Bat sounds

Bats are social mammals that use a repertoire of vocalizations to communicate with each other and to move around in the environment.

To detect obstacles and prey in their environment, bats emit a series of ultrasounds, very high-pitched sounds above 20,000 Hz, beyond our range of hearing. As a bat flies and calls, it listens to the returning echoes of its calls to build up a sonic image of its surroundings. Bats can tell how far away something is by how long it takes the sounds to return to them, how big the target is based on the strength of the returning signal, and what shape the target has based on the spectral pattern of the returning sound waves. We call this process echolocation.

Individual bat species echolocate within specific frequency ranges that suit their environment and prey types. This means that we can train ourselves to identify many bats by listening to their calls with bat detectors.

Let’s LISTEN to recordings of the little brown bat (Myotis lucifugus) and the big brown bat (Eptesicus fuscus) for comparison. – But how can we listen, if we cannot hear their calls? Let’s use a trick: When we slow down the recordings by a factor of 10, the calls are transposed to 10 times lower pitch and become audible to us.

Note: To make the sounds visible in sonograms we plotted frequency in thousands of cycles per second (kilohertz, kHz) on the vertical axis versus time in seconds on the horizontal axis. The varying intensity of colors ranging from dark blue (low intensity or quiet) to red (high intensity or loud) indicates the amplitude or loudness of each call. Amplitude is also shown in the top part of each figure with larger waves representing louder calls.

Little brown bat: Calls last from less than one millisecond (ms) to about 5 ms and sweep from 80 to 40 kHz, with most of their energy at 45 kHz.

sonogram of little brown bat Myotis lucifugus calls

Call series of a little brown bat Myotis lucifugus

 

Big brown bat: Calls last several milliseconds and sweep from about 65 to 20 kHz, and are thus lower pitched than calls of little brown bats.

bigsonogram of brown bat Eptesicus fuscus echolocating calls

Call series of a big brown bat Eptesicus fuscus

 

 

The above call series were recorded when the bat is generally surveying its environment, but what happens when it actually detects prey? Listen to this feeding buzz of a little brown bat:

sonogram of feeding calls of little brown bat

Feeding calls of a little brown bat Myotis lucifugus

 

When closing in on prey, a bat may emit 200 calls per second.

What might sound to us like the bat is getting excited – don’t you talk faster when you are excited about telling something? – this rapid series of calls actually helps the bat to pin-point the exact location of its prey, then it swoops in, and GULP – dinner is served, or not!

 

We hope you enjoyed listening to these bat sounds; if you have any questions please contact Angelika Nelson.794@osu.edu, curator of the animal sound archive at The Ohio State University.

The Ohio State University - logo

 

All recordings are archived with the Borror Laboratory of Bioacoustics (BLB.OSU.EDU) at The Ohio State University.

EEOB students experience charismatic creatures of the tropics

students in front of sign for Metropolitan nature park

Tropical Behavioral Ecology and Evolution class at the entrance to the Smithsonian Tropical Research Institute canopy crane, Metropolitan Nature Park, Panama City, Panama. Photo credit: Ryan McCarthy.

For the Tropical Behavioral Ecology and Evolution course in Panama, we established independent research projects, networked with the internationally-renowned Smithsonian Institution, got to know Panamanian culture, and made new friends. In addition, we had the opportunity to see some very charismatic Panamanian creatures, including the three-toed sloth (Bradypus variegatus). Attracted by their soothing movements, mischievous smiles, and tendency to hug things, I have long desired to see one of these slow, long-armed teddy bears of the jungle.

The chance to see a sloth came during a visit to Metropolitan Nature Park, where our group was preparing to board a canopy crane. Suddenly, while waiting excitedly to be lifted into the tropical rainforest canopy, out rang the call of, “İPerezoso!” the Spanish word for sloth, which also means “lazy.” All attention was diverted to a nearby forest edge, where a baby three-toed sloth was descending vines and trees, moving toward the ground.

We learned from one of the crane operators that sloths go to the ground to poop, a risky endeavor that makes them vulnerable to predators. It is thought that movement to the ground may benefit the moth and algae associates that live on a sloth’s coat, which the sloth relies on for camouflage. Regardless of its biological function, our group capitalized on the little sloth’s potty break as a photo opportunity.

adult sloth in tree

Adult sloth high in the canopy of an Anacardium excelsum tree. Photo credit: Ryan McCarthy.

