxic effects on a range of organisms; for example, the major component of S. invicta venom has not only been shown to act as a toxin on predatory and prey animal taxa but also possesses herbicidal and antimicrobial properties. Additionally, some alkaloids have been demonstrated to be utilized in a non-toxic capacity and serve communicative functions as well.

One of the goals of the Adams Lab here at OSU is to understand the biological functions and properties of the various venomous alkaloids of ants, and an area of active research has been within the genus Megalomyrmex. Although the majority of species are free-living predators, some are social parasites that infiltrate the colonies of fungus-farming ants. They consume host brood and fungus garden by dominating the farmers with their alkaloidal weaponry. A well-documented example of this interspecific interaction has been between the parasitic Megalomyrmex symmetochus and its host Sericomyrmex amabilis, in which the venom of M. symmetochus is a crucial component in the aggressive interactions that take place throughout the establishment and maintenance of the host-parasite relationship.

During these aggressive interactions, M. symmetochus ants often use three main types of alkaloid dispensing behaviors: gaster flagging, side-swipe sting, and gaster-tuck sting.

ant behavior "Gaster flagging"

Gaster flagging

A) Gaster flagging is when M. symmetochus ants vibrate their gaster at approximately a 45-degree angle with a drop of alkaloid venom at the tip. This allows for the venom to be dispersed into the air at a low concentration, and is thought to be a warning to their host ants to deter them from attacking, acting as both a visual and chemical signal.

ant behavior "Side-swipe sting"

Side-swipe sting

B) Side-swipe sting is when M. symmetochus’ gaster is waved from the side towards the host, dispensing the venom directly onto the host ant.

ant behavior "Gaster-tuck sting"

Gaster-tuck sting

C) Gaster-tuck sting is when the gaster is tucked under the body in between the legs towards the host ant, dispensing venom directly onto the host (see illustrations below for a visual representation of these behaviors).

However, the interactions between these species are not always aggressive, and in some cases the M. symmetochus parasites act like mercenaries and protect their host from a more lethal ant species – watch them in action (video by Rachelle Adams, Assistant Professor in the OSU department of  EEOBiology):

Our future research will continue exploring ant venoms in a broader context. The Adams Lab will be traveling to Panama to collect and observe Megalomyrmex species in their natural habitats as well as conduct experiments to gain greater insight into their biology. Look for our future blogs from Gamboa, Panama at the Smithsonian Tropical Research Institute in May!

For a more in-depth look at the relationship between M. symmetochus and S. amabilis, check out Dr. Adams’ article in the USA Proceedings of the National Academy of Sciences entitled “Chemically armed mercenary ants protect fungus-farming societies.” And to learn more about the venom of the red imported fire ant Solenopsis invicta, watch this video by Eric Keller.

Visit us at the Museum of Biological Diversity’s Open House on April 22nd to learn more about our research! We will have live fungus-growing ants!

 

Acknowledgements: We would like to thank Rozlyn E. Haley for the ant illustrations.

Reference: Adams, R. M., Liberti, J., Illum, A. A., Jones, T. H., Nash, D. R., & Boomsma, J. J. (2013). Chemically armed mercenary ants protect fungus-farming societies. Proceedings of the National Academy of Sciences, 110(39), 15752-15757.

About the Authors: Conor Hogan is a graduate student in Rachelle Adams’ lab and Mazie Davis is an undergraduate student who did a research project on parasitic ant stinging behaviors in Rachelle Adams’ lab in 2016.

*** We would like to hear from you – Please leave a comment ***

Local duets

Not only tropical birds duet with their mate, if you listen closely you can hear some of our local birds duetting, too. Or at least you may notice that female songbirds are not as silent as we often assume. Carolina Wrens Thryothorus ludovicianus and Northern Cardinals Cardinalis cardinalis are two species in which the female often joins her mate’s songs.

