Summer in the field

This is the time when many students and faculty spend their days in the field doing research or attending conferences and meetings where they present their latest research results. Follow us on social media #ASCinthefield. We will not post here until the beginning of classes on August 22.

Have a great summer!

 

EEOB students experience charismatic creatures of the tropics

students in front of sign for Metropolitan nature park

Tropical Behavioral Ecology and Evolution class at the entrance to the Smithsonian Tropical Research Institute canopy crane, Metropolitan Nature Park, Panama City, Panama. Photo credit: Ryan McCarthy.

For the Tropical Behavioral Ecology and Evolution course in Panama, we established independent research projects, networked with the internationally-renowned Smithsonian Institution, got to know Panamanian culture, and made new friends. In addition, we had the opportunity to see some very charismatic Panamanian creatures, including the three-toed sloth (Bradypus variegatus). Attracted by their soothing movements, mischievous smiles, and tendency to hug things, I have long desired to see one of these slow, long-armed teddy bears of the jungle.

The chance to see a sloth came during a visit to Metropolitan Nature Park, where our group was preparing to board a canopy crane. Suddenly, while waiting excitedly to be lifted into the tropical rainforest canopy, out rang the call of, “İPerezoso!” the Spanish word for sloth, which also means “lazy.” All attention was diverted to a nearby forest edge, where a baby three-toed sloth was descending vines and trees, moving toward the ground.

We learned from one of the crane operators that sloths go to the ground to poop, a risky endeavor that makes them vulnerable to predators. It is thought that movement to the ground may benefit the moth and algae associates that live on a sloth’s coat, which the sloth relies on for camouflage. Regardless of its biological function, our group capitalized on the little sloth’s potty break as a photo opportunity.

adult sloth in tree

Adult sloth high in the canopy of an Anacardium excelsum tree. Photo credit: Ryan McCarthy.

When the crane was ready to take another group into the canopy, we begrudgingly pulled ourselves away from the baby sloth. Little did we know that we would see mama sloth, poised in the canopy and waiting for her little one’s return!

Our earth’s tropical rainforests are full of amazing biodiversity. The story of the sloth’s epic journey to the forest floor is just one of many biological sagas playing out in nature. You don’t have to go to the jungle to make amazing discoveries—check out a local natural area today!

 

Kali Mattingly, EEOB PhD candidateAbout the Author: Kali Mattingly is a PhD student in Steve Hovick’s lab studying population ecology and genetics of invasive plants. Kali recently participated in the Tropical Behavioral Ecology and Evolution course in Panama under Dr. Rachelle M. M. Adams and Dr. Jonathan Shik.

Squirreling in the Pacific Northwest

You may have heard that researchers discovered a new species of flying squirrel. These squirrels had lived in plain sight for decades but only recently did Brian Arbogast and colleagues investigate the DNA of some of these animals. Their findings were revealing: The Pacific squirrels cluster separately from the northern and southern flying squirrel. The researchers analyzed mitochondrial DNA as well as microsatellite data to reveal this new evolutionary relationship.

Note: Mitochondrial DNA and microsatellites are parts of a species’ genome that are regularly used to construct evolutionary trees. In addition to the DNA in every cell’s nucleus in our body, mitochondria, the energy powerhouses in our cells, have their own genome. This mitochondrial genome is relatively small, is inherited from the mother only and has relatively high mutation rates. It is like a small clonal lineage within an organism which makes it ideal for evolutionary studies.   Microsatellites are short sequence repeats in the nuclear genome that do not produce proteins. Thus they are free to mutate at a higher rate than coding sequences – mutations will not mess up protein production- and they frequently vary in length and thus reveal relationships among organisms. 

A few weeks ago, before this study was published, 2 species of flying squirrels were considered to exist in North America, the northern and the southern flying squirrel. Here in Ohio the northern flying squirrels is resident – it is nocturnal though, that’s why you probably have not seen one yet.

Map showing distribution of now 3 species of flying squirrels

Map showing distribution of now 3 species of flying squirrels

DNA analysis showed that the coastal squirrels in Washington and Oregon are distinct from their northerly relatives and that they actually only co-occur with them at 3 sites in the Pacific Northwest. Northern and the newly described Humboldt’s flying squirrel do not interbreed at these sites. By the way, the researchers named the new species Glaucomys oregonensis because the specimen that was used to describe the species was collected in Oregon.

You may recall from a previous post, that Dr. Andreas Chavez in our department of EEOB studies relationships among squirrels in a different genus, Tamiasciurus, the red squirrel T. hudsonicus and the Douglas squirrel T. douglasii. These two species share habitat in the Pacific Northwest and they do hybridize.