When the crane was ready to take another group into the canopy, we begrudgingly pulled ourselves away from the baby sloth. Little did we know that we would see mama sloth, poised in the canopy and waiting for her little one’s return!

Our earth’s tropical rainforests are full of amazing biodiversity. The story of the sloth’s epic journey to the forest floor is just one of many biological sagas playing out in nature. You don’t have to go to the jungle to make amazing discoveries—check out a local natural area today!

 

Kali Mattingly, EEOB PhD candidateAbout the Author: Kali Mattingly is a PhD student in Steve Hovick’s lab studying population ecology and genetics of invasive plants. Kali recently participated in the Tropical Behavioral Ecology and Evolution course in Panama under Dr. Rachelle M. M. Adams and Dr. Jonathan Shik.

Dynamics of Neo-Tropical Arachnids

Today’s post is a guest post by Andrew Mularo,  an undergraduate student in the Department of Evolution, Ecology and Organismal Biology. He is currently doing his Tropical Behavior Evolution and Ecology research project under Dr. Rachelle M. M. Adams and Dr. Jonathan Shik.

You may love them or you may fear them, but no one can deny the incredible ecological importance of spiders and scorpions. As an aspiring biologist, I have chosen to study the interactions between arachnids and their environment in the tropical rainforests of Panama for the 2017 Tropical Behavioral Evolution and Ecology course. The tropics are a biodiversity hotspot for the majority of the world’s organisms, so there are plenty of creatures to look at. From the smallest spiderling to the largest tarantula, I am curious to see how these cryptic and intriguing animals interact with their ecosystem.

For my project, I am doing an observational study where I am assessing the relationship between leaf litter and arachnid diversity and abundance. I am accomplishing this by creating several 50 meter transects in the Panamanian rainforest, sampling leaf litter with 1 square meter quadrants along each transect. For each quadrant, I take a measurement of leaf litter depth, and sift through the leaves to extract any organisms out of the area. Back at the lab, I sort through the organisms, first finding any arachnids in the sample, and then any other insect or invertebrate, such as ants, beetles, millipedes, snails, mites and many others. With these data, I hope to make a correlation between leaf litter abundance and arachnid diversity and abundance, as well as a correlation between the diversity of potential prey items and arachnid predators.

Naturally, the majority of the organisms that I have been assessing have been very small, from the size of a thumbnail to not even being visible to the human eye. However, there

Wandering Spider (Photo by A. Mularo)

are several occasions where I have observed some extremely imposing arachnids in the tropical forest. One of these includes the huntsman spider, an extremely large nocturnal species that does not rely on a web to capture its prey. This family of spiders is very poorly researched, and is largely unknown how dangerous the venom is for the majority of species. However, they are quite shy, and often scurry away at the sight or sound of a human.

Another fascinating group of organisms I see occasionally are scorpions. The two pictured below are from the genus Tityus, whose venom is very potent. I found the two in the picture below, which we believe to be different species, huddled in close quarters in the water well of a bromeliad. While potentially dangerous, these are a relatively uncommon sight in the rainforest. Nevertheless, it is always good to be careful where you step.

Tityus scorpions (photo by A. Mularo)

While many of them are feared, arachnids are some of the most fascinating organisms on the planet. They come in all shapes and sizes, and have a wide array of interesting characteristics that are of great interest to scientists. Being interested in biology since I was a child, I have always dreamed of coming to the tropics so I could study the vast diversity of organisms, and I could not have picked a better group of organisms to focus on!

Dragonflies and Damselflies of Ohio


Dragonfly at Magee Marsh Wildlife Area.

Dragonfly at Magee Marsh Wildlife Area.

The Triplehorn Insect Collection is beginning a collaborative project to survey the dragonflies and damselflies of Ohio.

These spectacular aerial predators are surprisingly diverse: currently 164 species have been recorded in the state. Brilliant colors and striking markings make them the songbirds of the insect world. The immature stages of all species are aquatic, and these animals are found in lakes, rivers, ponds, and streams from Lake Erie to the Ohio River.  Although many dragonflies and damselflies are common, a number are listed as threatened or endangered.