Carolina Wren, photo by Rich Bradley

Carolina Wren Thryothorus ludovicianus, photo by Rich Bradley

Listen to this excerpt of many hours of recordings of one pair of Carolina Wrens captured by Barbara Simpson in the North Carolina Botanical Garden, Chapel Hill on November 3, 1981 (BLB43057):

The female does not respond with the typical male-like “teakettle, teakettle, teakettle” song, but with a buzzy, rather high-pitched trill. The coordination is not as precise as in the neotropical wrens, rather in many cases the female overlaps the song of her mate. Still she communicates her presence on the territory to any listeners in the neighborhood, be it male or female Carolina Wrens.

Note the fainter song of another male Carolina Wren in-between the focal male’s songs.

Can you hear when the male switches to a different song type (not shown in spectrogram)?

spectrogram of Carolina Wrens duetting

Carolina Wrens “duetting”, the female chatter (red bar) overlaps the second song of the male (blue bar) and alternates with the third song

 

You may say that maybe a better example of a duetting species in our area is the Northern Cardinal.

In this common backyard species the female has a song as elaborate as that of her mate and she is often accompanied by her mate’s song. A female Northern Cardinal is easily distinguished from the male by her more subtle, brown plumage, allowing us to tell the sexes apart and notice whether a male or female is singing (In the monomorphic Carolina Wren we would have to color-mark the female to be sure that she does not also sing like her mate). Take a close look at the next Northern Cardinal that sings in your backyard, it may be a female. They are just as virtuous as the males of this species:

spectrogram of male and female Northern Cardinal duetting

Male and female Northern Cardinal duetting; note song (an accelerating trill) of the Field Sparrow in-between

Familiarize yourself with the song of the female and male Northern Cardinal in the duet above.

spectrogram of female and male Northern Cardinal song

Female (red) and male (blue) Northern Cardinal duetting

Rich Bradley recorded this pair of Northern Cardinal at the Delaware Wildlife Area on April 13, 1994 (BLB41331).

I challenge you to get outside early one morning (Sunrise in the Columbus area is around 7:30am, so depending on cloud cover birds may start singing just after 7am). Listen to the dawn chorus of birds in your neighborhood, find your closest Northern Cardinal and listen to his song – or is it a female you are listening to? If you record the song on your phone, share the recording with us!

 

References:

Shuler, J. B. (1965). Duet singing in the Carolina wren. The Wilson Bulletin, 405-405.
Ritchison, G. (1986). The singing behavior of female northern cardinals. Condor, 156-159.

All bird photos by Richard A Bradley – thank you Rich!

 

About the Author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics and instructor for the OSU Ohio Birds class each spring.

 

*** We would like to hear from you – please leave a comment ***

Can we call it love song?

The early risers among us may have noticed that songbirds are singing again. For Northern Cardinals and Carolina Wrens in our gardens spring has started with the change in day length on December 21. One can really notice now that the mornings get light earlier with every day and the males of our local songbird species are getting ready for the next breeding season. They set up territory and woo females. But more about our local birds on Friday, let’s travel to the tropics!

In the tropics, birds barely take a break from singing. If conditions allow it, they will breed year-round and thus most of them keep their territory and mate. Such long-term relations call for special communications: males and females of many neo-tropical wrens sing very precisely coordinated duets. For the untrained listener it may sound like one song, that’s how closely the phrases are linked. Researchers, however, have shown that both male and female contribute to this continuous song, thus performing a duet.

Can you hear whether these are two birds singing or one?

Sandy Gaunt, curator emerita from the Borror lab and longtime volunteer, recorded these Stripe-breasted Wrens Cantorchilus thoracicus in the dense undergrowth of the tropical lowland wet forest in Costa Rica on no other day than February 14 in 1992. Sandy found these birds near the Hitoy Cerere Biological Reserve, southwest of Puerto Limon in Costa Rica, a rugged and undeveloped park with abundant wildlife.