Dr. Chavez was not available for an interview for his thoughts on the new species description of flying squirrels, because he is currently pursuing his own fieldwork in the Pacific Northwest. He and his field assistant Stephanie Malinich are collecting data to better understand the hybrid zone dynamics between the Douglas and red squirrel.

We will give you an update on Dr. Chavez’ research once he returns.

About the Author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics and writing this post for Stephanie Malinich, collection manager of the tetrapods collection. Stephanie is currently doing fieldwork on the red and the Douglas squirrel in the Pacific Northwest.

A gull look-alike

Another seabird species that I found to breed in Ireland is the Northern Fulmar Fulmarus glacialis. In a fleeting glimpse this bird may look like a gull but a closer look quickly reveals that is a close relative of albatrosses and shearwaters, the tubenoses Procellariiformes.

Can you see how this group of birds, the tubnoses, got its name? Doesn’t it look like they have a tube on top of their bill? This tubular nasal passage is used for olfaction. Yes, some birds do have the ability to smell. Especially seabirds use this sense to locate flocks of krill, shrimp-like animals that feed on single-celled marine plants (phytoplankton) right below the ocean’s surface. Breaking up phytoplankton cells releases a chemical called dimethylsulfide that concentrates in the air above areas where phytoplankton and thus krill are abundant. Researchers suspect that seabirds may smell their prey.

An acute sense of smell may also aid these birds to locate their nest within a breeding colony – you may recall the dense breeding conditions on the coastal cliffs from Monday’s post.

Furthermore, at the base of their bill these true seabirds have a gland that helps them excrete excess salt as they drink seawater. These birds and their relatives often spend long times out over the ocean without any land in sight. Thus they depend on drinking seawater.

So what do Northern Fulmars sound like? They are especially vocal when they return to their partner on the nest, they engage in an often minutes-lasting greeting ceremony. Listen to this pair recorded by Gabriel Leite in Clare county, Ireland (XC372370):

The unique morphological characteristics make these birds well adapted to their preferred environment of the northern oceans. They are among the longest-lived birds known, researchers estimate an average lifespan of 32 years for the Northern Fulmar.

About the Author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics and currently teaches at the Audubon summer camp on Hog Island, ME.

 

Songs on both sides of the Atlantic

Like every year I will leave for Hog Island, Maine tomorrow morning. I will teach at two of the Audubon summer camps that have been held on the island almost every summer since 1936. You may recall this from my previous post.

This year I am particularly excited to watch birds along the Atlantic coast as I just returned from a trip to Ireland, on the other side of the Atlantic ocean. There I spotted birds of several species that also occur along the US coast. I doubt that the birds themselves make the crossing, but members of their species reside and breed on both sides of the Atlantic.

Rathlin Island

So which birds are we talking about? In Europe we visited Rathlin island, a small island off the coast of Northern Ireland, where we watched Atlantic Puffins Fratercula arctica, Razorbills Alca torda and Common Murres Uria aalge – or Common Guillemot as they are referred to in the UK. The Royal Society for the Protection of Birds (RSPB) runs a seabird center along the cliffs of the island where volunteers and staff regularly survey the breeding colonies and answer visitors’ questions. The resident naturalist shared with us the latest numbers: they estimate 100,000 Common Murres to breed on the cliffs, with them 20,000 Razorbills and some 700 pairs of Atlantic Puffins, everyone’s favorite due to their colorful breeding plumage.

Two Atlantic Puffins on Eastern Egg Rock

Atlantic Puffin on Eastern Egg Rock

On the US side of the Atlantic, in Maine, some 550 breeding pairs of these colorful seabirds have been reported in the largest colony on Seal island, ME.

Enjoy some photos of the Irish coastal scenery – I wish my photos conveyed the noise and smell that comes with large seabird colonies like these … David Attenborough in his Life of Birds series refers to these breeding conditions as the” slums in the bird world”.

This slideshow requires JavaScript.

Most of these seabirds are not known for their vocalizations (although Black Guillemots may be exceptional with their distinct whistle; you can hear some in the background of the puffin recording below). Here are some recordings that I found in our collection:

Doug Nelson recorded this Atlantic Puffin on Matinicus Rock, Knox county, Maine, USA on 3 June 1981 (BLB23883):

Lang Elliott recorded a Common Murre on water near the Gaspesie Provincial Park, Bonaventure Island, Quebec, Canada on 1 July 1989 (BLB17181):

Common Eider is another bird that breeds on both sides of the Atlantic. Hear some nestling calls recorded by Don Borror on Eastern Egg Rock, Muscongus Bay, Knox county, Maine, USA on 23 June 1958 (BLB3508):

As you can see, most of these recordings were made a long time ago; time to go back and get some more recent recordings!