This new Ohio Odonata Survey is scheduled to last 3 years. The work will be done together with the ODNR Division of Wildlife, the Ohio Odonata Society, and a network of avid volunteers and citizen scientists across the state.

MaLisa Spring, an Entomologist and recent OSU graduate, just joined us as coordinator for all of these efforts.  She will be working out of the Triplehorn Insect Collection in Columbus, and will be actively interacting with participants around the state.

Information on the project can be found in the newly created Ohio Odonata Survey website.  Project activities will also be widely advertised on social media.

Ohio naturalists are invited to contribute to the project. If you have images that can help document the distribution and seasonality of the various species of dragonflies and damselflies in our state, please check out the guidelines.

Finally, the Ohio Odonata Society will be holding its 2017 annual meeting, ODO-CON-17 on 23-25 June at the Grand River Conservation Campus in Rock Creek, OH.

Resources:

Photos by L. Musetti (dragonflies) & Huayan Chen (damselfly).

About the Author: Dr. Norman F. Johnson is an Entomologist, Professor at Ohio State University, and Director of the Triplehorn Insect Collection.

Backyard Bug Explorer


Visitors touring the Triplehorn Insect Collection are invariably drawn to the biggest, longest, most colorful creatures that we have among our four million specimens. Giant walking sticks, Goliath beetles, white witch moths, and birdwing butterflies are a sure hit with visitors of all ages.  One question that usually follows that exhilarating experience is … “Are these from Ohio?” And, unfortunately, we have to say that no, those enormous and colorful insects come from tropical forests in Africa or South America or elsewhere.

That is not to say, though, that there aren’t plenty of interesting and very striking insects in Ohio. In fact, there are plenty of cool insects right in our own backyards, many of them still poorly known or even completely unknown to science.

Here are just a few examples of the insect fauna that I found in my urban backyard in the past few weeks.


Bees & bee nests

During Spring, carpenter bees and bumble bees are very busy building their nests and collecting pollen. Well, that’s true of the female bees, anyway. The male carpenter bees are far too worried about patrolling their territory and checking out everything that comes along, all in the hope of finding a female that might be susceptible to their charms. Not to worry: the males are harmless, and you’d practically have to grab hold of a female before she would think of stinging.

 

◊  ◊  ◊  ◊

Under a clay pot that was left leaning against a wall, a queen bumble bee has dug a hole into the soil where she’s starting her own colony. The same sort of gardening accessories are also great places for spiders to build their webs and for insects to hide away their eggs from predators.


Wasp nests

A mud-nesting solitary wasp found the perfect place to build her nest among the wrinkles of a deteriorating plastic cover on an old outdoor fireplace in our yard.  This might be a mud dauber or perhaps a potter wasp nest. Either way, the mother wasp builds the nest using soft mud, then goes hunting for caterpillars or other insects.  The prey – stung into a state of suspended animation – is stuffed into the nest accompanied by a single wasp egg.  The larva that later hatches will feed on the living prey and develop into a new flying adult wasp.


Insect eggs (my all time favorite)

The most exciting finds for me are insect eggs. Sometimes the eggs are parasitized and produce the little wasps that are my object of study. Here on our screen door I found the eggs of an assassin bug. Each egg is like a small piece of art in itself each with a beautiful ornate crown. I’ve been watching carefully to see if assassin bug nymphs will emerge or if the eggs will produce any of my parasitic wasps.

This slideshow requires JavaScript.


Ants

When I rolled over a log, I found a number of Lasius interjectus.  These bright yellow ants are commonly called “citronella ants.” If you disturb them, they respond by releasing a bouquet of repellent chemicals that smell like lemon or the citronella candles used to repel mosquitoes. These ants are farmers: they maintain underground “herds” of aphids or mealybugs. These “cows” feed on the fluids in plant roots and excrete a sweet honeydew that the ants love.

◊  ◊  ◊  ◊

Here’s a quick video of the citronella ants. They are very cute!


Beetle larvae

I love looking for insects on, in, and under dead trees. Recently I found quite a number of very slick and shiny beetle larvae beneath the bark of a large dead tree near our house. I actually don’t know what kind of beetles they are, but I am hoping my buddies who study beetles will be able to identify them. And who knows, maybe I found something entirely new?!