The song of a close relative to the Stripe-breasted Wren, the Plain Wren Cantorchilus modestus zeledoni, has been studied in some detail by Karla Rivera-Cáceres from the University of Miami, Florida. These wrens perform precisely coordinated duets as you can see for yourself in the spectrogram below – a visual representation of sound with frequency or perceived pitch over time. Both males and females adjust their song and pauses between songs to coordinate with their partner. Red bars indicate the female’s contribution, bluish bars the male’s.

Spectrogram of highly coordinated Plain Wren duet

Highly coordinated duet of male and female Plain Wrens (Fig.1 in Rivera-Caceres et al 2016)

Listen to these male and female Plain Wrens duetting as recorded by Jacob R. Saucier. The recording is archived with Xeno-canto, an online collection of bird songs from around the world (XC319021).

spectrogram of Plain Wren duet (XC319021)

Duet of male and female Plain Wren as recorded by Jacob R. Saucier (XC319021).

So, shall we call this a love song? There are many hypotheses for why birds duet, one suggests that the level of coordination may signal pair bond strength, the level of commitment a mated male and female have of cooperating with one another. Other hypotheses suggest that duetting may help mates to stay in contact in dense habitat, or two singing birds may be more intimidating and thus more effective when defending a territory. Future research will show which of these hypothesis is most likely for the Stripe-breasted Wren.

 

Reference:

Rivera-Cáceres, K. D., Quirós-Guerrero, E., Araya-Salas, M., & Searcy, W. A. (2016, November). Neotropical wrens learn new duet rules as adults. In Proc. R. Soc. B (Vol. 283, No. 1843). The Royal Society.

 

About the Author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics and instructor for the OSU Ohio Birds class each spring.

 

*** We would like to hear from you – please leave a comment ***

More about the biology of a parasitoid mite

Following Monday’s blog post, we continue to explore the life of  Macrodinychus mites that parasitize an invasive ant species in Mexico, the Longhorn crazy ant. Today Dr. Hans Klompen shares some of the details of the mite’s life cycle that he has discovered with us.

Here is an image of two Macrodinychus larvae that were found attached to an ant pupa. We had to magnify the ant 400 times to make the mites visible. The larvae are tiny, even in mite-standards, while the adults are large, 1 mm or more in length.

What do the larvae and nymphs look like?

 

Tell us a little bit more about the biology of these mites, e.g. how does the female give birth to young?

 

How do the mites disperse to new hosts?

 

Why is this research important?

 

What do you think?  Can/should these mites be used to control invasive ant species?
We would like to hear from you – please leave a comment.

*******************************************************

Reference:

Image of mite larvae on appendages and gravid female from
Krantz, G. W., Gómez, L. A., González, V. E., & Morales-Malacara, J. B. (2007). Parasitism in the Uropodina: a case history from Colombia. In Acarology XI: Proceedings of the International Congress (pp. 29-38).

other images from
Lachaud, J. P., Klompen, H., & Pérez-Lachaud, G. (2016). Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association. Scientific Reports, 6.
Dr. Hans Klompen, Professor EEOBiology at OSUAbout the Author: Dr. Hans Klompen is professor in the department of Evolution, Ecology and Organismal Biology and director of the Ohio State University Acarology Collection.

Mites as parasitoids of invasive ants

Another post in our series Explaining Science – bringing scientific discoveries focused around biodiversity to your living room.


Ants are fascinating creatures, often living in large colonies. Some of you may be familiar with this behavior as a  nuisance in your home, e.g. with carpenter ants or fire ants. Ant biology and their way of social living fascinates researchers, and some of the ants’ behavior may be quite similar to what we see in our societies. Just recently a study reported how Gene-Modified Ants Shed Light on How Societies Are Organized. But did you know that these small ants can themselves become hosts for even smaller animals? Mites, in particular species in the genus Macrodinychus, have evolved to parasitize ants. They feast on the content of ant pupae, the larval stages of ants, to nourish their own development. “Vampire mites” is what Dr. Hans Klompen, acarologist and Professor in the department of Evolution, Ecology and Organismal Biology, calls them. By the way, the ant species these mites parasitize is called Longhorn crazy ant, an invasive ant species with a cool name.