About the Author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics and team-teaches at the Audubon summer camp on Hog Island, ME.

Playing the role of a bee

Mid-spring through mid-summer is a good time to see our native orchids in flower here in Ohio.  One of the showiest groups is the Lady’s Slippers, which have a distinctive pouch-shaped lip.  We have four species of Lady’s Slippers (Cypripedium) in Ohio and one of the more frequent ones is the Yellow Lady’s Slipper (C. parviflorum).  There are two varieties of this species – Large and Small.  The Large (var. pubescens) tends to be a plant of rich woods in more upland situations, while the Small (var. parviflorum) is a plant of wet and often more open situations.  In addition, there are floral differences, including overall flower size and coloration of petals.  In many places they are quite distinct, but in others there seem to be intermediates, which is the main reason that they are not called distinct species.

The Small Yellow Lady’s Slipper in flower at Cedar Bog.

The Small Yellow is the less common one in Ohio, given that there are fewer instances of its habitat than for the Large.  One place that the Small occurs is Cedar Bog in Champaign County.  Cedar Bog is really less of a “bog” and more of a “fen” or swamp, because it is not a lake that has been filled in with Sphagnum moss, creating an acidic habitat, but is rather an alkaline wetland that has water flowing through it.  Cedar Bog is owned by the Ohio History Connection and the Ohio Department of Natural Resources.

Pollinating a flower.

Unfortunately, the numbers of Small Yellow Lady’s Slippers at Cedar Bog have been declining recently, so the preserve managers wanted to have the flowers hand-pollinated to increase the changes of seed set, rather than depending on bees to do the job.  They called on me as an orchid specialist to perform the pollination, since orchids have a rather specialized floral morphology.  Two weeks ago my colleague, Richard Gardner, from the ODNR Division of Natural Areas and Preserves, picked me up and we headed out to Cedar Bog.  Once there, we put on rubber boots because we needed to hike off the boardwalk to the orchids.  We made our way to the plants, which had been surrounded by plastic fencing to keep the deer from browsing them.  We opened the enclosures and I set to pollinating, removing the pollen masses (pollinia) from one plant with forceps and transferring them to another.  There were only five stems up this year, and only three of those were in flower, so each pollinium was fairly precious.  I did my best, but we won’t know for a few weeks if the pollination was successful – hopefully we will soon see capsules beginning to swell that will be filled with mature seeds by the end of the summer.

You can learn more about Cedar Bog at this website.

About the Author: Dr. John Freudenstein is Director of the OSU Herbarium and Professor of EEOB.  Photographs by Richard Gardner.

An 1892 Framed Plant Mount on display at the Thompson Library

The first director of The Ohio State University Herbarium and his wife, Dr. and Mrs. William Ashbrook Kellerman, prepared quite a large number of framed mounts of Ohio plants in 1892. According to the previous curator of the herbarium, Dr. Ronald L. Stuckey, these were “part of an exhibit of the Ohio flora displayed in the Ohio State Building … at the Columbian World’s Fair in Chicago in 1893. The total collection consisted of a display of mounted specimens of leaves, twigs, flowers, fruits, section of wood and bark of Ohio’s forest trees, and flowering plants, mosses, lichens, and algae.”

One of these framed mounts, twigs and wood section of the white oak tree, Quercus alba L., is currently on display at the Thompson Library until May 14, 2017. Dr. Florian Diekmann, head of the Food, Agricultural, and Environmental Sciences Library and Student Success Center, was in contact with the staff of the OSU herbarium early June last year seeking help in displaying specimens of white oak as many of the wooden structures of the main library were obtained from that plant.

Since the original twigs and leaves were not in good condition and the glass was chipped in a corner, Dr. Diekmann agreed to have it restored and refurbished. This is just one of the many framed, mounted but not displayed items in the Herbarium hitherto. The idea behind the gallery is to show the “unique connections and history shared between The Ohio State University and Ohio’s forests.” The Ohio State University Herbarium was glad to share its resources with the general public and has also made other items available for display at the gallery.

This slideshow requires JavaScript.

Mesfin Tadesse, curator OSU herbariumAbout the Author: Mesfin Tadesse is curator of vascular plants at The Ohio State University Herbarium.