◊  ◊  ◊  ◊

When disturbed the larvae move deeper into the soft wood.


I have more photos and videos of local insects, but I’ll stop here for now.  Yes, I know, the local bugs are not massive and showy like the amazing things that come from tropical rain forests, but pay close attention and you will find that they are just as fascinating. And best of all, they are right here in our backyard!

 Insects are everywhere. The more we learn about them the more we see how absolutely fascinating, beautiful, and important they are.

 

So take your family outside the house and go explore. Look around your backyard, watch for signs of insects, check out the flowers, the underside of tree leaves, listen to the buzz of the bees and see what they are doing.  Notice the differences between a bumble bee and a carpenter bee and other bees (get more info here.)



A final note: Monday, May 22, is the International Day for Biological Diversity. People all over the world and here in Ohio will be celebrating the day with the goal of increasing understanding and awareness about biodiversity, and to have a good time observing nature.

What a great opportunity to connect with fellow bug explorers and to promote the insect biodiversity that is right around us! Post your discoveries, photos, and musings about Ohio insects on social media. Use the hash tag #OhioBugs so we can keep in touch.

Hope to see you out there!


About the Author: Dr. Luciana Musetti is an Entomologist and the current Curator of the Triplehorn Insect Collection at The Ohio State University.

facebook.com/TriplehornInsectCollection

Follow on Tweeter or Instagram: @osuc_curator

Flight of the Butterfly

What does re-animated life in the Triplehorn insect collection look like? What if a butterfly took flight from its drawer? Watch for yourself: Flight of the Butterfly by Tamara Sabbagh

THANK YOU Luciana Musetti, curator of the OSU Triplehorn Insect collection for facilitating the students’ visit.

About the Author: Angelika Nelson is the outreach and multi-media coordinator at the Museum of Biological Diversity and facilitates visits of school classes and students.

*** Which of the animations is your favorite? ***

Samsara – Cyclicality of life

Another video of re-animated life produced by a student in the Moving Image Art class organized by Amy Youngs, Associate Professor of Art:

Samsara – Cyclicality of life by Yuntian Zang: Inspired by the antlers on the wall, a deer goes wandering …

THANK YOU Stephanie Malinich, collection manager of Tetrapods, for facilitating the students’ visit.

About the Author: Angelika Nelson is the outreach and multi-media coordinator at the Museum of Biological Diversity and facilitates visits of school classes and students.

*** Which of these animals is your favorite? ***

re-animated Life I

We scientists look at our natural history collections as a great resource for our studies. Specimens tell us about life in the past (where species lived, what they looked like, how many individuals existed etc.) and let us hypothesize about the future. This is one way of looking at these dead “things” that we so meticulously curate. Artists may have a quite different view. This was greatly illustrated by a Moving Image Art class organized by Amy Youngs, Associate Professor of Art, last semester. Students visited our collections of dead things and were asked to find ways to re-animate these animals. We were amazed by the imagination of these young artists-to-be. Over the next days we will share some of the best pieces with you. Here is the first animation, Re-Animated Life by Alina Maddex: Birds and one turtle moving in their natural environment

THANK YOU Stephanie Malinich, collection manager of Tetrapods, Marc Kibbey, Associate Curator of the Fish Division, Caitlin Byrne, Collections Manager of the Division of Molluscs, and Luciana Musetti, curator of the OSU Triplehorn Insect collection for facilitating the students’ visit.

About the Author: Angelika Nelson is the outreach and multi-media coordinator at the Museum of Biological Diversity and facilitates visits of school classes and students.

*** Which of these animals is your favorite? ***

Our big day is tomorrow

Tomorrow, Saturday April 22, from 10 AM – 4 PM we will open our doors and welcome all of you to visit our hidden treasures in the natural history collections of The Ohio State University. Stop by and talk to the curators who meticulously keep these specimens and make them available to students and researchers for study throughout the year. This is your chance each year to see what we do and to support our efforts.

The event is FREE and so is parking. We will have many activities for children including face painting, the very popular bugs-in-goo, a live arthropod zoo … and this year new, for anyone over 15 years, guided sessions on scientific illustration, drawing natural history specimens.

Enjoy some photos from last year events

This slideshow requires JavaScript.