Listen to an interview with Dr. Klompen about his recent publication in Scientific Reports “Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association” and learn about “a bizarre little group of mites”” that he studies.

How does one find out about mites, often microscopical creatures, living on ants, in particular when you are a researcher based in Ohio while the ants live mainly in the tropics?

One needs good collaborators at El Colegio de la Frontera Sur (ECOSUR), Gabriela Perez-Lachaud and Jean-Paul Lachaud, who study ants and noticed mites parasitizing their study subjects.

How did the project of describing a new mite species evolve into more?

 

Macrodinychus multispinosus Sellnick larva

Macrodinychus multispinosus Sellnick larva

How often do these mites attack ants and which species of ants?

Longhorn crazy ant

Longhorn crazy ant, the host
(c) The photographer and www.antweb.org, CC BY-SA 3.0

 

 

Do the mites attack all different colonies of ants?

 

So what do we know about the life history of this mite whose developmental stages, its nymphs, feast on ant pupae? Find out more results from Dr. Klompen’s research on these mites in Friday’s post!

***************************************************************

Terms you may want to familiarize yourself with:

Mites are small arthropods, closely related spiders and scorpions, with two body regions, no antennae, and four pairs of legs as adults.

The life cycle of these mites is  composed of five active stages: egg, larva, protonymph, deutonymph, and adult

ventral – the underside of an animal, the belly

dorsal – the upper side of an animal, the back

 

Reference:

Lachaud, J. P., Klompen, H., & Pérez-Lachaud, G. (2016). Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association. Scientific Reports, 6.
Dr. Hans Klompen, Professor EEOBiology at OSUAbout the Author: Dr. Hans Klompen is professor in the department of Evolution, Ecology and Organismal Biology and director of the Ohio State University Acarology Collection.
 *** We would like to hear from you – please leave a comment ***

End-of-year stats

As we near the end of 2016, you probably read various statistics about events that happened during the past year. We at the museum of Biological Diversity are, for example, interested in how many species have become known to science and how many have gone extinct during the last year.

I came across a list of 13 bird species that had to be declared extinct during 2016. A quick search on VertNet – an online database that aggregates occurrence records from many natural history museums around the world and is accessible to everyone for free over the Internet – so check it out! – reveals that at least some of these extinct species will live on as specimens in natural history collections. These birds all lived on islands and have actually only recently become known to science as distinct species. They will not live longer in the wild, but some will be accessible in museum collections. Here researchers can study them to find out how these species lived and their findings may help prevent extinctions of related species in the future. That’s why we need to keep preserving our specimens!

Below are some photos of the Vermilion Flycatchers in our collection, the males have bright red plumage with black, the females are more subtle in their coloration. Metadata are important with each specimens, including where the bird was found. When some island populations of a species get split off into their own species we can then update our database. We do not have what is now known as the least vermilion flycatcher, our specimens are from Brazil, Texas, Colorado and one skin from Ohio. You may have guessed, the latter was prepared by Milton Trautman in 1958, collected by William G. Porter in Clark county. Only few records of this species exist in Ohio. On eBird, an online database of bird observations, I found only four additional sightings in 1956, 2001, 2009 and the latest in 2010.

The following three species exist in natural history museums, mostly in large collections such as the American Museum of Natural History, but also in smaller ones like the University of Iowa Museum of Natural History where one of the Laysan Honeycreepers can be found. Here are the numbers:

19 specimens of Laysan Honeycreeper Himatione fraithii
166 specimens of Least Vermilion Flycatcher Pyrocephalus dubius
2 specimens of Marianne White-eye Zosterops semiflavus 

You may remember from our fundraiser last October that the OSU tetrapods collection also holds specimens of several extinct species. Let’s hope that we do not have to add any new bird species to our already extinct species in 2017.  Happy New Year!