*** We would like to hear from you, please leave a comment ***

Dynamics of Neo-Tropical Arachnids

Today’s post is a guest post by Andrew Mularo,  an undergraduate student in the Department of Evolution, Ecology and Organismal Biology. He is currently doing his Tropical Behavior Evolution and Ecology research project under Dr. Rachelle M. M. Adams and Dr. Jonathan Shik.

You may love them or you may fear them, but no one can deny the incredible ecological importance of spiders and scorpions. As an aspiring biologist, I have chosen to study the interactions between arachnids and their environment in the tropical rainforests of Panama for the 2017 Tropical Behavioral Evolution and Ecology course. The tropics are a biodiversity hotspot for the majority of the world’s organisms, so there are plenty of creatures to look at. From the smallest spiderling to the largest tarantula, I am curious to see how these cryptic and intriguing animals interact with their ecosystem.

For my project, I am doing an observational study where I am assessing the relationship between leaf litter and arachnid diversity and abundance. I am accomplishing this by creating several 50 meter transects in the Panamanian rainforest, sampling leaf litter with 1 square meter quadrants along each transect. For each quadrant, I take a measurement of leaf litter depth, and sift through the leaves to extract any organisms out of the area. Back at the lab, I sort through the organisms, first finding any arachnids in the sample, and then any other insect or invertebrate, such as ants, beetles, millipedes, snails, mites and many others. With these data, I hope to make a correlation between leaf litter abundance and arachnid diversity and abundance, as well as a correlation between the diversity of potential prey items and arachnid predators.

Naturally, the majority of the organisms that I have been assessing have been very small, from the size of a thumbnail to not even being visible to the human eye. However, there

Wandering Spider (Photo by A. Mularo)

are several occasions where I have observed some extremely imposing arachnids in the tropical forest. One of these includes the huntsman spider, an extremely large nocturnal species that does not rely on a web to capture its prey. This family of spiders is very poorly researched, and is largely unknown how dangerous the venom is for the majority of species. However, they are quite shy, and often scurry away at the sight or sound of a human.

Another fascinating group of organisms I see occasionally are scorpions. The two pictured below are from the genus Tityus, whose venom is very potent. I found the two in the picture below, which we believe to be different species, huddled in close quarters in the water well of a bromeliad. While potentially dangerous, these are a relatively uncommon sight in the rainforest. Nevertheless, it is always good to be careful where you step.

Tityus scorpions (photo by A. Mularo)

While many of them are feared, arachnids are some of the most fascinating organisms on the planet. They come in all shapes and sizes, and have a wide array of interesting characteristics that are of great interest to scientists. Being interested in biology since I was a child, I have always dreamed of coming to the tropics so I could study the vast diversity of organisms, and I could not have picked a better group of organisms to focus on!

Dragonflies and Damselflies of Ohio


Dragonfly at Magee Marsh Wildlife Area.

Dragonfly at Magee Marsh Wildlife Area.

The Triplehorn Insect Collection is beginning a collaborative project to survey the dragonflies and damselflies of Ohio.

These spectacular aerial predators are surprisingly diverse: currently 164 species have been recorded in the state. Brilliant colors and striking markings make them the songbirds of the insect world. The immature stages of all species are aquatic, and these animals are found in lakes, rivers, ponds, and streams from Lake Erie to the Ohio River.  Although many dragonflies and damselflies are common, a number are listed as threatened or endangered.

This new Ohio Odonata Survey is scheduled to last 3 years. The work will be done together with the ODNR Division of Wildlife, the Ohio Odonata Society, and a network of avid volunteers and citizen scientists across the state.

MaLisa Spring, an Entomologist and recent OSU graduate, just joined us as coordinator for all of these efforts.  She will be working out of the Triplehorn Insect Collection in Columbus, and will be actively interacting with participants around the state.

Information on the project can be found in the newly created Ohio Odonata Survey website.  Project activities will also be widely advertised on social media.

Ohio naturalists are invited to contribute to the project. If you have images that can help document the distribution and seasonality of the various species of dragonflies and damselflies in our state, please check out the guidelines.

Finally, the Ohio Odonata Society will be holding its 2017 annual meeting, ODO-CON-17 on 23-25 June at the Grand River Conservation Campus in Rock Creek, OH.

Resources:

Photos by L. Musetti (dragonflies) & Huayan Chen (damselfly).

About the Author: Dr. Norman F. Johnson is an Entomologist, Professor at Ohio State University, and Director of the Triplehorn Insect Collection.