The set-up for tomorrow is in full swing, here is what I have seen so far

This slideshow requires JavaScript.

 

About the Author: Angelika Nelson is curator of the Borror Laboratory of Bioacoustics and coordinates social media and outreach at the museum.

*** We hope to see you tomorrow ***

Know your ticks: Ohio

Daffodils are in bloom, students walk around in shorts and T-shirts, so it must be the beginning of tick season.  And indeed, the first ticks are out and questing (= searching for a host). This might be a good time to talk about ticks in Ohio.  Ohio is not a major center for tick diversity, but it has some diversity.  Most people only know the three main people biters, Dermacentor variabilis (American dog tick), Amblyomma americanum (lone star tick), and Ixodes scapularis (deer tick), so let’s start with these:

Dermacentor variabilis is perhaps the most widespread and common tick in Ohio.  Immatures feed on rodents and other small animals, but adults feed on medium (opossums, raccoons, dogs) to large (humans) mammals.  Of the “big three” this species is the most tolerant of drying out, and the most likely to be encountered in open areas.  The main activity period for adults is mid-April – mid-July.  D. variabilis is the vector of, among others, Rocky Mountain Spotted Fever (RMSF) and tularemia.  Columbus used to be a focal area for RMSF, but the disease is less common now.  D. variabilis may also cause tick paralysis, although less frequently than the related D. andersoni from the Rocky Mountains region.

American dog tick

Dermacentor variabilis American dog tick

Amblyomma americanum used to be uncommon in southern Ohio, but has increased in numbers and range over the last decades.  This is part of a general trend.  In the eastern U.S., this species is rapidly expanding its range northwards.  All instars, larva, nymph, and adult feed on mid-size to large animals, incl. humans.  Like D. variabilis, females can deposit very large clutches of eggs, but in this case the resulting larvae often stay together.  If you are unlucky and step close to a mass of these “seed ticks”, you may be attacked by hundreds of ticks simultaneously.  These ticks are active in all warm months of the year.  Unlike D. variabilis, “Lone stars” are not common in open areas, preferring more shady and humid sites.  For a long time A. americanum was listed as vectoring few human diseases, but it has now been identified as vector of human monocytic ehrlichiosis and STARI, and possibly tularemia and Q-fever.

lone star tick

Amblyoma americanum lone star tick

Ixodes scapularis appears to be an even more recent resident.  This species was rare or absent in Ohio before 2010, but has now been found in a majority of Ohio counties.  The reason for this sudden expansion is unclear.  This is a relatively small species.  Larvae can be found in summer, nymphs late summer, and adults in fall and early spring.  Immatures tend to feed on smaller sized hosts, e.g. rodents, small birds, while adults prefer larger hosts, such as deer.  However, all instars may attach to humans.  Nymphs are considered the most problematic: they are small (thus often undetected), and can be infected with e.g. Lyme disease (unlike the even smaller larvae).  Like A. americanum, this species prefers shady, humid environments.  New subdivisions build in forests, resulting in large amounts of forest edges with lots of deer, have been a very good habitat for this tick in New England.  Ixodes scapularis has become famous as the vector for, among others, Lyme disease, human granulocytic anaplasmosis, and babesiosis.  Co-infection is common in New England and appears to result in increased pathology.

deer tick

Ixodes scapularis deer tick

So much for the common people biters.  It is important to note that most species of tick rarely if ever bite people.  They prefer different, usually smaller, hosts.  For example, Rhipicephalus sanguineus, the brown dog tick prefers feeding on dogs.  It is one of the few species that may occur indoors in dog kennels etc.  Haemaphylis leporispalustris appears to be specialized on hares and rabbits.  Several Ixodes species, I. cookei, I. dentatus, I. kingi, I. marxi, can be found on small to medium sized mammals, often associated with nests or burrows.  Finally, the so-called soft ticks, family Argasidae, are represented by only a single species in Ohio, Carios kelleyi, primarily found in bat colonies.

Find out more about the ticks’ life cycles and their diseases.

Dr. Hans Klompen, Professor EEOBiology at OSUAbout the Author: Dr. Hans Klompen is professor in the department of Evolution, Ecology and Organismal Biology and director of the Ohio State University Acarology Collection.

 

*** Have you found a tick yet this spring? send us a photo of your specimen on Facebook! ***