Backyard Bug Explorer


Visitors touring the Triplehorn Insect Collection are invariably drawn to the biggest, longest, most colorful creatures that we have among our four million specimens. Giant walking sticks, Goliath beetles, white witch moths, and birdwing butterflies are a sure hit with visitors of all ages.  One question that usually follows that exhilarating experience is … “Are these from Ohio?” And, unfortunately, we have to say that no, those enormous and colorful insects come from tropical forests in Africa or South America or elsewhere.

That is not to say, though, that there aren’t plenty of interesting and very striking insects in Ohio. In fact, there are plenty of cool insects right in our own backyards, many of them still poorly known or even completely unknown to science.

Here are just a few examples of the insect fauna that I found in my urban backyard in the past few weeks.


Bees & bee nests

During Spring, carpenter bees and bumble bees are very busy building their nests and collecting pollen. Well, that’s true of the female bees, anyway. The male carpenter bees are far too worried about patrolling their territory and checking out everything that comes along, all in the hope of finding a female that might be susceptible to their charms. Not to worry: the males are harmless, and you’d practically have to grab hold of a female before she would think of stinging.

 

◊  ◊  ◊  ◊

Under a clay pot that was left leaning against a wall, a queen bumble bee has dug a hole into the soil where she’s starting her own colony. The same sort of gardening accessories are also great places for spiders to build their webs and for insects to hide away their eggs from predators.


Wasp nests

A mud-nesting solitary wasp found the perfect place to build her nest among the wrinkles of a deteriorating plastic cover on an old outdoor fireplace in our yard.  This might be a mud dauber or perhaps a potter wasp nest. Either way, the mother wasp builds the nest using soft mud, then goes hunting for caterpillars or other insects.  The prey – stung into a state of suspended animation – is stuffed into the nest accompanied by a single wasp egg.  The larva that later hatches will feed on the living prey and develop into a new flying adult wasp.


Insect eggs (my all time favorite)

The most exciting finds for me are insect eggs. Sometimes the eggs are parasitized and produce the little wasps that are my object of study. Here on our screen door I found the eggs of an assassin bug. Each egg is like a small piece of art in itself each with a beautiful ornate crown. I’ve been watching carefully to see if assassin bug nymphs will emerge or if the eggs will produce any of my parasitic wasps.

This slideshow requires JavaScript.


Ants

When I rolled over a log, I found a number of Lasius interjectus.  These bright yellow ants are commonly called “citronella ants.” If you disturb them, they respond by releasing a bouquet of repellent chemicals that smell like lemon or the citronella candles used to repel mosquitoes. These ants are farmers: they maintain underground “herds” of aphids or mealybugs. These “cows” feed on the fluids in plant roots and excrete a sweet honeydew that the ants love.

◊  ◊  ◊  ◊

Here’s a quick video of the citronella ants. They are very cute!


Beetle larvae

I love looking for insects on, in, and under dead trees. Recently I found quite a number of very slick and shiny beetle larvae beneath the bark of a large dead tree near our house. I actually don’t know what kind of beetles they are, but I am hoping my buddies who study beetles will be able to identify them. And who knows, maybe I found something entirely new?!

◊  ◊  ◊  ◊

When disturbed the larvae move deeper into the soft wood.


I have more photos and videos of local insects, but I’ll stop here for now.  Yes, I know, the local bugs are not massive and showy like the amazing things that come from tropical rain forests, but pay close attention and you will find that they are just as fascinating. And best of all, they are right here in our backyard!

 Insects are everywhere. The more we learn about them the more we see how absolutely fascinating, beautiful, and important they are.

 

So take your family outside the house and go explore. Look around your backyard, watch for signs of insects, check out the flowers, the underside of tree leaves, listen to the buzz of the bees and see what they are doing.  Notice the differences between a bumble bee and a carpenter bee and other bees (get more info here.)



A final note: Monday, May 22, is the International Day for Biological Diversity. People all over the world and here in Ohio will be celebrating the day with the goal of increasing understanding and awareness about biodiversity, and to have a good time observing nature.

What a great opportunity to connect with fellow bug explorers and to promote the insect biodiversity that is right around us! Post your discoveries, photos, and musings about Ohio insects on social media. Use the hash tag #OhioBugs so we can keep in touch.

Hope to see you out there!


About the Author: Dr. Luciana Musetti is an Entomologist and the current Curator of the Triplehorn Insect Collection at The Ohio State University.

facebook.com/TriplehornInsectCollection

Follow on Tweeter or Instagram: @osuc_curator